
Bound Smoothing with a Biased Random-Key Genetic Algorithm

Thiago Alves de Queiroz1, Ivan da Silva Sendin2, and Marcos Aurélio Batista3
1Institute of Mathematics and Technology, Federal University of Goiás - Campus Catalão, Catalão, Goiás, Brazil.

E-mail: taq@ufg.br.
2Faculty of Computing, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.

E-mail: sendin@ufu.br.
3Department of Computer Science, Federal University of Goiás - Campus Catalão, Catalão, Goiás, Brazil.

E-mail: marcos.batista@catalao.ufg.br.

Abstract— In this work we solve a subproblem of the
distance geometry problem in molecular conformation. The
latter aims to determine the three-dimensional structure of
a molecule from a set of imprecisely distances. We are
interested only in the bound smoothing subproblem, which
aims to tighten bounds from a set of lower and upper
bounds on distance for pair of atoms. We apply a Biased
Random-Key Genetic Algorithm to solve this subproblem,
where each entry of chromosomes indicates how to decrease
a bound, with the fitness function measuring the violation
of the triangle inequalities. Experimental results show the
effectiveness of this algorithm to solve randomly generated
instances for which real distances between atoms are known
in advance.

Keywords: Molecule Problem; Distance Geometry Problem; Tri-

angle Inequality; Biased Random-Key Genetic Algorithm

1. Introduction
A important problem in computational biology is to deter-

mine the structure of a molecule, as a protein [1], [2]. Some

experimental techniques have been applied to measure inter-

atomic distances for molecules, as the Nuclear Magnetic

Resonance (NMR) [3], [4] and X-ray crystallography [5].

After measuring the distance between atoms, the next step

is to construct a three-dimensional structure, that is, solve a

variant of the distance geometry problem, which is NP-hard

accordingly to [6].

The distances measured with NMR technique are not

precise, so many of these distances need to be given in lower

and upper bounds. Then, it is necessary to tighten the bounds

in order to construct a well structured molecule. In this

case, a distance geometry problem has to be solved [7]. In

accordance with [8], this problem can be organized in three

subproblems (steps): (i) bound smoothing, (ii) embedding,

and (iii) optimization.

Step (i) aims to improve the bounds given on the distance

of each pair of atoms as well as to compute bounds for those

distances that experimental methods could not estimate, so

aiming to obtain tight bounds for each pair of atoms. In

step (ii), once the bounds are tightened, it is computed

approximate tree-dimensional coordinates for the atoms, and

they are further improved in step (iii). Steps (ii) and (iii) are

repeated until to satisfy all lower and upper bounds. More

details of the distance geometry problem are given in [9].

Experimental approaches that have been used to calculate

a distance for a pair of atoms are not precise. On the NMR,

the structure must have a small quantity of residues, so the

distance can be estimated for pairs of atoms that are at a

short distance (smaller than 6 Å) On the other hand, the X-

ray crystallography imposes a crystallization of the structure,

which is very time consuming [10].

As only a set of distances can be estimated from experi-

mental approaches, it is necessary to compute the remaining

ones to obtain a complete structure. The distance geometry

problem is closely related to those in the areas of sensor

network localization [11], image recognition and euclidean

distance matrix completion [12], an extensive review about

distance geometry is avaliable at [13].

The major contribution to the distance geometry problem

with applications in the field of molecular conformation was

given by [9]. They proposed an algorithm, which determines

coordinates for atoms from experimental data. Their algo-

rithm solves the three subproblems previously mentioned.

Another approaches used to solve the distance geometry

problem were proposed by [14], based on graph reduction, in

which an input graph is decomposed in subgraphs and, next,

an embedding problem is solved; by [15], based on global

optimization to solve a weighted function, which does not

need to consider all bounds, so this function is transformed

on easier functions that are quickly solved; by [16], that

considered the geometric buildup algorithm, which can solve

the problem in linear time if all distances are known; by [17],

based on stochastic search; and, by [10] that developed a new

version of the geometric buildup algorithm for a generalized

version of the distance geometry problem. The latter aims to

find the equilibrium positions and the maximal bounds for

each pair of atoms.

