
A Dynamic Hierarchical Task Transfer in
Multiple Robot Explorations

Mehran Asadi
Information Technology

The Lincoln University

Lincoln University, PA 19352, U.S.A

masadi@lincoln.edu

Manfred Huber
Computer Science and Engineering

University of Texas at Arlington

Arlington, TX 76019, U.S.A

huber@cse.uta.edu

Abstract—To operate effectively in complex envi-
ronments, learning agents have to selectively ignore
irrelevant details by forming useful abstractions.
These abstractions can be constructed using subtasks
that are defined prior to the learning process. In this
paper we extend our previous discoveries to a new
multi-robot environment and we combine two recent
methods in hierarchical reinforcement learning in
order to introduce a novel mechanism that discovers
the sub-policies in Markov Decision Process in a
multi-agent system.

I. INTRODUCTION

The work presented here focuses on the con-
struction and transfer of control knowledge in the
form of behavioral skill hierarchies and associated
representational hierarchies in the context of a rein-
forcement learning agent. In particular, it facilitates
the acquisition of increasingly complex behavioral
skills and the construction of appropriate, increas-
ingly abstract and compact state representations
which accelerate learning performance while en-
suring bounded optimality. Moreover, it forms a
state hierarchy that encodes the functional prop-
erties of the skill hierarchy, providing a compact
basis for learning that ensures bounded optimality.

II. HIERARCHICAL REINFORCEMENT

LEARNING

To permit the construction of a hierarchical
learning system, we model our learning problem
as a Semi-Markov Decision Problem (SMDP) and
use the options framework [1], [2] to define sub-
goals. An option is a temporally extended action

which, when selected by the agent, executes un-
til a termination condition is satisfied. While an
option is executing, actions are chosen according
to the option’s own policy. An option is like a
traditional macro except that instead of generating
a fixed sequence of actions, it follows a closed-
loop policy so that it can react to the environment.
By augmenting the agent’s set of primitive actions
with a set of options, the agent’s performance can
be enhanced. More specifically, an option is a triple
oi = (Ii, πi, βi), where Ii is the option’s input set,
i.e., the set of states in which the option can be
initiated; πi is the option’s policy defined over all
states in which the option can execute; and βi is the
termination condition, i.e., the option terminates
with probability βi(s) for each state s. Each option
that we use in this paper bases its policy on its own
internal value function, which can be modified over
time in response to the environment. The value of a
state s under an SMDP policy πo is defined as [3],
[1], [4], [5]:

V π(s) = E

[
R(s, oi) +

∑
s′

F (s′|s, oi)V π(s′)

]

where

F (s′|s, oi) =
∞∑
k=1

P (st = s′|st = s, oi)γ
k

, where γ ∈ [0, 1] is a discount-rate parameter.

III. PREVIOUS WORK

In our previous work [6], [7] we constructed
an appropriate BPMDP for a specific action set

22 Int'l Conf. Artificial Intelligence | ICAI'15 |

Ot = {oi}, and an initial model was constructed
by concatenating all concepts associated with the
options in Ot. Additional conditions are then de-
rived to achieve the stability of partition and,
once reward information is available, the partitions
were further refined according to a defined criteria.
This construction facilitates efficient adaptation to
changing action repertoires.

To further utilize the power of abstract ac-
tions, a hierarchy of BPSMDP (Bounded Param-
eter SDMP) models was constructed where the
decision-level model utilized the set of options
considered necessary while the evaluation-level
used all actions not considered redundant. In the
our system, a simple heuristic was used where the
decision-level set consisted only of the learned sub-
goal options while the evaluation-level set included
all actions.

Let P = {B1, . . . , Bn} be a partition for state
space S derived by the action-dependent parti-
tioning method, using subgoals {s1, . . . , sk} and
options to these subgoals {o1, . . . , ok}. If the goal
state G belongs to the set of subgoals {s1, . . . , sk},
then G is achievable by options {o1, . . . , ok} and
the task is learnable. However, if G /∈ {s1, . . . , sk}
then the task may not be solvable using only the
options that terminate at subgoals. The proposed
approach solves this problem by maintaining a
separate value function for the original state space
while learning a new task on the partition space
derived from only the subgoal options. During
learning, the agent has access to the original actions
as well as all options, but makes decisions only
based on the abstract partition space information.
While the agent tries to solve the task on the
abstract partition space, it computes the difference
in Q-values between the best actions in the current
state in the abstract state space and in the original
state space. If the difference is larger than a con-
stant value , then there is a significant difference
between different states underlying the particular
block that was not captured by the subgoal options.

