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Abstract: Natural language assimilation and 
utilization in communication and cognition are 
central to human intelligence. Natural languages 
evolve we humans assimilate these; thus we have so 
many different languages – in form and “grammar”. 
One’s language is the cumulative result of one’s 
experience. Intelligent decision making is 
accomplished through deductive, inductive, and/or 
abductive reasoning processes. We propose the 
notion of a self-evolving general language L, a 
superset of all languages. We also define and develop 
a process of reduction, R, on L - as a way for 
decision-making in L. We then propose the use of a 
general framework based on lambda calculus for 
implementing this language and the reduction 
process. 

Keywords—Artificial General Intelligence; General 
Language; Reduction; lambda calculus; 

I. INTRODUCTION 
The original goal of artificial general intelligence is 

to simulate intelligent behavior at or above human level 
[1]. One way to ascertain intelligence is to study and 
implement an efficient way to gather knowledge and 
make subsequent decisions [2]. The accuracy and 
speed with which decisions are made present the 
apparentness of intelligence in humans – and so has to 
be emulated in agents as well. It is also important for 
general intelligence there is the need to not only pre-
defined problems but also an evolving scope of 
problems. 

Humans use intelligence by reasoning over 
observations [2]. This reasoning falls under various 
forms of deductive, inductive, or abductive reasoning. 
If a person's repeated observations indicate that A must 
always imply B then if A then B is learned, and upon 
subsequent observation of A, definitely B is decided 
through deductive reasoning. Alternatively, if a person 
has observed that often (not always) A imply B, then if 
A implies B is learned and upon subsequent observation 
of A maybe B is decided through inductive reasoning. 

Finally, if a person observes that occasionally A imply 
B, then B possibly A is learned and subsequently when 
B is observed then maybe A is decided using abductive 
reasoning. Since inductive and abductive reasoning are 
inherently uncertain, they are of particular interest for 
solving problems suited for general intelligence, which 
usually involve a high degree of uncertainty. Such 
problems include machine learning, pattern 
classification, natural language processing, statistical 
analysis, computer vision, and data compression [3, 6]. 

Interestingly one trait of human intelligence is the 
ability to abridge statements to efficiently 
communicate. This ability to generate a shortened 
version of a complex version in one language can be 
construed as articulation or an abductive reasoning. An 
example of this can be an acronym TCP can stand for 
a stock symbol or for network protocol. This 
articulation and abductive reasoning is based on 
previous experience and the context of the evaluation. 
All decisions are based on previous experiences. 
Previously unknown expressions are either deemed 
irrelevant (and hence discarded) or considered 
acceptable new knowledge that is integrated into the 
language. Inductive and abductive reasoning requires 
earlier experience and decisions that help similar 
current decisions. For example, when a person (infers) 
induces that they will be hungry later because they did 
not eat breakfast, they must have previously 
experienced that not eating breakfast could cause 
hunger. The same can be said for a person who (feels) 
observes hunger and abductively attributes it to not 
having eaten breakfast. At the time of originally 
deciding that “not eating breakfast causes hunger”, a 
minimum of two critical observations should have 
occurred. First, the person must have observed that 
they did not eat breakfast. Second, they must have later 
observed hunger. Any number of other intermediate 
observations (like “drank coffee” or “watched TV”) 
may have occurred between these critical observations. 
Initially, all the relevant observations are included, 
considered, and processed in arriving at “not eating 
breakfast causes hunger”. The number of observations 
included in such intermediate decision making can be 
called the critical observations’ distance. Upon such 
repeated processing one tends to shorten the distance 
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between observations in decision making. Thus, the act 
of correlating hunger to not eating breakfast is an act of 
shortening the distance between them (and pruning 
other insignificant observations).  

The association of these two observations are 
utilized in inductive (forward or anticipatory) and 
abductive (backward or causal) reasoning. This process 
of learning, and subsequent shortening of the distance 
between cause and effect observations, is elementary in 
demonstrative intelligence. 