We are only interested on step (i), that is, to solve the

bound-smoothing subproblem. The objective of the Bound-

Int'l Conf. Artificial Intelligence | ICAI'15 | 69

smoothing is to check consistency and give information

about the distance between pairs of atoms. So, this implies to

tighten the initial lower and upper bounds that are know as

well as to compute bounds for pair of atoms whose distance

is unknown.

The bound-smoothing problem has been solved so far es-

sentially by checking triangle (and tetrangle) inequalities for

atoms-triplet (atoms-quadruple), since tighter bounds can be

obtained if satisfying these inequalities. The computation of

the triangle inequality is straightforward, while the tetrangle

one requires to calculate the Cayley-Menger determinant,

which is constructed on each quadruple of atoms (atoms-

quadruple) and it has worst-case complexity time of O(n4).
Therefore, the literature has been focused on algorithms

to solve instances with a large number of atoms by means

of the tetrangle inequality. A parallel algorithm working

in a shared memory architecture for bound smoothing was

proposed in [8]. Their algorithm spends O(n3logn) time

with O(n
longn) processors, and it is based on classify the

atoms in independent sets and, then, to color vertices of the

resultant graph. They solved satisfactorily instances with up

430 atoms, for which their algorithm required only 5% of

the time spent by a sequential algorithm.

Another parallel algorithm was developed in [18] for the

Beowulf-type cluster of PCs, which requires O(n
4

p) time

for p < n
6 processors. This algorithm organizes atoms in

subsets, so atoms-quadruple can be classified at one out of

five types according to the subset that each atom is in. They

solved one instance with 630 atoms with efficiency arriving

at 60%.

In order to solve the bound-smoothing problem satisfac-

torily, we considered the biased random-key genetic algo-

rithm (BRKGA) [19]. The BRKGA has been applied with

successes to solve classical optimization problems, such as

in the area of covering [20], packing [21], scheduling [22],

and clustering [23]. A C++ framework of this algorithm was

made available in Internet by [24].

This paper is organized as follows. In Section 2, a formal

description of the problem is given, while in Section 3, the

Biased Random-Key Genetic algorithm is introduced and it

is explained how this algorithm is used to solve the bound-

smoothing problem. Numerical experiments are presented

in Section 4 and they give details about the algorithm and

its efficiency to deal with this problem. Some randomly

generated instances are solved and the results are compared

with the original structure. Finally, some conclusions and

directions for further works are given in Section 5.

2. Bound-smoothing Problem
In the Bound-smoothing Problem (BsP), let S be the set of

pairwise atoms with coordinates in R
3, for m atoms. In the

set S1 ⊂ S , for each pair of atoms {a, b} ∈ S1, it is known

the exact Euclidean distance dab. On the other hand, given

S2 ⊂ S , for each pair {i, j} ∈ S2, we have lij ≤ dij ≤ uij ,

where lij and uij are the lower and upper bounds on the

distance dij . And, for the last set, namely S3 ⊂ S , there is

no information on the distance dkl for each pair {k, l} ∈ S3.

Moreover, S1 ∪ S2 ∪ S3 = S and S1 ∩ S2 ∩ S3 = ∅. The

objective of the BsP is to compute bounds for the pair of

atoms in S3, and then, to tighten the bounds in S2 and S3

while satisfying distance constraints, as those imposed by

triangle and tetrangle inequalities.

In the case of the triangle inequalities, any three points

(atoms-triplet) have to satisfy the triangle inequality, so we

can improve the lower and upper bounds computing this

inequality for all atoms-triplet. In other words, for (i, j, k),
with lij ≤ dij ≤ uij , lik ≤ dik ≤ uik and ljk ≤ djk ≤ ujk,

the triangle inequality |dik − djk| ≤ dij ≤ dik + djk must

hold. Then, the bounds can be improved by:

uij = min{uij , uik + ujk},
lij = max{lij , lik − ujk, ljk − uik}, (1)

where lij e uij are the new values for the lower and upper

bounds, respectively.

Observe that uij can be calculated independently of lij .

