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Abstract - The Turing test is considered one of the most im-
portant thought experiments in the history of AI. It is argued 
that the test shows how people think like computers, but is this 
actually true? In this paper, we discuss an entirely new per-
spective. Scientific languages have their foundational limita-
tions, for example, in their power of expression. It is thus pos-
sible to discuss the limitations of formal concepts and theory 
languages. In order to represent real world phenomena in 
formal concepts, formal symbols must be given semantics and 
information contents; that is, they must be given an interpreta-
tion. They key argument is that it is not possible to express 
relevance in formal concepts only. Consequently, computa-
tional models can be valid in some specific interpretations, 
and the Turing test can therefore only work in specific tasks.  
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1 Introduction 
  The Turing test is probably the best-known thought experi-
ment in Artificial Intelligence (AI) [13, 14]. Its goal is to 
answer one question: Can machines think? Thus, tests form an 
important component of the argument comparing human and 
machine information processing [5, 11, 19]. Since the discus-
sion on intelligence of machines underpins much of the mo-
dern computational cognitive psychology and philosophy of 
the mind, it is also essential in developing robots and autono-
mous systems [ 2, 7, ].  

The Turing test is essential, as it enables computational 
thinking to be viewed through multiple lenses. The notion of 
computational thinking has many different forms but here, it 
refers to the use of computational concepts to investigate in-
tellectual information processes [15]. Prime examples of such 
thinking are the Turing machine and modern computers [13, 
14].  

Computational thinking, that is, investigating information 
processes in different contexts by means of computational (al-
gorithmic and mathematical) concepts, is a vital process 
today, as it has allowed us to realize such intellectual pro-
cesses by means of computers, information systems, and ro-
bots. In a social context, this means that machines are used for 
new and more demanding tasks. Thus, the issue of linking 
machine and human intelligence has become central to scien-
tific thinking. 

Essentially, the Turing test is an imitation game. Like any 
good experiment, it has two conditions. In the case of control 
conditions, it is assumed that there is an opaque screen. On 
one side of the screen is an interrogator whose task is to ask 
questions and assess the nature of the answers. On the other 
side, there are two people, A and B. The task of A and B is to 
answer the questions, and the task of the interrogator is to 
guess who has given the answer. In the case of experimental 
conditions, B is replaced by a machine (computer) and again, 
the interrogator must decide whether it was the human or the 
machine who answered the questions. A teletypewriter is used 
to eliminate the problems caused by the quality of the voice 
communication [14].  

The decisive criterion in these experiments is the capacity of 
the interrogator to say whether the answer was given by hu-
man or machine. If the interrogator cannot do this, then the 
machine has passed the test. Therefore, the outcome of the 
experiment is that machines can think, as they can perform 
human tasks in such a way that it is impossible for a compe-
tent observer to see the difference between human and ma-
chine. 

It is obvious that the Turing test is a particularly clever idea, 
but in what way exactly? Generations of renowned resear-
chers have considered all aspects of the test [1]. The test itself 
was an innovation intended to justify Turing’s computational 
theory of mind, which was criticized even before the test [13, 
14]. Perhaps one of the most outspoken of the pre-test critics 
was Turing’s close colleague and friend Ludwig Wittgenstein 
[17, 18]. Of course, his critical views became public after the 
publication of the test, but as Turing and Wittgenstein had 
close contacts in Cambridge, their differences of opinions in 
respect to computational thinking had developed before the 
Second World War [8]. Even today, we must still ask the 
question: Does the mind compute, hyper-compute, or even 
more? [9] 

Since the Turing test was published, it has been discussed ex-
tensively, and many researchers such have investigated it[4, 5, 
11, 12]. This is unsurprising, as the test is still considered so-
mewhat elusive. On one hand, it is easy to identify machines 
that can beat people in their particular fields, for example, 
chess machines and pocket calculators. On the other hand, 
however, no general man-like Leviathan exists. 

Studying the division of opinions around computational 
thinking and the Turing test is important, as the clarity in this 
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issue would enhance the conceptual clarity around all of com-
putational thinking. In order to analyse the conceptual proper-
ties of Turing’s test, it is first worth considering some of the 
major critical arguments against the idea that human thinking 
is realizable using machines or that it is possible to implement 
all human information processes by means of computational 
machines. We then need to look at the practical problems 
specific to computers’ information processing to facilitate an 
understanding of any hidden conceptual issues that could shed 
light on the problems and criticisms relating to Turing’s work. 
Finally, it is essential to ask what implications such criticisms 
have for the role of the Turing test in theoretical and practical 
computational thinking. 