IV. AUTONOMOUS HIERARCHY

CONSTRUCTION

In the multi-phase partitioning and hierarchical
learning method discussed in the previous section,
it has so far been assumed that either the correct
set of actions for constructing an abstract state

space is available or that, as a simple heuristic, all
subgoal options are selected as the relevant action
set. While the latter can lead to good results when
used in conjunction with the learning method it
might lead to an ever increasing action set if a large
sequence of tasks is to be learned. In particular,
this heuristic has the limitation that it can never
remove an option from the action set used for
multi-phase partitioning, even if it is not used for
any of the tasks. To address this limitation, this
section presents a method aimed at automatically
constructing the abstract representation based on
the information contained in the previously learned
task policies.
In order to estimate the structure of the state
space for learning future tasks, we construct the
decision layer here based on an estimate of the
expected time to learn a new task according to
previously learned tasks. Let Π = {π1, . . . , πn}
be the set of previously learned polices and Pi =
{Bi,1, . . . , Bi,n} be the corresponding partitions.
Also let the triple Ti = (πi, Pi, Qi) be a task
on partition Pi = {Bi,1, . . . , Bi,n} with policy
πi and the Q-function Qi. The expected number
of experiences required to learn a task, with high
probability, on partition P with action set O using
a DP-based version of Q-learning is [8]:

Tconv(P,O) = c|P |2|O|
where c is a constant and it is assumed that the
task is learnable on P with action set O.
The expected time required to learn task Ti on
state representation P (including the refinement
process) can be obtained by calculating the number
of experiences that are needed for learning Ti on
partition P plus the amount of time that is needed
to refine a block of partition P , that is:

E[tTi |P] =

tconv(P,O)+∑
Bj∈P

Prefine(Bj |Ti)tconv({Bi,k|Bi,k∩Bj �= ∅}, O)

We compute the likelihood that a block Bj has to
be refined during the exploration and learning of
task Ti with the following equation:

Prefine(Bj |Ti) =∑
Bi,k:Bi,k∩Bj �=∅

Prefine(Bj |Bi,k, Ti)P (Bi,k|Ti)

Int'l Conf. Artificial Intelligence | ICAI'15 | 23

where

Prefine(Bj |Bi,k, Ti) =

{
1 if A
0 otherwise

where A = maxa(Qi(Bi,k, a) >
maxa∈OBi,k

(Qi(Bi,k, a))) + L and
L = 2(1 + (γ

1−γ))max{ε, δ} and

Prefine(Bj |Bi
k, Ti) is the probability that

block Bj has to be refined during the exploration
and learning of Ti due to encountering block Bi,k

which is at least partially contained in Bj and
for which an action a which is not contained in
the currently considered action set OBi,k, with
significantly higher value should then be included
using the hierarchical learning scheme.
We compute the expected time required to learn
a task randomly chosen from the distribution
of previously learned tasks according to an
importance distribution U(Ti) which indicates the
weight that should be put on each tasks by:

E[tlearn|P] =
∑
i

U(Ti)∑
i U(Ti)

E[tTi |P]

Algorithm 1 illustrates the process of autonomous
hierarchy construction, in particular this is a greedy
algorithm that finds action-dependent partitions
that have the smallest expected learning time given
previously learned tasks. The reason for the greedy
approach is to reduce the complexity sufficiently
to make it tractable. This approach is very similar
to McCullum’s U-tree algorithm [9], [10] except
that splits are driven not by reward but by the
expected learning time metric derived before. This
procedure can be done either by splitting the blocks
separately or by limiting the inclusion of actions
across the state space. While the latter saves us
more computational time, the former will give us
more nuanced splits.