Moreover, if uik ≥ uik, ujk ≥ ujk and lij = max{lij , lik−
ujk, ljk − uik}, then we can again improve lij performing

lij = max{lij , lik − ujk, ljk − uik}. Whenever lij > uij ,

it follows that the original values are restored.

A straightforward algorithm to update the bounds con-

siders all atoms-triplet and first it computes upper bounds.

Next, all triplets are checked for lower bounds. Algorithm 1

summarizes these steps.

Algorithm 1: Triangle inequality for the BsP.

Input : Lower bound L; Upper bound U ; Sets S1, S2

and S3.

Output: Tightened lower and upper bounds L and U ,

respectively.

1.1 Let T be the set of all atoms-triplet.

1.2 foreach triplet (i, j, k) ∈ T do
1.3 if {i, j} /∈ S1 then
1.4 uij ← min{uij , uik + ujk}.

1.5 U ← all upper bounds u.

1.6 U ← U .

1.7 foreach triplet (i, j, k) ∈ T do
1.8 if {i, j} /∈ S1 then
1.9 aux = max{lij , lik − ujk, ljk − uik}.

1.10 if aux ≤ uij then
1.11 lij ← aux.

1.12 else
1.13 lij ← lij .

1.14 L← all lower bounds l.
1.15 return sets L and U .

70 Int'l Conf. Artificial Intelligence | ICAI'15 |

We consider that u is from U and l is from L, while

u is from U and l is from L. After to tighten the bounds

by applying the triangle inequality algorithm, a bound may

still have some slack, that is, uik + ujk − uij > 0 and

lij − lik − ujk > 0. In this case, it can be eliminated by

computing all-pairs shortest paths [25].

A better way to improve the bounds is to check the

tetrangle inequalities for all atoms-quadruple. The tetrangle

inequality is associated with the calculation of Cayley-

Menger determinants. For a quadruple (i, j, k, r), its deter-

minant detCM (dij , dik, dir, djk, djr, dkr) is:∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 (dij)

2 (dik)
2 (dir)

2

1 (dji)
2 0 (djk)

2 (djr)
2

1 (dki)
2 (dkj)

2 0 (dkr)
2

1 (dri)
2 (drj)

2 (drk)
2 0

∣∣∣∣∣∣∣∣∣∣
> 0 (2)

Therefore, for each pair of atoms {k, r}, we obtain 32

inequalities from eq. (2) for the lower bound lkr as well

as 32 inequalities for the upper bound ukr. However, only

seven of these inequalities are non-redundant, with three for

the upper bound ukr:

detCM (lij , uik, uir, ujk, ujr, ukr) > 0,
detCM (uij , lik, lir, ujk, ujr, ukr) > 0,
detCM (uij , lik, lir, ujk, ujr, ukr) > 0.

(3)

And, another four ones for the lower bound lkr:

detCM (uij , uik, lir, ljk, ujr, lkr) > 0,
detCM (uij , lik, uir, ujk, ljr, lkr) > 0,
detCM (lij , lik, uir, ljk, ujr, lkr) > 0,
detCM (lij , uik, lir, ujk, ljr, lkr) > 0.

(4)

Among the values of ukr computed in eq. (3), the smallest

one is compared to the initial ukr, and the minimum between

them are set to ukr. Similarly, the largest value of lkr among

those computed in (4) is compared to the given lkr, and the

maximum between them are set to lkr.

For an inequality detCM (dij , dik, dir, djk, djr, dkr) > 0,

in which we want to compute the value of dkr knowing the

remaining ones, it is necessary to solve a quadratic equation

to find its roots. Algorithm 2 presents a straightforward

way to tighten lower and upper bounds by computing the

tetrangle inequalities.

In order to get better results, it is recommend first apply

the triangle algorithm 1. Next, the tetrangle algorithm 2 can

be repeated until the largest change in any of the bounds be

smaller than a given tolerance value. Unhappily, apply the

tetrangle inequality a lot of times may bring on a slow ratio

of convergence, once the total number of iterations grows

quickly. Observe that Algorithm 2 has worst-case complexity

time of O(n4) as pointed out in [8].

Algorithm 2: Tetrangle inequality for the BsP.

Input : Lower bound L; Upper bound U ; Sets S1, S2

and S3.