2 Critique of machine thinking  
 The idea of the human as a computing machine has raised a 
number of critical points, which are important in analysing the 
scope and limitations of computational thinking. Presumably, 
this is why Turing gave so much space to the main critiques of 
the time when presenting his thought experiment [14]. Some 
of the critical arguments, such as “ESP,” “theological” and 
“head in the sand” objections, can be put aside as they do not 
have much relevance in modern science. ESP, for example, is 
an unclear phenomenon, and the consciousness argument can 
also be disregarded, as it is not relevant in investigating the 
ideas behind the Turing test. In fact, Turing never claimed that 
his test was a test of consciousness. However, there are many 
important points in this discussion that are worth considering 
here. 

As noted above, Ludwig Wittgenzstein was apparently the 
first critic of Turing’s thinking; fundamentally, he really di-
sliked the idea of people being machines [16, 17, 18]. In the 
Bluen and Brown books, for example, he wrote, “The trouble 
is rather that the sentence, ‘A machine thinks (perceives, 
wishes)’ seems somehow nonsensical. It is as though we had 
asked ‘Has the number 3 a color ’.[18]  

Wittgenstein put forward a number of points against people 
being computers, beginning with the idea that people feel pain 
and machines do not. One could call this a biological argu-
ment. However, the most relevant counterargument here is the 
argument concerning “seeing as,” i.e., interpreting elementary 
symbols such as percepts and words. To Wittgenstein [16, 17, 
18], anything we perceive can have a multitude of aspects or 
interpretations. Words, for example, impart their meaning as 
soon as they are used. For Turing, this problem was not an 
issue, because he regarded symbols as a given. In essence, 
numbers are well-defined symbols, but Wittgenstein critically 
asked whether words and images are like numbers, that is, 
well-defined objects, and recognized the problems of automa-
tic encoding in his ostensible “language game.” Consequently, 
he spent the last decades of his life analysing the process of 
giving meanings to symbols.  

Wittgenstein’s point was subsequently presented in an advan-
ced form by Searle [12]. The latter points out that machines 
are not able to concentrate on essential aspects of chess posi-
tions; rather, unlike people, they scan all possible alternatives 

mechanically in order to find a solution. This, of course, is as 
true today as it was in the seventies. People are still as capable 
of concentrating on the essentials of chess as they are on gi-
ving meanings to words, patterns, and any other type of sen-
sory input. 

A somewhat different critical argument was presented by La-
dy Lovelace [14]. Her argument was focused on Babbage’s 
analytical engine, which was one of the first versions of the 
thinking machine. Her claim was that such engines could not 
initiate anything, particularly anything new. Turing could not 
accept this argument, but neither did he present a very convin-
cing counterargument. 

Finally, another point worth looking at again is the “informali-
ty of behaviour argument,” which was also considered by Tu-
ring [14]. The core of this argument is that there are no rules 
that can mechanically explain human behaviour. People may 
stop when they see a green light, but it may also be that they 
do not. Thus, human behaviour cannot be determined fully by 
a given set of rules in the way that machines are. Instead, 
people apply rules flexibly in their lives and can usually de-
cide which rules are relevant in any given context.  

The above arguments are sufficient for our purposes, conside-
ring the scope of this paper. Our next question is whether it is 
possible to ascribe any practical meaning to these points or 
whether they are, in fact, merely conceptual. Second, it is vital 
to consider why it is so difficult for machines to select bet-
ween essential and inessential courses of actions.  

3 Practical problems with machine 
thinking 

Real computational systems also have difficulties with 
meaning and content. Problem-solving programs are a prime 
example of human thinking realized by machines. A classic 
example of this is the chess machine, which is programmed to 
beat human chess masters.  

In implementing problem solvers, two fundamental problems 
must be addressed. First, computers searching huge problem 
trees have to deal with an issue known as exponential search, 
which seems not to trouble people. Exponential growth in a 
search means that when the depth of the search is increased, 
the size search tree grows very fast. Thus, chess-playing com-
puters have to generate millions of moves to reach human le-
vels of performance, since people generate some 50 moves 
per problem position [6] 

A somewhat similar problem is pattern matching. While a 
CEO can easily see essential patterns in economic develop-
ment, it is very hard for computers to develop a pattern-
matching system to facilitate such strategic management. 
Indeed, in many cases, pattern matching is even difficult for 
people. A similar problem is conflict resolution, where there 
may be several possible patterns leading to potential action, 
but one has to identify the best choice.  

