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Abstract—This paper describes a novel technique for the
position error compensations of the robot and manipulator
calibration process based on an Interval Type-2 Fuzzy error
interpolation (IT2FEI) method. Traditional robots calibration
implements either model or modeless method. The compensation
of position error in modeless method is to move the robot’s end-
effector to a target position in the robot workspace, and to find
the target position error based on the measured neighboring 4-
point errors around the target position. A camera or other
measurement device is attached on the robot’s end-effector to
find and measure the neighboring position errors, and
compensate the target position with the error interpolation
results. By using the IT2FEI technique provided in this paper,
the accuracy of the position error compensation can be greatly
improved, which has been confirmed by the simulation results
given in this paper. Compared with some other popular
traditional interpolation methods, this IT2FEI technique is a
better choice. The simulation results show that more accurate
compensation result can be achieved using this technique
compared with the type-1 fuzzy interpolation method.

Keywords—Modeless robots calibrations; position error
compensations; interval type-2 fuzzy interpolations; dynamic online
fuzzy interpolation algorithm.

I. INTRODUCTION

The prerequisite requirement of the robotic modeless
calibration is the successful self-calibration of the camera [1,
2]. Both internal and external parameters of the camera need
to be calibrated accurately [3, 4]. Then modeless robot
calibration is divided into two steps [5]. The first step is to
identify the position errors for all grid points on a standard
calibration board, which is installed on the robot’s workspace.
A calibrated camera or other measurement device is attached
on the robot’s end-effector to find the neighboring position
errors. This process can be considered as an identification
process, which is shown in Fig. 1.

At each grid point, a calibrated camera is used to check the
position errors of the end-effector of the robot. In Fig 1, the

desired position of the grid point 0 is (x,, y, ), and the actual
position of the robot end-effector is (x;), y;)). The position

errors for this grid pointare ¢ = x,-xy,ande ,=y,-y,.

Dali Wang
Dept of Physics and Computer Science
Christopher Newport University
Newport News, USA
dwang@pcs.cnu.edu

Fig.1 Setup of the robotic modeless calibration.

The robot will be moved to all grid points on the standard
calibration board, and all position errors on these grid points
will be measured and stored in the memory for future use.

In the second step, the robot’s end-effector is moved to a
target position that is located in the range of the workspace.
The target position error could be found by an interpolation
technique using the stored 4-neighboring grid position errors
around the target position, which were obtained from the first
step. Finally, the target position could be compensated with
the interpolation results to obtain more accurate positions.

J. Triantafilis and D. Suzana et al reported approaches of
using fuzzy interpolation methods to estimate the soil layer
and geographical distributions for GIS database [6, 7]. F. Song
et al described a fuzzy logic methodology for 4-dimensional
(4D) systems with optimal global performance using enhanced
cell state space [8]. The most popular interpolation techniques
applied in the position compensations of the modeless robotic
calibration include the bilinear interpolation and cubic spline
interpolation methods; both methods can achieve satisfactory
interpolation results for general calibration process [2]. Since
the actual position errors are randomly distributed, and it is
impossible to pinpoint a position on the error surface at any
given moment, the traditional interpolation techniques are
unable to provide an accurate estimation of the position errors.
The IT2FEI technique utilizes an interval type-2 fuzzy
inference system to estimate the position errors, which is
consistent with the random distributed nature of position
errors. The position errors can be considered as a fuzzy set at
any given moment of the time. The fuzzification process takes
into account of a range of error rather only a crisp error value.
Therefore, the fuzzy error interpolation technique has the
fundamentals to improve error estimation results.
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The Interval Type-2 Fuzzy inference is the process of
formulating the mapping from a given input to an output using
interval type-2 fuzzy logic [9-10]. The mapping then provides
a basis from which decisions can be made, or patterns
discerned. Interval Type-2 Fuzzy inference systems have
been successfully applied in fields such as automatic controls,
data classification, decision analysis, expert systems, and
computer vision [9]. S. Aminifar and A. Marzuki reported an
analysis about the uncertainty between the type-1 and Interval
Type-2 Fuzzy Logic System (IT2 FLS) [11]. Yu-Chuan Chang
presented a new method for handling fuzzy rule interpolation
in sparse fuzzy rule-based systems based on interval type-2
fuzzy sets [12]. Kashyap and Sudesh Kumar reported a
research of using an i9nterval type-2 fuzzy logic system to
perform image fusion [13]. Qing Lu et al. reported to control a
nonlinear system with the interval type-2 FLC [14]. Dongrui
Wu and Mendel, J.M reported a new method to simplify the
design process for the interval type-2 fuzzy system [15].
Schrieber, M.D. and Biglarbegian, M reported to use an
interval type-2 FLC to control the FPGA production process
[16]. Ching-Chih Tsai et al. reported to use an interval type-2
FLC to control an intelligent bike [17]. Nurmaini, S. and
Tutuko, B. described a motion coordination of swarm robots
using Interval Type-2 Fuzzy Logic Controller (IT2FLC) to
control swarm robots coordination to produce smooth
trajectory without collision [18]. Mendel, J. et al. discussed
and analyzed different structures of type-1 and type-2 fuzzy
controllers [19]. Kumbasar, T examined the robust stability of
a PD type Single input Interval Type-2 Fuzzy Logic
Controller (SIT2-FLC) structure [20]. All of these updated
applications provide a prospective future for interval type-2
fuzzy inference system.