Output: Tightened lower and upper bounds L and U ,

respectively.

2.1 Let T be the set of all atoms-quadruple.

2.2 foreach quadruple (i, j, s, t) ∈ T do
2.3 foreach pair {k, r} out of the six ones in (i, j, s, t)

do
2.4 if {k, r} /∈ S1 then
2.5 u′

kr ← minimum ukr from eq. (3).

2.6 ukr ← min{ukr, u′
kr}.

2.7 U ← all upper bounds u.

2.8 U ← U .

2.9 foreach quadruple (i, j, s, t) ∈ T do
2.10 foreach pair {k, r} out of the six ones in (i, j, s, t)

do
2.11 if {k, r} /∈ S1 then
2.12 l′kr ← maximum lkr from eq. (4).

2.13 lkr ← max{lkr, l′kr}.

2.14 L← all lower bounds l.
2.15 return sets L and U .

3. Biased Random-Key Genetic Algo-
rithm

The BRKGA was introduced in [26] and [27]. Algorithm 3

summarizes a typical BRKGA framework, as that provided

in [24].

The BRKGA has two key features that distinguish it

from others traditional genetic algorithm: a standardized

chromosome encoding that uses a vector with random keys

(alleles) uniformly over the interval [0, 1); and, a well-

defined evolutionary process which uses parameterized uni-

form crossover [28].

Therefore, the BRKGA performs the crossover without

caring about the feasibility of the solutions generated for

the new individuals. This is possible because of the standard

chromosome encoding that is responsible to guarantee the

feasibility of the decoding function.

The decoding function is the most important of the

BRKGA, since it maps the real vector for a valid solution

of the problem under consideration, and it is also more

time consuming than the other parts of the algorithm. In

some problems where feasibility is hard to achieve, the

decoder may generate invalid solutions, so a penalty factor

is necessary into the fitness for the algorithm converges.

According to algorithm 3, the parameters that must be

specified in a BRKGA framework are the size of the

chromosomes t, the size of the population pop, the size of

Int'l Conf. Artificial Intelligence | ICAI'15 | 71

Algorithm 3: BRKGA algorithm.

Generate an initial population Pop.

while not attend a stopping criteria do
Decode each chromosome of Pop and extract a

solution and its fitness.

Sort chromosomes of Pop in non-increasing order

of fitness. Consider the top pope chromosomes to

be in an elite set Eli.

Next generation Qn receives Eli.

Next generation Qn receives popμ

randomly-generated new chromosomes.

Generate off ← pop − pope − popμ chromosomes

offspring using the parameterized crossover, for a

random parent from Eli and another from

Pop\Eli.

Next generation Qn receives off .

Pop← Qn.

return chromosome with the best fitness.

the elite set pope, the number of mutants popμ introduced

at each generation, and the inheritance probability ρe. In the

framework of [24], it is also allowed to define the number

of independent populations k and the number of threads for

parallel decoding MAXT .

3.1 Decoder Phase
First, we apply the triangle algorithm 1 to tighten the

bounds in S2 and, next, to compute initial bounds for the pair

of atoms in S3. We do not consider the tetrangle algorithm

2 due its cycling and slow convergence. Let L and U be

the new lower and upper bounds after apply the triangle

algorithm.

The aim of the decoder is to extract from chromosomes a

good solution for the BsP, in which L and U are tightened

in accordance with a fitness function.

For the BRKGA, each chromosome ch has size equal to

|S2| + |S3|, where each allele is sequentially associated to

a pair of atoms from these sets. For a pair a = {i, j}, its

allele with value va ranging in [0, 1) is used to compute new

bounds as specified in Algorithm 4.

We apply Algorithm 4 at each allele of the chromosome

ch, so new lower L and upper U bounds are obtained

according to the values in ch and the input bounds L and

U .

Observe that L and U do not have bounds such that lij <
lij and uij > uij for each pair of atoms {i, j}. On the other

hand, some new bounds cannot satisfy triangle inequalities

and, then, we compute the violation of these inequalities by

Algorithm 5.

Algorithm 4: Bounds for a given allele.

Input : Lower bound L; Upper bound U ; pair

a = {i, j} of atoms; value va of the allele.