These practical problems are connected to original critiques. If 
it were possible to identify the right aspects of patterns such as 
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words or signs syntactically, pruning search trees would not 
be a problem. It would only be necessary to indicate which 
branches could not be generated. In the same way, pattern re-
cognition problems are easy to solve, if only it were possible 
to solve the problem of aspects. Both of these problems arise 
from the fact that syntax does not provide sufficient informa-
tion for semantics selection [12].  

4 Relevance: The rebuttal of computational 
concepts in modelling the human mind 

Scientific and other representational languages have their 
scope and limitations. For example, it is not possible to find a 
natural number that expresses such issues as the relationship 
between the side and the diagonal in a square or the value of 
PI. To represent such entities, it is essential to use real num-
bers. Similarly, in behaviourist psychology, it is not possible 
to consider the properties of human memory or mental 
images, as they are more than simply stimulus-response con-
cepts. Finally, had we restricted ourselves to Dalton’s concept 
of the atom, modern nanophysics would also have been im-
possible. In science, progress is always about finding new 
concepts and exceeding the limitations of old ones [3, 10].  

The limitations in the basic concepts of a scientific approach 
can be characterized by power of expression [10]. In essence, 
power of expression describes the limits of a conceptual sys-
tem and expresses what can be thought when a particular set 
of concepts is being used. It can be used very naturally in this 
case, as it enables us to questions the limits of computational 
concepts and therefore the real meaning of Turing’s test.  

Put simply, computational concepts are based on abstractions 
devised by Turing. When he postulated the Turing machine, 
Turing assumed that he was similar to a mathematician des-
cribing how to solve any mathematical problem. What the ma-
thematician does is to manipulate symbols on squared paper 
following a given set of rules. For the sake of simplicity, Tu-
ring assumed that the machine had an infinite tape featuring 
zeros and ones. The task of a mathematician following the 
rules was to manipulate the numbers on the tape. The numbers 
were supposed to represent symbols, which could be numbers, 
but also Chinese symbols. Thus, like many others after him, 
Turing assumed that the Turing machine was, in some senses, 
a model of the human mind. 

However, Turing did not specify how the real world symbols 
and their meanings were associated with the Turing model. 
The associations between the number combinations on the 
tape, the symbols, and the references to symbols are given but 
not processed. Thus, the most important action is omitted 
from the computational thinking process, which involves figu-
ring out how computational models can be combined with rea-
lity. 

In mathematical concepts and the metascience of mathema-
tics, relevance refers to the rule determining which elements 
of any mathematical set (of elements or functions) belong to 
one category (relevant) and which to another (irrelevant). In 
terms of Turing machines, one should be able to say which 

combination of zeros and ones are relevant and which are not. 
However, this is impossible in mathematical or formal con-
cepts, as the theory language does not have the power of ex-
pression typical to natural languages. Since Turing machines 
and mathematical models are constructed by means of abs-
tracting semantic and thought content, one can no longer pre-
sent what is relevant in some concrete context.  

When the contents are abstracted, it is impossible to produce 
sense-making semantics; in other words, it is impossible to 
define what is true and what is false or what is right and what 
is wrong. This means that only interpretation in terms of real 
world concepts, i.e., programmed semantics, makes it possible 
for AI systems to have any relevance. 

Turing was not the first person that encountered this problem 
of linking formal systems to reality at the start of the last cen-
tury. Before him, Ludwig Wittgenstein) had seen the same 
problems. In his “Tractatus-Logico Philosophicus,” he gave a 
logical explication for the problem of human experience limi-
tations [16]. Obviously, he had noticed that logical (or syntac-
tic) symbols were void of meaning, and this is why in his later 
philosophy, he adopted the process of giving meaning as his 
topic. Of course, this explains his criticisms of Turing’s com-
putational thinking theory; he had seen the very problem that 
Turing had simply brushed under the carpet.  

In order to be able to model reality, one must have a repre-
sentation that contains the correct information. Otherwise, the 
model cannot be true and will misrepresent reality. “Correct” 
means that the symbols in the model have the correct seman-
tics, and this presupposes that the information represented is 
right.  

In fact, this strong AI premise is often defined to mean that 
the system has the right output when it has the right input. Or 
course, “right” in the given definition means precisely same as 
having the correct representational contents, as discussed 
above. “Meaning giving” thus becomes the most important 
problem. However, as Searle pointed out, syntax cannot gene-
rate semantics [12]. This is why the origins of meaning giving 
must be sought in human conceptualization and judgment 
processes, and this is why they are outside the framework of 
computational modeling. 

