
A General Language Framework for General
Intelligence

Sudharsan Iyengar, Theron Rabe
103 D Watkins Hall,

Computer Science Department
Winona State University
siyengar@winona.edu

Abstract: Natural language assimilation and
utilization in communication and cognition are
central to human intelligence. Natural languages
evolve we humans assimilate these; thus we have so
many different languages – in form and “grammar”.
One’s language is the cumulative result of one’s
experience. Intelligent decision making is
accomplished through deductive, inductive, and/or
abductive reasoning processes. We propose the
notion of a self-evolving general language L, a
superset of all languages. We also define and develop
a process of reduction, R, on L - as a way for
decision-making in L. We then propose the use of a
general framework based on lambda calculus for
implementing this language and the reduction
process.

Keywords—Artificial General Intelligence; General
Language; Reduction; lambda calculus;

I. INTRODUCTION
The original goal of artificial general intelligence is

to simulate intelligent behavior at or above human level
[1]. One way to ascertain intelligence is to study and
implement an efficient way to gather knowledge and
make subsequent decisions [2]. The accuracy and
speed with which decisions are made present the
apparentness of intelligence in humans – and so has to
be emulated in agents as well. It is also important for
general intelligence there is the need to not only pre-
defined problems but also an evolving scope of
problems.

Humans use intelligence by reasoning over
observations [2]. This reasoning falls under various
forms of deductive, inductive, or abductive reasoning.
If a person's repeated observations indicate that A must
always imply B then if A then B is learned, and upon
subsequent observation of A, definitely B is decided
through deductive reasoning. Alternatively, if a person
has observed that often (not always) A imply B, then if
A implies B is learned and upon subsequent observation
of A maybe B is decided through inductive reasoning.

Finally, if a person observes that occasionally A imply
B, then B possibly A is learned and subsequently when
B is observed then maybe A is decided using abductive
reasoning. Since inductive and abductive reasoning are
inherently uncertain, they are of particular interest for
solving problems suited for general intelligence, which
usually involve a high degree of uncertainty. Such
problems include machine learning, pattern
classification, natural language processing, statistical
analysis, computer vision, and data compression [3, 6].

Interestingly one trait of human intelligence is the
ability to abridge statements to efficiently
communicate. This ability to generate a shortened
version of a complex version in one language can be
construed as articulation or an abductive reasoning. An
example of this can be an acronym TCP can stand for
a stock symbol or for network protocol. This
articulation and abductive reasoning is based on
previous experience and the context of the evaluation.
All decisions are based on previous experiences.
Previously unknown expressions are either deemed
irrelevant (and hence discarded) or considered
acceptable new knowledge that is integrated into the
language. Inductive and abductive reasoning requires
earlier experience and decisions that help similar
current decisions. For example, when a person (infers)
induces that they will be hungry later because they did
not eat breakfast, they must have previously
experienced that not eating breakfast could cause
hunger. The same can be said for a person who (feels)
observes hunger and abductively attributes it to not
having eaten breakfast. At the time of originally
deciding that “not eating breakfast causes hunger”, a
minimum of two critical observations should have
occurred. First, the person must have observed that
they did not eat breakfast. Second, they must have later
observed hunger. Any number of other intermediate
observations (like “drank coffee” or “watched TV”)
may have occurred between these critical observations.
Initially, all the relevant observations are included,
considered, and processed in arriving at “not eating
breakfast causes hunger”. The number of observations
included in such intermediate decision making can be
called the critical observations’ distance. Upon such
repeated processing one tends to shorten the distance

Int'l Conf. Artificial Intelligence | ICAI'15 | 347

between observations in decision making. Thus, the act
of correlating hunger to not eating breakfast is an act of
shortening the distance between them (and pruning
other insignificant observations).

The association of these two observations are
utilized in inductive (forward or anticipatory) and
abductive (backward or causal) reasoning. This process
of learning, and subsequent shortening of the distance
between cause and effect observations, is elementary in
demonstrative intelligence.

Thus general intelligence possesses a primitive
decision-making process that shortens the distance
between critical observations. This process lowers the
complexity of the decision-making process by
removing unnecessary intermediate steps. In other
words, an intelligent agent must be able to take a series
of observations like A→B→C and simplify it to decide
that A may indicate C without regard to the presence of
B, where applicable. We call this decision-making
process reduction.