Output: New bounds for a = {i, j}.

4.1 avg ← uij − lij .

4.2 rg ← avg×va

2 .

4.3 lij ← lij + rg.

4.4 uij ← lij − rg.

4.5 return lij and uij .

Algorithm 5: Violation of triangle inequalities.

Input : Lower bounds L and L; Upper bounds U and

U ; Sets S1, S2 and S3.

Output: Total violation of triangle inequalities.

5.1 Let T be the set of all atoms-triplet.

5.2 viol ← 0.

5.3 foreach triplet (i, j, k) ∈ T do
5.4 if {i, j} /∈ S1 then
5.5 minU ← min{∀ k �=i�=j}{uik + ujk}.

5.6 if {i, j} ∈ S2 then
5.7 if minU < uij and minU > uij then
5.8 viol ← viol + |uij −minU |.
5.9 else

5.10 if minU > uij then
5.11 viol ← viol + |uij −minU |.

5.12 foreach triplet (i, j, k) ∈ T do
5.13 if {i, j} /∈ S1 then
5.14 maxL← max{∀ k �=i�=j}{lik − ujk, ljk − uik}.

5.15 if {i, j} ∈ S2 then
5.16 if maxL > lij and maxL < lij then
5.17 viol ← viol + |maxL− lij |.
5.18 else
5.19 if maxL < lij then
5.20 viol ← viol + |maxL− lij |.

5.21 return viol.

The Root Mean Square Gap (RMSG) has been used to

measure the distance between lower and upper bounds [8].

It corresponds to the root mean square of the difference

between upper and lower bounds for all the atoms distance,

as described in eq. (5).

RMSG(L,U) =

√∑
{i,j}∈S(uij−lij)2

|S| (5)

Naturally, a small value for the RMSG may indicate that

lower and upper bounds are close to each other. On the other

hand, if the gap between each bound is significantly small,

72 Int'l Conf. Artificial Intelligence | ICAI'15 |

a valid structure cannot be constructed in the embedding

and optimization steps of the distance geometry problem,

even if all triangle inequalities are satisfied. It is important

to mention that to construct a valid structure is necessary

to satisfy other requirements, as the angle bond imposed to

some pair of atoms.

With this in mind, the chromosome’s fitness is the viola-

tion value returned by Algorithm 5. The BRKGA objective

is to minimize such violation value.

It is worth to mention that a set of numerical tests

aiming to minimize the RMSG, subject to satisfy triangle

inequalities for all atoms-triplet, was also conducted on

instances for which the exact distance between all pair of

atoms are known. However, these results shown that the gap

for each bound is very small, such that the exact distances

are completely out of the initial bounds L and U .

4. Computational Experiments
All algorithms were implemented in the C++ program-

ming language and the experiments occurred in a computer

with 4.0 GHz Intel Core i7-4790K processor, 32 GB of mem-

ory RAM and GNU/Linux operating system. The BRKGA

framework of [24] was used, where the decoder phase was

implemented according to Section 3.1.

The experiments were conducted in a set of randomly

generated instances as described in [29]. These instances

have structure similar to that of original proteins and the

exact distance between each pair of atom is known. We

consider instances with the number of atoms ranging from

10 to 100, totaling 15 instances, each one with name brN ,

where N is the number of atoms.

Observe that we can perfectly check whether the exact

distances are in the tighter bounds of the BRKGA solution,

contrary if we consider real proteins as those available in

the Protein Data Bank, for which the exact distances are

unknown for almost all pair of atoms. We are interested to

verify whether the BRKGA can be used to solve the distance

geometry problem satisfactorily, while solving the BsP and

returning tighter valid bounds as well.

For each instance, first it is generated coordinates of

the atoms by observing the angle between atoms-triplet

or -quadruple [30], so the exact Euclidean distance d is

computed. Next, in order to generate lower and upper bounds

according to a NMR simulation: the distance between atoms

{i, i + i} and {i, i + 2} can be measured precisely due to

geometric considerations, so they are considered as the exact

Euclidean distance (li,i+i = ui,i+i and li,i+2 = ui,i+2) and

they are in the set S1. The remaining bounds for each pair

of atoms {j, k} are given as:

• If djk < 6Å, then this distance can be estimated using

the NMR, so we consider as bounds ljk = �djk� and

ujk = �djk�. This pair is in the set S2;

• Otherwise, the NMR method cannot estimate the dis-

tance between j and k, so the lower and upper bounds

are unknown. In this case, {j, k} is in the set S3.