The core explanation for the limitations in computational 
thinking is in the very abstraction process that creates symbo-
lic information. The abstraction sets aside semantics and in-
formation contents. This is why syntactic models cannot re-
present a concrete state of affairs without interpretations. Pro-
position 3+5 = 4 is true, but that does not aid us in marketing 
fruit in a marketplace unless we know whether the formula 
describes apples, pears, bananas, or money. Similarly, it is va-
lid to infer that “Napoleon was the Emperor of France” from 
the true fact that “the moon is not cheese,” and “if the moon is 
not cheese, Napoleon was the Emperor of France.” Whether 
the inference makes any sense is another issue. It is impos-
sible to illustrate any relevant connection between Napoleon’s 
role as Emperor of France and the fact that the moon is 
cheese. 
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Thus, the core issue seems to lie in the notion of relevance. 
Unless one can show that the semantic and information con-
tents of a Turing model are relevant, the system does not 
work. Formal languages are void of content, and it is therefore 
impossible to determine their relevance in computational con-
cepts. Computational concepts do not have the power to ex-
press relevance and for that reason, one needs an additional 
language and a scientific process to determine the relevancies 
and to implement systems in the real world. This, of course, 
works often in the modern world. 

When the contents are abstracted, it is impossible to achieve 
sense-making semantics. It is also impossible to define what is 
true and what is false or what is right and what is wrong. This 
means that only interpretation in terms of real world concepts, 
namely, programmed semantics, makes it possible for AI sys-
tems to have any relevance. 

However, in terms of the Turing test, the relevance require-
ment is devastating. It shows that machines can perform as 
well as people in processing information, but it does not show 
that people are computers. Obviously, people have capacities 
far beyond computational languages, and the failure of the Tu-
ring test as proof that a machine can function as a human does 
not influence the practical aspect of computational modelling.  

5 Long live AI 
Modern artificial intelligence is continuously achieving 

more interesting practical results. Autonomous systems, 
which broadly speaking, can redefine their goals during opera-
tion, are a good example of the capacity of emerging techno-
logies. However, a merely intuitive interpretation of computa-
tional systems cannot make sense. It is time to go beyond the 
limits of computational concepts and admit that we need a 
new way of thinking that will incorporate computational re-
presentations of information contents. 

In sum, this line of argument shows us that Turing’s test is 
insufficient as proof of the identity of man as a machine. 
However, it can still play a very important role as the testing 
logic for computational models [5]. One must take the human 
mind as a criterion of how well machines have to perform to 
succeed in their main function, which is to replace human in-
tellectual work. Only if a system passes the Turing test is it 
possible to view it as having a practical application. Thus, al-
though the Turing test is theoretically dead, it certainly has a 
future in terms of designing new technical applications.  

The important of Turing’s logic is actually growing as techno-
logies are improving. Autonomous systems, which are partly 
able to define their own goals, are a good example of what is 
in store in the future. Autonomous systems such as autono-
mous cars or flying devices are capable of changing their con-
crete goals depending on the situation. In general, autonomous 
systems form one of the key future developments in technolo-
gy. 

The core social importance of autonomous systems is rooted 
in their capacity to replace people in tasks that were traditio-
nally carried out by people. In the case of many such tasks, it 

has never been possible to realize them technically. Typically, 
in those tasks, the system—the people and the machine—has 
to redefine ill-defined goals or redefine decision spaces.  

Identifying solutions to such tasks is of central importance in 
future artificial intelligence. The classic example, as noted 
above, is the chess-playing machine. After not working well 
for five decades, it was suddenly possible for the machine to 
beat world champion chess player, Kasparow. This proves 
that there is a machine capable of performing an intellectual 
task as well as a human being. Of course, this was a machine 
with a special purpose; however, if chess were economically 
relevant, Deep Blue could have replaced all chess players, 
since it can be duplicated in millions.  

The Turing test is vital for the technical realization of new in-
tellectual tasks [20]. It also offers logic in assessing the per-
formance of autonomous and other technical systems, and in 
designing ways to replace human work and leave new types of 
tasks to humans. The Turing test is essentially a test of per-
formance rather than a test of how information is processed. 
Deep Blue, for example, has very little in common with hu-
man chess players in the way it processes information. Howe-
ver, commonalities are not essential from a technical or 
economic point of view. What is essential is that something 
can be achieved, and from this perspective, the Turing test is 
an excellent conceptual tool for designers. From ontological 
point of view, it is all too behaviouristic to be a test for can 
machines think like people. Therefore we can dinstinguish 
between structural equivalence and functional equivalence. 
The Turing test can help to identify functional equivalence but 
not structural equivalence. 
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