V. EMPIRICAL RESULTS

The experiment shows the result of the pre-
sented approach in a game domain that is more
complex and more similar to real environments.
While all these experiments use the heuristic of
using all subgoals action to construct the abstract
decision layer, the experiment in the same game
domain investigates the autonomous hierarchy con-
struction approach in order to illustrate the con-
struction of an approximate partition using the

Algorithm 1 Autonomous Hierarchy Construction

Require: O0 = ∅, P0 = {s}
n = 0
repeat

for all Bj in Pn and oi ∈ O −On,Bj do
Pn+1,(i,j) = Pn where Bj is refined with
oi

end for
(k, l) = argmin(b,c)E[tlearn|Pn+1,(b,c)]
Pn+1 = Pn+1,(k,l)

B = Bl

for all Bi ∈ Pn do
for all Bj ∈ Pn+1, Bj ⊆ Bi do

if Bi = B then
On+1,Bj = On,B ∪ {ok}

else
On+1,Bj = On,Bi

end if
end for

end for
n = n+ 1

until E[tlearn|Pn] ≥ E[tlearn|Pn−1]
return Pn−1

END

information of the previously learned polices.
The actions are GoUp, GoDown, TurnLeft, Turn-
Right, PickUp and DropOff. The cost for each sin-
gle step action is −1 and each action for navigation
succeeds with probability 1. The reward in the goal
state where the agent can pickup and drop off the
object is 100. The state is here characterized by
the agent’s pose as well as by a set of local object
percept, resulting in an effective state space with
20, 000 states. The agent is first presented with
a reward function to learn to move to a specific
location. Once this task is learned, subgoals are ex-
tracted by generating random sample trajectories.
In order to show the construction of the decision
layer, a sequence of five different tasks is learned in
the game environment. The first task is to navigate
the environment, i.e., the agent learns how to move
from one location to another location. The second
task is to navigate the environment and pick up
an object. The goal of third task is to navigate
a different region of the environment, and in the
fourth task the agent learns how to navigate, pick
up an object and drop it off in another location. The
fifth task is the combination of the first four tasks

24 Int'l Conf. Artificial Intelligence | ICAI'15 |

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

Number of Iterations

Q
−V

al
ue

Skill and Represenation Transfer
No Transfer

Fig. 1. Learning curves for the first navigation task. The agent
learns to navigate the environment and the information acquired
by learning this task will be used for constructing a partition
for the next task ,i.e, the navigation and pickup tasks

by using the information acquired while learning
the first four tasks, i.e., the agent learns to navigate
the environment and to pick up an object and drop
it off in another location.
Figures 1, 2, 3 and 4 show the learning curves for
the first four tasks.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

Number of Iterations

Q
−V

al
ue

Skill and Represenation Transfer
No Transfer

Fig. 2. Learning Curves for the second task, i.e., the navigation
and pickup tasks. The information acquired by learning this task
and the first task will be used for constructing a partition for
the third task

At each step, a previously learned policy is added
to the action set in order to construct a partition

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

30

40

50

60

70

80

90

Number of Iterations

Q
−V

al
ue

Skill and Represenation Transfer
No Transfer

Fig. 3. Learning Curves for the third task, i.e., the second
navigation task. The information acquired by learning this task
and the previous two tasks will be used for constructing a
partition for the fifth task

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

Number of Iterations

Q
−V

al
ue

Skill and Represenation Transfer
No Transfer

Fig. 4. Learning Curves for the fourth task, i.e., the navigation
and dropoff tasks. A new partition will be constructed by using
a history of previously learned tasks for future subsequent tasks

that is more relevant to the learning of a new
task using Algorithm 1. The number of blocks for
task 1 through 5 is illustrated in Figure 5. The
number of blocks of this partition is illustrated
in Figure 6. This experiment shows how a new
partition can be constructed by using a history
of previously learned task while it ensures that
the new policy is within a fixed bound from the
optimal policy. Figure 7 illustrates the learning
curves on the compact state space, constructed by

Int'l Conf. Artificial Intelligence | ICAI'15 | 25

Fig. 5. Number of blocks constructed for learning task 1
through task 5

0 500 1000 1500 2000 2500 3000
40

45

50

55

60

65

70

75

80

85

90

Number of Iterations

N
um

be
r o

f B
lo

ck
s

Task Dependent
Task Independent
Decision Layer
Refinement of Decision Layer

Fig. 6. Number of blocks for decision layer after refinement
of task dependent partition. As a result of further refinement of
the original blocks of partition the number of blocks increases,
however this number becomes stables after finite and relatively
small number of iterations.

using previously learned polices.