The parameters used by the BRKGA are described next.

We consider one independent population executing on one

thread. So, we have pop = 10t, where t = |S2|+ |S3| is the

size of each chromosome, pope = 25% of the population,

popμ = 15% of the population, and, ρe = 65%. The

BRKGA stops when a maximum number of iterations is

reached, that is, if it reaches 2000 iterations.

4.1 Results
We present the results for all the instances in Table 1.

Each row of this table has: name of the instance; total time

spent (in seconds); fitness value; RMSG for L and U (after

to apply the triangle algorithm); RMSG for the best solution

computed with the BRKGA; difference (in percentage) be-

tween the RMSGs; percentage of reduction of the bounds

for all pair of atoms (this is an average value); number

of bounds that were tightened (in percentage); number of

bounds tightened (in percentage) for which the respective

exact distance is not in.

Table 1 presents the results for the set of 15 instances.

Only 2 out of these instances had fitness equal to zero

(see br10 and br20), that means that all triangle inequalities

are satisfied. As we can observe, the time, fitness value

and RMSGs increased accordingly the number of atoms

increased too.

Although the RMSG was not considered in the fitness

function, its value decreased of 55.69% on average (see

column “RMSG BRKGA”) especially due to the lower and

upper bounds that were reduced too. Observe that 100% of

the bounds were tightened, for all the instances, where each

bound had an average reduction of 44.48%, on average. This

average reduction ranged from 42% to 54% considering all

the instances.

For the first 5 instances (br10 to br50) the runtime was

less than 1 hour. The worst runtime was for the br100, where

the BRKGA required more than 40 hours. On average, the

BRKGA required approximately 10 hours, so it may not be

a satisfactory result, since real proteins have hundreds or

thousands of atoms. On the other hand, the parameters of

the BRKGA, as the maximum number of iterations and the

size of the population, can be decreased as an attempt to

improve the runtime.

The last column of Table 1 shows the percentage of the

exact distances that do not comply with the bounds found

with the BRKGA. Note that we know the exact distance

d between each pair of atoms, due to the way that the

instances were generated. The objective of this column is to

show whether the bounds computed with the BRKGA still

contain a satisfactory quantity of exact distances. Observe

that, on average, more than 50% of these bounds still keep

the exact distance value, although the BRKGA do not know

Int'l Conf. Artificial Intelligence | ICAI'15 | 73

Table 1: Results for the set of randomly generated instances.

Name Time fitness RMSG RMSG Difference Reduction Bounds Distances

(s) triangle BRKGA RMSG (%) on bounds (%) tightened (%) out (%)

br10 0.590 0.000 0.709 0.383 45.978 53.882 100.000 46.429

br20 31.410 0.000 1.978 1.727 12.693 47.735 100.000 43.137

br30 282.090 3.600 9.751 4.325 55.651 43.636 100.000 42.593

br40 1,162.050 5.765 17.975 8.347 53.564 42.941 100.000 44.239

br50 3,438.620 15.794 56.005 31.669 43.452 44.275 100.000 53.014

br55 7,719.980 21.910 42.836 24.112 43.711 44.220 100.000 52.322

br60 11,899.100 22.949 58.614 32.759 44.111 44.881 100.000 55.354

br65 17,131.750 30.719 37.350 22.102 40.824 43.113 100.000 50.026

br70 24,398.860 39.458 55.489 31.650 42.962 44.324 100.000 53.951

br75 35,539.910 35.248 33.504 19.269 42.488 43.846 100.000 50.304

br80 49,359.350 55.042 22.823 13.520 40.761 42.744 100.000 46.121

br85 77,411.920 48.220 38.302 22.115 42.261 43.316 100.000 50.220

br90 95,908.230 61.434 51.918 30.286 41.665 42.342 100.000 50.653

br95 112,270.320 81.590 53.572 31.318 41.540 42.667 100.000 52.571

br100 147,035.210 78.890 646.378 354.204 45.202 43.259 100.000 55.207

Average 38,905.96 – 75.15 41.85 42.46 44.49 100.00 49.74

neither consider any information about the exact distances

when solving the problem, since its execution is only guided

on check the triangle inequalities. This is an interesting result

and it demonstrates that the BRKGA can effectively solve

the distance geometry problem.