Thus general intelligence possesses a primitive 
decision-making process that shortens the distance 
between critical observations. This process lowers the 
complexity of the decision-making process by 
removing unnecessary intermediate steps. In other 
words, an intelligent agent must be able to take a series 
of observations like A→B→C and simplify it to decide 
that A may indicate C without regard to the presence of 
B, where applicable. We call this decision-making 
process reduction. 

Natural languages, the primary visible forum for 
intelligence, are incremental, self-evolving, and self-
mutating. The sounds and phrases as well as the 
grammar for natural languages are not set in stone – but 
are subject to change over time. One might infer 
grammar from them but there are many exceptions to 
these. One’s vocabulary is a consequent of the 
environment in which one “grows”. One learns French 
growing up France. The same person learns German 
(or Chinese) growing up in Germany (or China). This 
contextual ability to use vocabulary is also applicable 
to areas of education and work and social interactions. 
The syllables, words, sentences, and co-relation of 
phrases to semantics forming ones language is the 
cumulative result of experiences from the 
environment(s). Hence, the concept of general all-
purpose language, and ones subset language that is 
currently accumulated. 

Section II defines and describes the properties of 
the reduction process. Section III defines and describes 
the general language. Section IV presents the 
limitations of lambda calculus with respect to a general 
language and presents our approach to modifying 
lambda calculus so as to implement the features 
described in this paper. 

II. REDUCTION - PROCESSING 
PHRASES IN A LANGUAGE 

Reduction is manifested at multiple layers of 
abstraction within intelligent thought. People use 
language as a medium for abstracting their thought 
process. An observation abstracted in a language is a 
phrase. A phrase is either a symbol or a sequence of 
symbols within a language. For example, “rain” is a 
phrase composed of a single symbol that represents the 

observation of “water falling from the sky”. Note that 
this process is independent of the natural language in 
question. (In Hindi – it could be “Baarish” – a two 
phrase with two syllables for rain). Even though the 
phrase is associated with semantics of the observation, 
we do have a co-relation between “rain” and “water 
falling from the sky”. Reduction permits simplification 
of observations it permits simplification through 
abstractions. When complex phrases are interpreted by 
an intelligent agent reduction can be applied to shorten 
the relation between its sub-phrases and observations. 
This helps simplify the task of reasoning over their 
semantics as well. 

For example, let us take the sentence: “Enough 
humidity has gathered in the air as to generate clouds 
of an unmaintainable density” which could be 
interpreted to the phrase “It is raining”. 

This sentence has multiple sub-phrases 
(observations) viz. enough humidity, gathered in the 
air, generate clouds, and unmaintainable density. Upon 
reasoning, the phrase becomes simpler but interprets 
the same. By utilizing a ‘shortened’ version of the 
original phrase, one is able to simplify the semantic 
interpretation of the original phrase. In other words, the 
reduced version is faster to interpret.  

With respect to language, reduction is the 
translation of phrases to semantically-equivalent (or -
approximately equivalent), but syntactically-minimal 
previously learned abstract phrases. 

We now present the properties of such a reduction 
process. Correlation between phrases and semantics, 
when indicated, are presumed. The establishment and 
verification of the semantics to phrases are beyond the 
scope of this paper.  

 Definition 1: A language L = {T, N, G, S}, where 
T is a set of terminal phrases, N is a set of non-terminal 
phrases, G is set of production rules or its grammar, and 
S is its semantics. 

The reduction process described in this paper does not 
take into account the semantics of the phrases, and is 
thus a mechanical process applied on the phrases alone. 

Definition 2: Given a language L, a phrase P in 
L is a sequence of symbols of the form 
{s1, s2, .., sn} such that  0<i<n, si  {T U 
N} . Thus, all members of the power set 
(T  N) satisfy the definition of a phrase. 