Natural languages, the primary visible forum for
intelligence, are incremental, self-evolving, and self-
mutating. The sounds and phrases as well as the
grammar for natural languages are not set in stone – but
are subject to change over time. One might infer
grammar from them but there are many exceptions to
these. One’s vocabulary is a consequent of the
environment in which one “grows”. One learns French
growing up France. The same person learns German
(or Chinese) growing up in Germany (or China). This
contextual ability to use vocabulary is also applicable
to areas of education and work and social interactions.
The syllables, words, sentences, and co-relation of
phrases to semantics forming ones language is the
cumulative result of experiences from the
environment(s). Hence, the concept of general all-
purpose language, and ones subset language that is
currently accumulated.

Section II defines and describes the properties of
the reduction process. Section III defines and describes
the general language. Section IV presents the
limitations of lambda calculus with respect to a general
language and presents our approach to modifying
lambda calculus so as to implement the features
described in this paper.

II. REDUCTION - PROCESSING
PHRASES IN A LANGUAGE

Reduction is manifested at multiple layers of
abstraction within intelligent thought. People use
language as a medium for abstracting their thought
process. An observation abstracted in a language is a
phrase. A phrase is either a symbol or a sequence of
symbols within a language. For example, “rain” is a
phrase composed of a single symbol that represents the

observation of “water falling from the sky”. Note that
this process is independent of the natural language in
question. (In Hindi – it could be “Baarish” – a two
phrase with two syllables for rain). Even though the
phrase is associated with semantics of the observation,
we do have a co-relation between “rain” and “water
falling from the sky”. Reduction permits simplification
of observations it permits simplification through
abstractions. When complex phrases are interpreted by
an intelligent agent reduction can be applied to shorten
the relation between its sub-phrases and observations.
This helps simplify the task of reasoning over their
semantics as well.

For example, let us take the sentence: “Enough
humidity has gathered in the air as to generate clouds
of an unmaintainable density” which could be
interpreted to the phrase “It is raining”.

This sentence has multiple sub-phrases
(observations) viz. enough humidity, gathered in the
air, generate clouds, and unmaintainable density. Upon
reasoning, the phrase becomes simpler but interprets
the same. By utilizing a ‘shortened’ version of the
original phrase, one is able to simplify the semantic
interpretation of the original phrase. In other words, the
reduced version is faster to interpret.

With respect to language, reduction is the
translation of phrases to semantically-equivalent (or -
approximately equivalent), but syntactically-minimal
previously learned abstract phrases.

We now present the properties of such a reduction
process. Correlation between phrases and semantics,
when indicated, are presumed. The establishment and
verification of the semantics to phrases are beyond the
scope of this paper.

 Definition 1: A language L = {T, N, G, S}, where
T is a set of terminal phrases, N is a set of non-terminal
phrases, G is set of production rules or its grammar, and
S is its semantics.

The reduction process described in this paper does not
take into account the semantics of the phrases, and is
thus a mechanical process applied on the phrases alone.

Definition 2: Given a language L, a phrase P in
L is a sequence of symbols of the form
{s1, s2, .., sn} such that 0<i<n, si {T U
N} . Thus, all members of the power set
(T N) satisfy the definition of a phrase.

Per this definition, any sequence of symbols are
valid phrases that can be generated by using terminal
and non-terminal phrases from the language. In
practice only a subset of these are actually encountered
and used by any agent.

348 Int'l Conf. Artificial Intelligence | ICAI'15 |

Definition 3: Given a language L, its grammar G
is a set of production rules, each of the
form A→B, where A and B are phrases in
L.

 Definition 4: Given a language L, its semantics S =
{(t, b)}; t T, and b is an observation.

An observation is some mechanical or logical effect on
an L interpreter. For example, the terminal apple can
be associated with the observation of an object apple
(its image and associated properties, etc).

It is important to note that a phrase contains
terminal and non-terminal symbols, but the semantics
of the phrase is expressed by way of terminals only.

Definition 5: Given a phrase P, the set of
symbols used in P is denoted {P} and its
size is |{P}|

Definition 6: Given a language L, the evaluation
of a phrase P = {s1, s2, .., sn}, denoted
P(), is a function such that:

 P() = {b | si s T and (t, b) S} {P’() | si
N : (si→P’) G}, 0<i<n.

Where P' is some partial evaluation of P.

For a phrase – the evaluation is a set of observations
obtained through the process where - the terminals
provide the observations from S; and the phrase or non-
terminals provide observations from their evaluation
based on G. Thus the evaluation of a phrase yields a set
of observations.