5. Conclusions
The bound smoothing problem (BsP) that appears as one

of the subproblems of the distance geometry problem is

addressed in this paper. In the BsP, we have to tighten bounds

for a set of pairwise atoms while they must obey distance

constraints, as the triangle or tetrangle inequalities.

We solved the BsP with the Biased Random-Key Genetic

Algorithm, in which the decoder phase generates a solution

from a chromosome by increasing or decreasing lower and

upper bounds of the pair of atoms. The chromosome fitness

is calculated according to the number of triangle inequalities

that are violated.

Good solutions were obtained for the instances under

consideration, since the RMSG decreased of 42.46% on

average, and the bounds had a reduction of 44.48% on

average, as well as all bounds were tightened for all the

instances. On the other hand, the number of exact distances

that remained in the new tighter bounds was of 50.03%
on average, even if all triangle inequalities were satisfied.

This may lead to invalid molecules when solving the other

subproblems of the distance geometry problem.

After all, we note that there is room for improvements

by considering a new way to decoder chromosomes and

extract solutions. It is also important to consider other

fitness functions, since the computational runtime increased

significantly as the number of atoms increased too, if using

the triangle algorithm in the fitness function.

Acknowledgements.
The authors would like to thank the Brazilian Na-

tional Council for Scientific and Technological Devel-

opment (CNPq), Research Support Foundation of Goiás

State (FAPEG) and Federal University of Uberlândia (grant

04/1014/074-PROPP).

References
[1] C. L. Brooks-III, M. Karplus, and B. M. Pettitt, A Theoretical

Perspective of Dynamics, Structure, and Thermodynamics. New York:
Wiley, 1988.

[2] T. E. Creighton, Proteins: Structures and Molecular Properties. 2nd
Edition. Freeman and Company, 1993.

[3] A. T. Brünger and M. Nilges, “Computational challenges for macro-
molecular structure determination by x-ray crystallography and solu-
tion nmr-spectroscopy,” Quarterly Reviews of Biophysics, vol. 26, pp.
49–125, 1993.

[4] J. Cavanagh, W. J. Fairbrother, A. G. Palmer, and N. J. Skelton,
Protein NMR Spec- troscopy: Principals and Practice. Academic
Press, 2006.

[5] J. Drenth, Principals of Protein X-ray Crystallography. Springer,
2006.

[6] J. B. Saxe, “Embeddability of weighted graphs in k-space is strongly
np-hard,” in Proceedings of the 17th Allerton Conference in Commu-
nications, Control and Computing, 1979, pp. 480–489.

[7] L. M. Blumenthal, Theory and Applications of Distance Geometry.
London: Oxford University Press, 1953.

[8] K. Rajan and N. Deo, “Computational experience with a parallel
algorithm for tetrangle inequality bound smoothing,” Bulletin of
Mathematical Biology, vol. 61, pp. 987–1008, 1999.

[9] G. M. Crippen and T. F. Havel, Distance Geometry and Molecular
Conformation. England: Research Studies Press Ltd, 1988.

[10] B. Hendrickson, “The molecular problem: Determining conformation
from pairwise distances,” Ph.D. dissertation, Iowa State University,
2010.

74 Int'l Conf. Artificial Intelligence | ICAI'15 |

[11] P. Biswas, T. Liang, T. Wang, and Y. Ye, “Semidefinite programming
based algorithms for sensor network localization,” ACM Journal on
Transactions on Sensor Networks, vol. 2, pp. 188–220, 2006.