Per this definition, any sequence of symbols are 
valid phrases that can be generated by using terminal 
and non-terminal phrases from the language. In 
practice only a subset of these are actually encountered 
and used by any agent. 
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Definition 3: Given a language L, its grammar G 
is a set of production rules, each of the 
form A→B, where A and B are phrases in 
L. 

 Definition 4: Given a language L, its semantics S = 
{(t, b)}; t  T, and b is an observation.  

An observation is some mechanical or logical effect on 
an L interpreter. For example, the terminal apple can 
be associated with the observation of an object apple 
(its image and associated properties, etc). 

It is important to note that a phrase contains 
terminal and non-terminal symbols, but the semantics 
of the phrase is expressed by way of terminals only. 

Definition 5: Given a phrase P, the set of 
symbols used in P is denoted {P} and its 
size is |{P}| 

Definition 6: Given a language L, the evaluation 
of a phrase P = {s1, s2, .., sn}, denoted 
P(), is a function such that: 

    P() = {b | si s T and (t, b) S}  {P’() | si  
N : (si→P’)  G}, 0<i<n. 

Where P' is some partial evaluation of P. 

For a phrase – the evaluation is a set of observations 
obtained through the process where - the terminals 
provide the observations from S; and the phrase or non-
terminals provide observations from their evaluation 
based on G. Thus the evaluation of a phrase yields a set 
of observations. 

 Definition 7: The effort of an evaluation, denoted 
E(P()), is given as follows: 

 E(P()) = ∑ E(si); 0<i<n, si   {P} such that 
E(si()) = 1 for si   T; E(si()) otherwise. 

An evaluation function correlates a phrase to its 
abstracted observations, thus causing a series of 
mechanical or logical effects on an interpreter. The 
evaluation of a phrase is dependent on the symbols of 
the phrase as each symbol has to be evaluated. 
Terminals need no further reduction as they carry 
semantics. The non-terminals or phrases, recursively 
need further reduction. 

Definition 8: Given a language L, the reduction 
of a phrase P with respect to L, denoted 
R(P, L ), is a function such that: 

 R(P, L ) = p, where p is a phrase in L , and 
R(P,L ) = R(p, L ); P() = p(); E(p()) 
≤ E(P())  

First, that the reduction of phrase P is equivalent to 
the reduction of its reduction, p. That is, the reduction 
function is final. Second, that the evaluation of the 
phrase P will be equivalent to the evaluation of its 

reduction, p. In other words, reduction does not change 
the semantics of a phrase. Third, the complexity of 
evaluating the reduced phase is less than or equal to that 
of the original. 

An input string is reduced in formal languages by 
iteratively applying the rewrite rules specified in the 
language's formal grammar, on an input string, until it 
cannot be further reduced. Since natural languages 
have no exact formal grammar, their reduction is more 
difficult to achieve. Reduction of a natural language 
depends on an accumulated familiarity with the phrases 
that constitute the language. The correlations and 
equivalences amongst these accumulated phrases 
behave as the language's grammar. Because reduction 
of a natural language depends on phrases having been 
learned and subsequently used in a meaningful way, 
natural language reduction appears indicative of 
intelligence.  

Thus, to replicate this act of intelligence using 
artificial systems, the reduction process must be 
achievable in a language that is being prescribed 
through free use of previously unknown phrases that 
could become part of the language. Thus our proposal 
for a framework for a general language as opposed to a 
specific natural language. Since general intelligence 
processes must be applicable in broad domains we 
define a general language next.  

III. GENERAL LANGUAGE 
We note that the intelligent behavior is dependent 

on what is known, understood, and utilized. Contrast 
this with an artificial system that can process phrases in 
the French language. This system is demonstratively 
limited in what it can accomplish because it is 
programmed as such, and it does not accommodate 
and/or learn other phrases. Humans on the other hand 
possess the ability to behave on what is assimilated, but 
additionally also accept and ingest new information, 
and thus evolve or grow. In fact, this is modus-operandi 
of human behavior. (Ironically, we consider this 
intelligent behavior and not the ability to process 
teraflops in milliseconds.) Importantly, note the 
language of a person is but that which has been 
assimilated and unrestricted, in contrast to what might 
be prescribed to be English, French, or the sign-
language.  