This paper is organized in 5 sections. After this introduction
section, the operational principles of the type-1 fuzzy
interpolation technique are provided in section 2. Section 3
discusses the interval type-2 fuzzy error interpolation method.
A simulation is given in section 4 to illustrate the effectiveness
of the fuzzy error interpolation technique. Section 5 presents
the conclusion.

II. TyPE-1FuzzY ERROR INTERPOLATION SYSTEM

A. The on-line versus off-line fuzzy system

In order to improve the compensation accuracy, a dynamic
on-line fuzzy error interpolation method is introduced. The
traditional fuzzy inference system uses pre-defined
membership functions and control rules to a construct lookup
tables; then a control output is selected from the lookup table.
This type of system is called off-line fuzzy inference system
because all inputs and outputs have been defined prior to the
application process. The off-line fuzzy system cannot meet
our requirement for the several reasons. First, the position
error of the target point is estimated based on 4 errors of the
neighboring grid points, and these 4 neighboring errors are
randomly distributed. The off-line fuzzy output membership
functions are defined based on the range of errors, which is the
neighboring errors’ range. However, this range estimation is
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Fig. 2. Definition of the Fuzzy Error Interpolation System.

not as accurate as the real errors obtained on the grid points.
Second, since each cell needs one lookup table for the off-line
fuzzy system, it would require a huge memory space to save a
large number of lookup tables. This results in demanding
requirement in both space and time, and as a result, becomes
not practical for real time processing. For example, in our
study, 20 x 20 cells are utilized on the calibration board (each
cell is 20x 20 mm); this would require 400 lookup tables. By
using an on-line dynamic fuzzy inference system, the target
position error can be estimated by combining the output
membership functions, which are defined based on the real
errors on neighboring grid points and the control rules in real
time. The output membership functions are not predetermined,
and their definitions are based on the real errors on the grid
points, not a range.

Fig. 2 shows the definition of the fuzzy error interpolation
inference system.

Each square that is defined by 4 grid points is called a cell;
and each cell is divided into 4 equal smaller cells, which are
NW, NE, SW and SE, respectively (Fig. 2 (a)). The position

error at each grid point is defined as P,, P, ,P; and P, .

For the fuzzy inference system, we apply the fuzzy error
interpolation method in two dimensions separately, so the

inputs to the fuzzy inference system are e and e, and the

outputs are ee  and ee y (Fig. 2 (b)). The control rules are

shown in Fig. 2 (c), and are discussed following the discussion
of membership functions.

B. Membership functions

In this work, the distance between two neighboring grid
points on the standard calibration board is 20 mm in both x and
y directions, which is a standard value for a mid-size
calibration workspace. The calibration board includes a total
of 20 by 20 cells, which is equivalent to a 400 by 400 mm
space.

The input membership functions for both x and y directions
and the predefined output membership functions are shown in
Fig. 3. The predefined output membership functions are used
as default functions, and the final output membership function
will be obtained by shifting the default one by the actual error
values on the grid points.

The gaussian-bell waveforms are selected as the shape of
the membership functions for both inputs (Fig. 3 (a)) in x and y
directions. The ranges of inputs are between —10 mm and 10
mm (20 mm intervals). H. Zhuang and X. Wu reported a special
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Fig. 3. Input and output membership functions.

histogram method to estimate the optimal membership
function distribution [21]. However in our case, a gaussian-
bell shape is selected due to the fact that most errors in real
world match this distribution. We use W and E to represent
the location of inputs in x direction, N and S to represent the
location of inputs in y direction. Unlike the traditional fuzzy
inference system, in which all membership functions should
be determined in advance to produce the lookup table, the
output membership functions will be determined during the
application of the fuzzy inference system in real time. This is
called dynamic fuzzy system.

