
A Verification Technique for Self-Adaptive Software
by Using Model-Checking

Euijong Lee1 and Doo-Kwon Baik2
Department of Computer and Radio Communications Engineering,

Korea University
Seoul, Republic of Korea

{kongjjagae1, baikdk2}@korea.ac.kr

Abstract— Self-adaptive software refers to software that can
change its behavior by itself to perform an intended objective
according to changes in the surrounding environment. In this
study, a technique is proposed to detect the possibility of problem
occurrence in advance, before the self-adaptive software carries
out self-adaptation according to changes in the surrounding
environment. For the proposed technique, a model-checking
technique is applied, which is a software modeling verification
technique. The proposed technique was applied to ZNN.com,
which provides a self-adaptive software scenario. Through this,
the possibility was shown that an adaptive-strategy can be
prepared in advance by self-adaptive software through the model-
checking technique in the stage prior to the execution of self-
adaptation.

Keywords— Self-adaptive software, Model-Checking, Software
verification

I. STUDY BACKGROUND
For conventional software, a problem is defined and the

method, according to which it is solved, is constructed at the
development stage. With these types of software development
methods, when a problem that did not exist at the development
stage occurs, a software error occurs or in a serious case, the
software becomes inoperable. To solve this problem, the concept
of self-adaptive software has emerged. Self-adaptive software
refers to software that changes by itself according to
environmental changes, thereby solving a problem. Currently,
studies are being carried out on self-adaptive software in various
aspects in different fields. This study was conducted for problem
detection, which is one of the research areas for self-adaptive
software, and it aims to detect and prevent the possibility of
problem occurrence in advance before a change of environment
occurs.

II. PROPOSED METHOD
 This study was carried out to identify a software problem
before it happens by using the model-checking technique, and to
prevent it through self-adaptation on the basis thereof. The
proposed method was based on MAPE-K proposed by IBM.
Because this study aims to detect a problem in advance in a stage
before it happens, the model-checking part was added and
subdivided in the monitoring stage, and each stage of MAPE-K,
except for monitoring, performs the inherent roles.

III. CASE STUDY

A. Scenario: ZNN.com
ZNN.com is a case study used by Rainbow to evaluate self-

adaptive software, and it consists of the structure shown in Fig.
1 [1]. Znn.com is a virtual news media website. Znn.com has the
goal of providing a reasonable response time to a user. Znn.com
provides three service stages to its users according to the server
load. For example, when a server overloads, only texts are
provided, and when a server has available capacity, articles are
provided along with various media by improving the quality of
service. Furthermore, when the data traffic increases
considerably, a strategy is adopted to reduce the time required to
respond to users by increasing the number of operable servers.
Consequently, two criteria can be selected to execute self-
adaptation for znn.com. The first one is performance, which can
be the response time, the server load, and the network bandwidth.
The second one is cost, which can be expressed by the number
of operating servers.

B. Application of Case Study
An experiment was carried out to show that the possibility of

problem occurrence can be identified in advance by using the
model-checking technique. The znn.com scenario mentioned in
3.A was used as the scenario for the experiment. In accordance
with the scenario, the server loads were defined in Table 1
according to the service types, and the amount that can be
processed by the server was defined as 300 M/s. In accordance
with the experimental scenario of znn.com, the environmental
variables that will be used by the proposed technique before
defining the FSM were defined in Table 2.

Fig 1. System structure of znn.com

Int'l Conf. Artificial Intelligence | ICAI'15 | 395

TABLE 1. TRAFFIC ACCORDING TO SERVICE

Quality of Service Used Traffic
High 3 MB/S

Medium 2 MB/s
Low 1 MB/s

TABLE 2. THE ENVIRONMENTAL VARIABLES USED IN THE SCENARIO

Environment Variable Description
User number The number of users accessing the

ZNN.com service
Service quality It means the quality of service and it is 3 in

the case of highest service quality,
2 in the case of medium service quality, and
1 in the case of the lowest service quality

Running server number The number of servers currently operating

Based on the above assumption, the FSM that was
constructed to use the model-verification technique for
verification is shown in Fig. 3. S0 is the stage for starting the
model verification. S1 is the stage for confirming the current
status through the environmental variables. In the pertinent
model, the service status was identified with the following
equation.