 Definition 7: The effort of an evaluation, denoted
E(P()), is given as follows:

 E(P()) = ∑ E(si); 0<i<n, si {P} such that
E(si()) = 1 for si T; E(si()) otherwise.

An evaluation function correlates a phrase to its
abstracted observations, thus causing a series of
mechanical or logical effects on an interpreter. The
evaluation of a phrase is dependent on the symbols of
the phrase as each symbol has to be evaluated.
Terminals need no further reduction as they carry
semantics. The non-terminals or phrases, recursively
need further reduction.

Definition 8: Given a language L, the reduction
of a phrase P with respect to L, denoted
R(P, L), is a function such that:

 R(P, L) = p, where p is a phrase in L , and
R(P,L) = R(p, L); P() = p(); E(p())
≤ E(P())

First, that the reduction of phrase P is equivalent to
the reduction of its reduction, p. That is, the reduction
function is final. Second, that the evaluation of the
phrase P will be equivalent to the evaluation of its

reduction, p. In other words, reduction does not change
the semantics of a phrase. Third, the complexity of
evaluating the reduced phase is less than or equal to that
of the original.

An input string is reduced in formal languages by
iteratively applying the rewrite rules specified in the
language's formal grammar, on an input string, until it
cannot be further reduced. Since natural languages
have no exact formal grammar, their reduction is more
difficult to achieve. Reduction of a natural language
depends on an accumulated familiarity with the phrases
that constitute the language. The correlations and
equivalences amongst these accumulated phrases
behave as the language's grammar. Because reduction
of a natural language depends on phrases having been
learned and subsequently used in a meaningful way,
natural language reduction appears indicative of
intelligence.

Thus, to replicate this act of intelligence using
artificial systems, the reduction process must be
achievable in a language that is being prescribed
through free use of previously unknown phrases that
could become part of the language. Thus our proposal
for a framework for a general language as opposed to a
specific natural language. Since general intelligence
processes must be applicable in broad domains we
define a general language next.

III. GENERAL LANGUAGE
We note that the intelligent behavior is dependent

on what is known, understood, and utilized. Contrast
this with an artificial system that can process phrases in
the French language. This system is demonstratively
limited in what it can accomplish because it is
programmed as such, and it does not accommodate
and/or learn other phrases. Humans on the other hand
possess the ability to behave on what is assimilated, but
additionally also accept and ingest new information,
and thus evolve or grow. In fact, this is modus-operandi
of human behavior. (Ironically, we consider this
intelligent behavior and not the ability to process
teraflops in milliseconds.) Importantly, note the
language of a person is but that which has been
assimilated and unrestricted, in contrast to what might
be prescribed to be English, French, or the sign-
language.

For the purposes of developing and implementing
an intelligent machine we describe the notion of an
unrestricted general language. This general language
must satisfy the following three criteria:

 General language must accept all possible
phrases

 General language must be Turing-complete

 General language must be interpretable in-
order

Int'l Conf. Artificial Intelligence | ICAI'15 | 349

Primarily, all potential phrases must be acceptable
in the general language. This requirement implies that
a general language has no predefined syntax rules. This
is important as the order of the phrases is immaterial as
long as the sentence is interpretable. Arguably,
capability of interpretation without strict limitations on
the order of the phrases, captures elementary
intelligence. An example of this would be interpreting
poetry as opposed to prose. Additionally, the general
language must accept new previously un-encountered
phrases - as legitimate phrases. The interpretation of
such phrases is subject to the intent of observations
associated with the phrase and other considerations.

Secondly, the general language must have Turing-
complete semantics, so as to enable inference of a type
0 grammar [7]. Given this feature, we can automate the
grammar application of this language, giving us the
possibility of developing an AGI system.

Thirdly, we note that intelligent behavior generally
interprets observations as they are input - without the
need for a pre-requisite forward (anticipatory)
reference. As such, the general language must
accommodate interpretation without a requirement of
forward reference. This requirement is further
explained.

Since, this general language lacks definite syntax
rules, it must be able to accommodate an infinite
alphabet – though at any moment its alphabet is finite.
An infinite set of symbols cannot be enumerated, as
required for a formal grammar, but the set of
contextually pertinent symbols can be. Consequently,
during forward interpretation when a new symbol is
encountered, the interpretation process must treat that
symbol as a valid member of the language's alphabet in
order to accept possible phrases with the new symbol.