Fig. 3 (b) shows an example of the output membership
functions, which are related to the simulated random errors at

neighboring grid points. Each P ;and P, correspond to the

position error at the ith grid point in x and y directions,
respectively. During the design stage, all output membership
functions are initialized to a gaussian waveform with a mean of
0 and a range between —0.5 and 0.5 mm, which is a typical
error range for this workspace in robotic calibration (Fig. 3 (c))
[5]. These output membership functions will be determined
based on the errors of the neighboring grid points around the
target in the workspace as mentioned above. For example,
during the compensation process if the input position in the x
direction is in the NW area of a cell, the associated output
membership function should be modified based on the position
error in the NW grid point P,. This modification is equivalent
to shift the P,; Gaussian waveform (Fig. 3 (b)) and allow the
center of that waveform to be located at x, = the position error
value of the P; in the x direction. Similar modification should
be performed for the position error in the y direction. It can be
seen from Fig. 3 (b) that the performance loss would be
significant if the default output membership function is
utilized, which is shown in Fig. 3 (c), for the position
compensation process.

C. Membership functions
The control rules shown in Fig. 2 (¢) can be interpreted as

follows after the output membership functions are determined:
= Ife is Wand e, isN,ee is P, and ee, is P (NW).
= Ife is Wand e, isS,ee is P ; and ee, is P 5 (SW).
* Ife isEand e, isN,ee isP_, and ee, is P, (NE).

] IfexisEandeyis S,ee isP , andeeyis P, (SE).
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Each P, should be considered as a combination of two error

components, P .

and P, , which are corresponding to errors in
both x and y directions. The error on NW grid point should take
more weight if the target position (input) is located inside the
NW area on a cell. Similar conclusion can be derived for errors

on SW, NE and SE grid points.

III. INTERVAL TYPE 2 FUZZY INTERPOLATION SYSTEM

A. Overview of the interval type 2 fuzzy interpolation system

Similar to type | fuzzy inference system, the type 2 fuzzy
inference system still uses the input and output membership
functions, combined with the control rules, to derive the
outputs [10, 15]. However, the fuzzy sets used in the type 2
fuzzy logic or the membership grades involved in each
membership function are not crisp values, but another fuzzy
sets. This means that the membership degrees for all
membership functions used in the type 1 fuzzy system are
fixed values and can be determined uniquely before the fuzzy
inference system works. But the membership degrees for all
membership functions used in the type 2 fuzzy system are
fuzzy sets. The difference between the standard type-2 fuzzy
system and the so-called interval type-2 fuzzy system is that in
the former system, the membership degrees are pure fuzzy
sets, but the membership degrees are a set of crisp values with
arange of 0 ~ 1 or an interval for the latter.

Fig. 4 shows the functional block diagram of an Interval
Type-2 FLS [22]. It is similar to Typr-1 FLS, but the major
difference is that at least one of the fuzzy sets in the rule base
is an IT2 fuzzy set. The outputs of the inference engine are
IT2 fuzzy sets, and a type-reducer is needed to convert them
into a Typr-1 fuzzy set before defuzzification can be started.

Some fundamental operations in the type-2 fuzzy system
are union (3.1), intersection (3.2) and complement (3.3) [23].

The union for interval type-2 fuzzy sets 4 and B is:

AUB= { I ;1_;(_r)U}1§(x) Ix} =]l j J. 1.-"1:!].-".:;] (3.1
4 xeX| oslp v i Big Vi ]

xeX

The intersection for interval type-2 fuzzy sets 4 and B is:

ANB={ J. () (x)/ x } = j J. Vel|/x} (3.2)
| xe ] it e Figy Min] :

xeX

The complement for interval type-2 fuzzy sets A and I is:
—d= { | vy x} = { ) { | 1/ a] x} (3.3)
xeX reX| eefl-pz(x)l-p;(x]]

) Fuzzificr‘ | Rulebase |

Crisy
inputs

.| Inference
m2rss | Engine

Type-reducer

Fig. 4. A functional block diagram of the Interval Type-2 Fuzzy system.