VI. CONCLUSION AND FUTURE WORK

The results presented in this paper show a
significant reduction in the number of states in the
abstract state space, resulting in faster convergence
of the value function. Furthermore, these experi-
ments show a procedure to estimate the structure
of the state space for learning future tasks and to
construct the decision layer based on the expected
time to learn a new task according to previously
learned tasks.

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

Number of Iterations

Q
−V

al
ue

Skill and Represenation Transfer
Learning Transfer

Fig. 7. Learning on a partition space obtained by Autonomous
Hierarchy construction method by using the first four tasks. This
experiment shows how a new partition can be constructed by
using a history of previously learned tasks while it ensures that
the new policy is within a fixed bound from the optimal policy

One of the future goals is to find even more
efficient machine learning methods for control
tasks. Algorithms can be developed for statistical
generalization and reasoning about the algorithms
that learn to incrementally scale up to analyze
even more complex tasks. Discovering hierarchy in
task structure and world structure is an important
means in achieving this end. Algorithms need to be
developed that learn to reason about their environ-
ment in a combinatorial way and learn to develop
more cognitive internal representations that mimic
relational structures. Integration of more power-
ful representations such as factorial HMMs and
POMDPs are a potential follow-up to this work.
Smarter hierarchical algorithms must be found to
deal with larger tasks, and research must be di-
rected at more intelligent representational design
not only for incorporating hierarchy but also for
sharing substructures.

REFERENCES

[1] R. Sutton, D. Precup, and S. Singh, “Between MDPs
and Semi-MDPs: Learning, Planning, and Representing
Knowledge at Multiple Temporal Scales,” Artificial In-
telligence, vol. 112, pp. 181–211, 1999.

[2] R. Parr, “Hierarchical Control and Learning for Markov
Decision Processes,” Ph.D. dissertation, University of
California, Berkeley, CA, 1998.

26 Int'l Conf. Artificial Intelligence | ICAI'15 |

[3] C. Boutilier, T. Dean, and S. Hanks, “Decision-Theoretic
Planning: Structural Assumptions and Computational
Leverage,” Journal of Artificial Intelligence Research,
vol. 11, pp. 1–94, 1999.

[4] K. Kim and T. Dean, “Solving Factored MDPs us-
ing Non-Homogeneous Partitions,” Artificial Intelligence,
vol. 147, pp. 225–251, 2003.

[5] T. G. Dietterich, “An Overview of MAXQ Hierarchical
Reinforcement Learning,” Lecture Notes in Computer
Science, vol. 1864, 2000.

[6] M. Asadi and M. Huber, “State Space Reduction For
Hierarchical Reinforcement Learning,” in Proceedings of
the 17th International FLAIRS Conference. AAAI, 2004,
pp. 509–514.

[7] ——, “Effective control knowledge transfer through
learning skill and representation hierarchies,” in IJCAI,
Proceedings of the 20th International Joint Conference
on Artificial Intelligence, Hyderabad, India, 2007, pp.
2054–2059.

[8] A. Barto and S. Mahadevan, “Recent Advances in Hierar-
chical Reinforcement Learning,” Discrete Event Dynamic
Systems, vol. 13, pp. 341–379, 2003.

[9] A. McGovern and A. Barto, “Automatic Discovery of
Subgoals in Reinforcement Learning using Diverse Den-
sity,” in Proceedings of the 18th International Conference
on Machine Learning, 2001, pp. 361–368.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic
Programming. Belmont, MA: Athena Scientific, 1996.

[11] H. Janzadeh and M. Huber, “Learning policies in partially
observable mdps with abstract actions using value iter-
ation,” in Proceedings of the Twenty-Sixth International
Florida Artificial Intelligence Research Society Confer-
ence., 2013.