Remedy 1: Represent infinite alphabet through
its encountered subset.

This simplification permits an interpreter to reason
a partial formal grammar over an alphabet. Note that as
a consequence, the interpreter must possess the ability
to maintain a dynamic alphabet and grammar rules. As
a general language interpreter is used, it will encounter
an increasingly large set of phrases. As such, it must
maintain a repository of phrases encountered so far,
and utilize this repository in its future interpretations.
Thus the interpreter must be able to maintain and use a
dynamic set of terminals (and their associated
observations).

Definition 9: A set of encountered phrases
{p0..pn}, represents an interpreter’s
history P.

Due to the general language’s need to be interpreted
in-order, a function defined within phrase pi must be
expressed in terms relative to phrases p0..(i-1). In other
words, the semantics of some future phrase is

determined by its relation to past encountered phrases.
Therefore, P represents a learned subset of the general
language. This makes P an evolving construct
analogous to a human’s understanding and use of
natural language. For example, a person might equate
the phrase “rain” to “water that falls from the sky”, but
“water that falls from the sky” is just another phrase
that can only be interpreted in terms of other learned
phrases.

Definition 10: pi P (pi() = f(p0..pi-1)); where
pk is an evaluation of Pk, 0<k<i, and f is some
computable function.

Thus evaluation of any phrase by the interpreter is
based on the ability to evaluate all previously
encountered phrases – or the phrase is a new phrase in
the interpreter’s history.

Since a general language interpretation machine
must be Turing-complete, it must support a means of
defining and applying functions that support arbitrary
recursion and abstraction. [4]

A machine that correctly interprets a general
language, regardless of the semantics of that general
language, will learn both the phrases and the grammar
that constitute a subset of the general language. Since
all languages are subsets of the general language, a
general language interpreter can learn natural
languages by interpreting input that causes it to
construct a P that is approximate to some desired
natural language in both phrase content and grammar.
Because reduction is a computable function so with the
formal grammar approximation of a natural language
we have a mechanism to interpret this approximate
natural language.

 If semantics are defined for a general language
approximation of a natural language, then reduction of
this language is an approximation of intelligence use of
this language. The speed and accuracy of these
decisions improves as the language evolves within the
system.

The interpreter starts with an empty set of
terminals, non-terminals, empty grammar, and empty
semantics. Through encounters the interpreter accepts
newer symbols, phrases, and semantics. Over time,
through a process of interpretations and threshold
values the system is taught and evolves with a set of
grammar as well for further interpretations.

Given formal semantics for a general language, an
abstract machine can be designed for evaluation of
general language strings. A machine that evaluates
general language has an inherent ability to learn, due to
general language's requirement of an extensible
alphabet and grammar. Furthermore, since the
interpretation machine must be Turing-complete, it has
the ability to derive and perform computable function
over its learned alphabet. Provided with the correct

350 Int'l Conf. Artificial Intelligence | ICAI'15 |

input string, an abstract machine that evaluates general
language can learn both the phrases that constitute a
natural language, as well as the functions that correlate
those phrases within its language. Thus, a general
language interpreter can be made capable of improving
its “intelligence” with respect to any language (domain
oriented information), and therefore, trained for
different domains.

IV. LAMBDA CALCULUS AND ITS
LIMITATIONS

To address the semantics for the general language,
and exemplify the ambiguities that arise in doing so, we
start with a Turing-complete language, and
progressively remove all syntax rules. We use λ-
calculus [5] as the starting language.

To exemplify the ambiguities that arise from
removing syntax rules from λ-calculus, we will
examine three syntactically invalid λ-expressions:

1. λxyz.a

2. λλx.F.a

3. λλx.xy.a

Expressions (1), (2), and (3) each define a function
whose body is composed of the symbol a and whose
abstraction declaration contains syntax errors. Thus, in
order for λ-calculus to meet the requirements of the
general language, its semantics must be altered in such
a way that each of these expressions is syntactically
valid and unambiguously outputs the symbol a.

Expression (1)'s abstraction declaration contains
three symbols (x, y, z) where only one is allowed by λ-
calculus' formal grammar. To make this syntax valid,
we suggest modifying λ-calculus such that a function
with multiple symbols between λ and '.' is semantically
equivalent to its fully curried version.