[12] W. Rivera-Gallego, “A genetic algorithm for solving the euclidean
distance matrices completion problem,” in Proceedings of the 1999
ACM Symposium on Applied Computing, ser. SAC ’99. New
York, NY, USA: ACM, 1999, pp. 286–290. [Online]. Available:
http://doi.acm.org/10.1145/298151.298353

[13] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino, “Euclidean
distance geometry and applications,” SIAM Review, vol. 56, pp. 3–
69, 2014.

[14] A. Sit, “Solving distance geometry problems for protein structure
determination,” Ph.D. dissertation, Cornell University, 1991.

[15] J. Moré and Z. Wu, “Global continuation for distance geometry
problems,” SIAM Journal on Optimization, vol. 7, pp. 814–836, 1997.

[16] Q. Dong and Z. Wu, “A linear-time algorithm for solving the molec-
ular distance geometry problem with exact inter-atomic distances,”
Journal of Global Optimization, vol. 22, pp. 365–375, 2002.

[17] A. Grosso, M. Locatelli, and F. Schoen, “Solving molecular distance
geometry problems by global optimization algorithms,” Computa-
tional Optimization and Applications, vol. 43, pp. 23–37, 2009.

[18] N. Deo and P. Micikevicius, “Coarse-grained parallelization of
distance-bound smoothing for the molecular conformation problem,”
in Distributed Computing, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2002, vol. 2571, pp. 55–66.

[19] J. F. Gonçalves and M. G. C. Resende, “Biased random-key genetic
algorithms for combinatorial optimization,” Journal of Heuristics,
vol. 17, pp. 487–525, 2011.

[20] M. G. C. Resende, R. F. Toso, J. F. Gonçalves, and R. M. A. Silva, “A
biased random-key genetic algorithm for the Steiner triple covering
problem,” Optimization Letters, pp. 1–15, 2011.

[21] J. F. Gonçalves and M. G. C. Resende, “A parallel multi-population
genetic algorithm for a constrained two-dimensional orthogonal pack-
ing problem,” Journal of Combinatorial Optimization, vol. 22, pp.
180–201, 2011.

[22] J. F. Gonçalves, J. J. M. Mendes, and M. G. C. Resende, “A random
key based genetic algorithm for the resource constrained project
scheduling problems,” Computers and Operations Research, vol. 36,
pp. 92–109, 2009.

[23] C. E. Andrade, M. G. C. Resende, H. J. Karloff, and F. K. Miyazawa,
“Evolutionary algorithms for overlapping correlation clustering,” in
Proceedings of the 2014 Conference on Genetic and Evolutionary
Computation. ACM, 2014, pp. 405–412.

[24] R. F. Toso and M. G. C. Resende, “A c++ application programming
interface for biased random-key genetic algorithms,” AT&T Labs
Research, Florham Park, New Jersey,” Technical Report, 2012.

[25] A. W. M. Dress and T. F. Havel, “Shortest-path problems and
molecular conformation,” Discrete Applied Mathematics, vol. 19, pp.
129–144, 1988.

[26] J. F. Gonçalves and J. Almeida, “A hybrid genetic algorithm for
assembly line balancing,” J. of Heuristics, vol. 8, pp. 629–642, 2002.

[27] M. Ericsson, M. G. C. Resende, and P. M. Pardalos, “A genetic
algorithm for the weight setting problem in OSPF routing,” J. of
Combinatorial Optimization, vol. 6, pp. 299–333, 2002.

[28] W. M. Spears and K. A. DeJong, “On the virtues of parameterized
uniform crossover,” in Proceedings of the Fourth International Con-
ference on Genetic Algorithms, 1991, pp. 230–236.

[29] C. Lavor, L. Liberti, A. Mucherino, and N. Maculan, “On a dis-
cretizable subclass of instances of the molecular distance geometry
problem,” in Proceedings of the 2009 ACM Symposium on Applied
Computing. New York, NY, USA: ACM, 2009, pp. 804–805.

[30] C. Lavor, “On generating instances for the molecular distance geom-
etry problem,” in Global Optimization, ser. Nonconvex Optimization
and Its Applications, L. Liberti and N. Maculan, Eds. Springer US,
2006, vol. 84, pp. 405–414.

Int'l Conf. Artificial Intelligence | ICAI'15 | 75