IT2FSs
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In practice the computations in an IT2 FLS can be
significantly simplified. Consider the rule base of an IT2 FLS
consisting of N rules assuming the following form [22]:

R"ifx;is X Jand ... and x;is X!, then y is Y"; n=1,2...N
where X/ (i = 1 ~ I) are IT2 Fuzzy sets, and Y'=[y|, y, ] is
an interval, which can be understood as the centroid [9, 24] of
a consequent Interval Type-2 fuzzy set, or the simplest TSK
model, for its simplicity. In many applications we use y| =

y,,1.e., each rule consequent is a crisp number.
Assume the input vector is x" = (x';, X5, ..., X1 ). Typical

computations in an IT2 FLS involve the following steps:

1) Compute the membership of x . on each X'

2) Compute the firing interval of the n" rule, F*(x')

3) Perform type-reduction to combine F'(x’) and the
corresponding rule consequents with the center-of-sets
type-reducer [9]:

N
Y= U ) (34)
EY o
4) Compute the defuzzified output as:
Yty
T, 3.5)

B. Membership Functions

Similar to type-1 fuzzy interpolation system, the input
membership functions for both x and y directions and the
predefined output membership functions for IT2 FLS are
shown in Fig. 5. The predefined output membership functions
are used as default functions, and the final output membership
function will be obtained by shifting the default those by the
actual error values on the grid points.

We use W and E to represent the location of inputs in x
direction, N and S to the location of inputs in y direction. For
real outputs, 4 membership functions, p,; ~ p., should be
designed for the x direction, and another 4 membership
functions, p,; ~ pys, are to be built for the y direction. These
output functions should be located at the center position,
which are defined as the default location, as the beginning and
changed to the real location based on the actual position errors
on each grid point. In Fig. 5, these functions are all displayed
but not in the default locations.

As for the control rules, the identical control rules are used
for this IT2 FLS, but the fuzzy sets are used as the degrees to
replace those crisp values used in the type-1 FLS.
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Fig. 5. The input and output membership functions for IT2 FLS.
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IV. SIMULATION RESULT

Extensive simulation has been performed in order to
illustrate the effectiveness of the proposed dynamic online T2
fuzzy error interpolation technique in comparison to the type-1
FLS. Due to the random nature of the position errors, three
different types of error are simulated in this study. These are:

= Normal distributed random error
= Uniform distributed random error
= Sinusoidal waveform error

Figs 6, 7 and 8 show the simulation results of the type-1
and the IT2 fuzzy error interpolation techniques for these three
types of error [23].

In these figures, the simulated target (testing) positions on
the standard calibration board are spaced from 1 mm to 20 mm
within each cell being with a size of 1 mm.

Figs 9 to 11 show comparisons in mean error, maximum
error and STD values between type-1 and IT2 fuzzy error
interpolation techniques in the histograms.

It can be seen that both mean errors and maximum errors
of the IT2 fuzzy error interpolation technique are smaller than
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those of type-1 FLS methods. For all three error distribution,
the mean errors of the IT2 fuzzy error interpolation method
are approximately 10% to 20% smaller compared with those
of type-1 FLS method.

The maximum errors of the IT2 fuzzy error interpolation
technique are about 10% to 30% smaller than those of the
type-1 FLS method. In one case (normal distribution error in x
and y direction), the maximum errors of the IT2 fuzzy
interpolation method are about 4% smaller than those of the
type-1 FLS method.

Figure 12 shows the IT2 fuzzy interpolation error surface.

The simulated results show the effectiveness of the
dynamic on-line interval type-2 fuzzy error interpolation
technique in reducing the position errors in the modeless robot
compensation process.

To implement this interval type-2 fuzzy error interpolation
technique as a real time application, an interface between the
MATLAB" and high level programming languages C/C++ has
been developed [25]. Although the most popular real time

M Fuzy  Ouput  Suface

eex

Fig 12. The IT2 fuzzy interpolation error surface.
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control programming language is C/C++, the fuzzy error
interpolation method is developed and implemented in
MATLAB [23]. Using this interface, the measured position
errors on the grid points can be passed from C/C++ to
MATLAB functions that implements the interval type-2 fuzzy
error interpolation functions; and the fuzzy error interpolation
results can be sent back to C/C++ for the real time controller
to operate on the next target position.

V. CONCLUSION AND SUMMARY

A dynamic on-line interval type-2 fuzzy error interpolation
technique is presented in this paper. The compensated position
errors in a modeless robot calibration can be greatly reduced
by the proposed technique. Simulation results demonstrate the
effectiveness of the proposed fuzzy error interpolation
technique. Three typical error models are utilized for
comparison and simulation; these include sinusoidal
waveform, normally distributed and uniformly distributed
errors. This fuzzy error interpolation technique is ideal for the
modeless robot position compensation, especially the high
accuracy robot calibration process.
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