Remedy 2: λS.a = λs1.λs2. … λsn-1.λsn.a for any
sequence S of symbols s1..sn

With this modification, Expression (1) becomes
syntactically valid. And given any three inputs,
Expression 1 retains unambiguous output of symbol a.

Expression (2) contains two consecutive λ symbols,
so it can be referenced in parts. Call part “λx.F ” the
inner function, and everything else the outer function.
Let F to be some oracle function that returns either
symbol a or symbols xy. The output of F becomes the
output of the inner function, which by way of Remedy
2 becomes the abstractions used by the outer function.
Should F return symbol a, the outer function no longer
outputs symbol a, and instead behaves as the identity
function. Although the behavior of Expression (2) may
arbitrarily change, it remains unambiguous in either
definition it is dynamically given. We suggest the
acceptance of semi-decidable function definitions by

means of evaluating all definitions. Since definition is
a prerequisite of application, any definition must be
evaluated before its function can be applied. Because a
function could potentially be applied immediately after
definition, the expression containing its definition must
be evaluated in-order.

Remedy 3: λλx.F.a → λ (λx.F.a)
Expression (3) also appears to have an inner and

outer function. Ambiguously, the inner function may
consist of either λx.xy or λx.x, depending on which
function (inner or outer) owns symbol y. Should the
inner function be provided another function for input x,
that function x may be applied to one of two input
sources, and in one of two orders. A function abstracted
by x may be applied to y, or to whatever expression
follows that which provided x. Additionally, that
application may occur either before or after y has been
provided with an expression to abstract. Depending on
which of these evaluation pattern is taken affects
Expression 3’s ability to output symbol a. To correct
this ambiguity, we suggest marking both the start and
end of both function definitions and function inputs
with dedicated symbols.

Remedy 4: λx.y z → (λx.y) [z]
By using these symbols purposefully and without

restriction we can preserve the general language's first
requirement (lack of syntax rules) and prevent
ambiguity. This language is implemented as the EESK
languages as described below.

V. CURRENT WORK & THE
LANGUAGE - EESK

The High-level programming language Eesk is
implemented and available on github. This language is
based on lambda calculus and attempts to be a general
language on the lines described in this paper. The Eesk
system behaves as a lambda calculus interpreter that
has, for the most part, remedied the ambiguities related
to the double-lambda problem described above. With a
few exceptions, this language meets all the three
criteria of the general language.

The Eesk runtime environment has shown
equivalent to an abstract machine that performs
reduction on arbitrary learned languages for all halting
inputs that have been tested. We intend to continue
developing this system to use as a framework for
further investigating the use of general language
reduction as an approach to improving both the speed
and accuracy of artificial general intelligence.

As with any correct implementation of the general
language, Eesk’s syntax is arbitrary. Valid Eesk is
defined as any sequence of symbols. Conceptually, any
symbol is either of the terminal or non-terminal type.
Operators may be treated as terminal symbols.
Operators that may be applied to an operand of one

Int'l Conf. Artificial Intelligence | ICAI'15 | 351

type may equally be applied to any operand of the other
type. Thus, the language is weakly and dynamically
typed. Since the typing is implicit, automatic, and
prone to change, it does not necessarily concern an
Eesk programmer.

Similar to other homoiconic functional languages
like Scheme and Racket [8,9], Eesk is lexically scoped
and full funarg [10] capable. The availability of
symbols to their sub- and super-scope can be explicitly
decided using “public” and “private” modifiers.
Declaration of new symbols is done implicitly upon
first encounter, defaulting to accessibility for all sub-
scopes, but not the super-scope.

Due to general language’s third requirement, Eesk
may be parsed by a means as simple as LL(1) [11].
Each symbol encountered by such a naive left-to-right
parser could be translated directly into machine code
without respect to what symbols come next. The
current implementation however, uses a recursive
descent approach instead. Each descent may be
implicitly escaped by encountering the end of a symbol
stream. This solution permits much of the
computational expense associated with determining
scope to be handled at compile time.

To accommodate the remedies prescribed in this
paper, Eesk employs a runtime architecture composed
of three stacks, separating it from the list-processing
approaches taken by philosophically similar languages
[8, 9, 14]. The first of these stacks is used to store
intermediate computed symbols, and the second to
store function arguments. The Eesk calling convention
causes these first two stacks to exchange
responsibilities. This stack rotation method allows
Eesk functions to both accept and produce syntactically
arbitrary Eesk expressions without causing stack
corruption. Furthermore, stack rotation permits the
elements belonging to many sequential dynamic data
structures to be accessed in constant time.