[12] H. Rahmanian and M. Huber, “Data modeling using
channel-remapped generalized features,” in IEEE Inter-
national Conference on Systems, Man, and Cybernetics,
2013, pp. 864–869.

[13] M. Aurangzeb, F. L. Lewis, and M. Huber, “Efficient,
swarm-based path finding in unknown graphs using re-
inforcement learning,” Control and Intelligent Systems,
vol. 42, no. 3, 2014.

[14] D. M. Clement and M. Huber, “Using multi-agent options
to reduce learning time in reinforcement learning,” in
Proceedings of the Twenty-Eighth International Florida
Artificial Intelligence Research Society Conference, 2015,
pp. 26–31.

[15] C. Boutilier, R. Dearden, and M. Goldszmidt, “Exploiting
Structure in Policy Construction,” in Proceedings of the
Fourteenth International Joint Conference on Artificial
Intelligence, 1995, pp. 1104–1111.

[16] A. McCallum, “Overcoming Incomplete Perception with
Utile Distinction Memory,” in Proceedings of the Tenth
International Machine Learning Conference, 1993.

[17] T. Dean, R. Givan, and M. Greig, “Equivalence Notions
and Model Minimization in Markov Decision Processes,”
in Special issue on planning with uncertainty and incom-
plete information, 2003, pp. 163–223.

[18] T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson,
“Planning Under Time Constraints in Stochastic Do-
mains,” Artificial Intelligence, vol. 76, no. 1-2, pp. 35–74,
1995.

[19] B. Digney, “Emergent hierarchical control structures:
Learning reactive / hierarchical relationships in rein-
forcement environments,” in Proceedings of the Fourth
Conference on the Simulation of Adaptive Behavior,
1996.

[20] C. Drummond, “Using a Case Base of Surfaces to
Speed-Up Reinforcement Learning,” in Proceedings of
the Second International Conference on International
Conference on Case-Based Reasoning, 1997, pp. 435–
444.

[21] T. Dean, R. Givan, and S. Leach, “Model Reduction
Techniques for Computing Approximately Optimal Solu-
tions for Markov Decision Processes,” in Proceedings of
the 13th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-97). San Francisco, CA: Morgan
Kaufmann Publishers, 1997, pp. 124–131.

[22] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press, 1998.

[23] R. H. Crites and A. G. Barto, “Elevator group control
using multiple reinforcement learning agents,” Machine
Learning, vol. 33, pp. 235–262, 1998.

[24] R. Parr and S. Russell, “Reinforcement learning with
hierarchies of machines. in,” in Proceedings of the 1997
Conference on Advances in Neural Information Process-
ing Systems. Cambridge, MA: MIT Press, 1998.

[25] T. G. Dietterich, “Hierarchical reinforcement learning
with the maxq value function decomposition,” Artificial
Intelligence Research, vol. 13, pp. 227–303, 2000.

[26] M. L. Puterman, Markov Decision Problems. New York:
Wiley, 1994.

[27] G. J. Tesauro, “Practical issues in temporal difference
learning,” Machine Learning, vol. 8, pp. 257–277, 1992.

[28] J. N. Tsitsiklis and B. V. Roy, “An analysis of temporal-
difference learning with function approximation,” IEEE
Transactions on Automatic Control, vol. 42, pp. 674–690,
1997.

[29] S. Mahadevan, N. Marchalleck, T. Das, and A. Gosavi,
“Self-improving factory simulation using continuous-
time average-reward reinforcement learning,” in Proceed-
ings of the 14th International Conference on Machine
Learning, Nashville, TN, 1997.

[30] S. Singh and D. Bertsekas, “Reinforcement learning
for dynamic channel allocation in cellular telephone
systems,” in Proceedings of the 1996 Conference on
Advances in Neural Information Processing Systems.
Cambridge, MA: MIT Press, 1997.

[31] C. J. C. H. Watkins, “Learning from delayed rewards,”
Ph.D. dissertation, Cambridge University, 1989.

[32] R. S. Sutton, “Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding,”
in Advances in Neural Information Processing Systems.
Cambridge, MA: The MIT Press, 1996, pp. 1038–1044.

Int'l Conf. Artificial Intelligence | ICAI'15 | 27