If the value of S(e) is larger than 1, it is determined that there
will be no problem in providing the service, and if smaller than
1, it is determined that there will be a problem in providing the
service. S2 is the stage for confirming the available servers in
addition to the currently operating servers, and when there are
available servers, S3 is the state in which they are used. When
there is no available server, S4 is the stage for checking the
service quality to determine if it can be reduced, and if there is a
level to which the service can be lowered, the service quality is
decreased through the S5 stage. S6 and S7 means that if server
resource remain, make better quality or reduce running server to
reduce cost. Lastly, S8 means that the service is terminated
because there are no further possible methods. Furthermore, the
case of not satisfying the S1 stage means that self-adaptation is
required, and the S3 and S5 stages mean that self-adaptation has
been applied.

For the proposed FSM model, the number of users was
defined as 0–10,000 by using a NuSMV model-verifier; and the
values were checked for the environmental variables occurring
in S3 and S5 where self-adaptation is required, and S6 where the
service operation is impossible. The pertinent results are shown
in Table 3.

TABLE 3. VALUES OF ENVIRONMENTAL VARIABLES THAT REQUIRE SELF-
ADAPTATION

Environmental Variable
Value

Status Adaptation Strategy

User number: 101/201
Service quality: 3/3

Running server number: 1/2
S3 Increase a running server

User number: 301 / 451
Service quality: 3 / 2

Running server number: 3 /3
S5 Decrease the service quality

User number: 99 / 199
Service quality: 3 / 3

Running server number: 2 /3
S7 Decrease a running server

User number: 299 / 449
Service quality: 2 / 1

Running server number: 3 /3
S6 Increase the service quality

User number: 901
Service quality: 1

Running server number: 3
S5 Impossible to provide the

service

IV. CONCLUSION
This study was carried out to extract the adaptation stages of

self-adaptive software and prepare for them in advance. For this,
a technique was proposed for extracting the environmental
variables, which are required for self-verification in the
monitoring stage during the MAPE-K process used in
conventional self-adaptive software, and based on this,
extracting the self-adaptive stage in advance through model-
checking. The proposed technique was applied to the znn.com
scenario, which is used as a case study in self-adaptive software
studies. Through the applied results, the surrounding
environment where self-adaptation is required was extracted
prior to executing an adaptation-strategy by using the model-
checking technique.

In future, a follow-up study will be carried out to use the
proposed technique during actual execution time. Furthermore,
a study will be carried out to develop a technique that extracts or
generates an adaptation strategy through model-checking.

ACKNOWLEDGMENT
This research was supported by Next-Generation

Information Computing Development Program through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Science, ICT & Future Planning (NRF
2012M3C4A7033346). Doo-Kwon Baik is corresponding
author.

REFERENCES
[1] Cheng, Shang-Wen, David Garlan, and Bradley Schmerl. "Evaluating the

effectiveness of the rainbow self-adaptive system." Software Engineering
for Adaptive and Self-Managing Systems, 2009. SEAMS'09. ICSE
Workshop on. IEEE, 2009.

[2] Mazeiar Salehie and Landan Tahvildari, "Self-Adaptive Software:
Landscape and Research Challenges", In TAAS, Vol 4, Issue 2, pp14-42,
May 2009.

[3] Biere, Armin, et al. Symbolic model checking without BDDs. Springer
Berlin Heidelberg, 1999.

[4] Baier, Christel, and Joost-Pieter Katoen. Principles of model checking.
Vol. 26202649. Cambridge: MIT press, 2008.

[5] Garlan, David, et al. "Rainbow: Architecture-based self-adaptation with
reusable infrastructure." Computer 37.10 (2004): 46-54.

[6] Principles of model checking. Vol. 26202649. Cambridge: MIT
press, 2008.

Figure 2. FSM representing znn.com

396 Int'l Conf. Artificial Intelligence | ICAI'15 |