Eesk’s third stack maintains control information for
the calling convention, and its presence is opaque to an
Eesk programmer. The third stack can be modeled
using only the first two stacks, but in doing so, the
runtime environment loses constant-time lookup of
symbols in the super-scope.

Through the remedies provided in this paper, Eesk
is a reflective language in which syntax is a first class
citizen, and reduction of syntax is the primary mode of
evaluation. Eesk expressions can be dynamically
generated and evaluated by means of reduction.
Beyond the primitive operators suggested for a pure
reduction system, Eesk delivers additional predefined
(but overridable) operator symbols that permit pattern
matching between expressions, similar to use of (quote
…) and (match …) in some languages [8,9] of LISP [14]
heritage. Also, through intentional placement of
function application operators, an Eesk programmer

can explicitly denote whether a function is evaluated
eagerly or lazily [12]. Additional features provided by
the Eesk language framework include first class
citizenship of continuations [13] and a foreign function
interface.

The EESK language was implemented by an
undergraduate senior student – Theron Rabe.

VI. CONCLUSION
We have defined complementary tools of reduction

and general language that characterize general
intelligence in language processing. The process of
reductions is aimed at simplifying the complexity of
decision-making over uncertain problem domains. The
beneficial and problematic implications of
implementing such a framework is discussed. The use
of λ-calculus, and suggestions for modifying its
syntactic structure to make it suitable for use as the
general language, are presented as well. We are calling
on the need for the formulation of formal semantics of
the general language as an approach to general
intelligence.

VII. REFERENCES
1. Allen Newell and Herbert A. Simon. 1976. Computer science

as empirical inquiry: symbols and search. Commun. ACM
19, 3 (March 1976), 113-126. DOI=10.1145/360018.360022
http://doi.acm.org/10.1145/360018.360022

2. Sudharsan, Iyengar. Cognitive Primitives for

Automated Learning, Frontiers in Artificial
Intelligence and Applications, Vol. 171, AGI 2008,
pp. 409-413.

3. Duda, Richard O., David G. Stork. Pattern Classification

(Pt.1). (09 November 2000)

4. Turing, A. M. Computability and λ-Definability. The Journal

of Symbolic Logic. Vol. 2, No. 4 (Dec., 1937), pp. 153-163

5. Church, Alonzo. An Unsolvable Problem of Elementary

Number Theory

6. Murphy, Kevin P. Machine Learning: A Probabilistic

Perspective (Adaptive Computation and Machine Learning
series) (24 August 2012)

7. Chomsky, Noam. On Certain Formal Properties of

Grammars. (1959)

8. Gerald Jay Sussman and Guy L. Steele, Jr.. 1998. Scheme: A

Interpreter for Extended Lambda Calculus. Higher Order
Symbol. Comput. 11, 4 (December 1998), 405-439.
DOI=10.1023/A:1010035624696
http://dx.doi.org/10.1023/A:1010035624696

9. Matthew Flatt. 2012. Creating languages in Racket.

Commun. ACM 55, 1 (January 2012), 48-56.
DOI=10.1145/2063176.2063195
http://doi.acm.org/10.1145/2063176.2063195

10. Joel Moses. 1970. The function of FUNCTION in LISP or

why the FUNARG problem should be called the environment

352 Int'l Conf. Artificial Intelligence | ICAI'15 |

problem. SIGSAM Bull. 15 (July 1970), 13-27.
DOI=10.1145/1093410.1093411
http://doi.acm.org/10.1145/1093410.1093411

11. D. J. Rosenkrantz and R. E. Stearns. 1969. Properties of

deterministic top down grammars. In Proceedings of the first
annual ACM symposium on Theory of computing (STOC
'69). ACM, New York, NY, USA, 165-180.
DOI=10.1145/800169.805431
http://doi.acm.org/10.1145/800169.805431

12. Paul Hudak. 1989. Conception, evolution, and application of

functional programming languages. ACM Comput. Surv. 21,
3 (September 1989), 359-411. DOI=10.1145/72551.72554
http://doi.acm.org/10.1145/72551.72554

13. Reynolds, J. C. (1993). The discoveries of continuations.

Lisp and symbolic computation, 6(3-4), 233-247.

14. McCarthy, John. Recursive functions of symbolic

expressions.

Int'l Conf. Artificial Intelligence | ICAI'15 | 353