For the purposes of developing and implementing 
an intelligent machine we describe the notion of an 
unrestricted general language. This general language 
must satisfy the following three criteria: 

 General language must accept all possible 
phrases 

 General language must be Turing-complete 

 General language must be interpretable in-
order 
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Primarily, all potential phrases must be acceptable 
in the general language. This requirement implies that 
a general language has no predefined syntax rules. This 
is important as the order of the phrases is immaterial as 
long as the sentence is interpretable. Arguably, 
capability of interpretation without strict limitations on 
the order of the phrases, captures elementary 
intelligence. An example of this would be interpreting 
poetry as opposed to prose. Additionally, the general 
language must accept new previously un-encountered 
phrases - as legitimate phrases. The interpretation of 
such phrases is subject to the intent of observations 
associated with the phrase and other considerations. 

Secondly, the general language must have Turing-
complete semantics, so as to enable inference of a type 
0 grammar [7]. Given this feature, we can automate the 
grammar application of this language, giving us the 
possibility of developing an AGI system.  

Thirdly, we note that intelligent behavior generally 
interprets observations as they are input - without the 
need for a pre-requisite forward (anticipatory) 
reference. As such, the general language must 
accommodate interpretation without a requirement of 
forward reference. This requirement is further 
explained.  

Since, this general language lacks definite syntax 
rules, it must be able to accommodate an infinite 
alphabet – though at any moment its alphabet is finite. 
An infinite set of symbols cannot be enumerated, as 
required for a formal grammar, but the set of 
contextually pertinent symbols can be. Consequently, 
during forward interpretation when a new symbol is 
encountered, the interpretation process must treat that 
symbol as a valid member of the language's alphabet in 
order to accept possible phrases with the new symbol.  

Remedy 1:  Represent infinite alphabet through 
its encountered subset. 

This simplification permits an interpreter to reason 
a partial formal grammar over an alphabet. Note that as 
a consequence, the interpreter must possess the ability 
to maintain a dynamic alphabet and grammar rules. As 
a general language interpreter is used, it will encounter 
an increasingly large set of phrases. As such, it must 
maintain a repository of phrases encountered so far, 
and utilize this repository in its future interpretations. 
Thus the interpreter must be able to maintain and use a 
dynamic set of terminals (and their associated 
observations).  

Definition 9:    A set of encountered phrases 
{p0..pn}, represents an interpreter’s 
history P. 

Due to the general language’s need to be interpreted 
in-order, a function defined within phrase pi must be 
expressed in terms relative to phrases p0..(i-1). In other 
words, the semantics of some future phrase is 

determined by its relation to past encountered phrases. 
Therefore, P represents a learned subset of the general 
language. This makes P an evolving construct 
analogous to a human’s understanding and use of 
natural language. For example, a person might equate 
the phrase “rain” to “water that falls from the sky”, but 
“water that falls from the sky” is just another phrase 
that can only be interpreted in terms of other learned 
phrases.  

Definition 10:        pi  P (pi() = f(p0..pi-1)); where 
pk is an evaluation of Pk, 0<k<i, and f is some 
computable function. 

Thus evaluation of any phrase by the interpreter is 
based on the ability to evaluate all previously 
encountered phrases – or the phrase is a new phrase in 
the interpreter’s history. 

Since a general language interpretation machine 
must be Turing-complete, it must support a means of 
defining and applying functions that support arbitrary 
recursion and abstraction. [4] 

A machine that correctly interprets a general 
language, regardless of the semantics of that general 
language, will learn both the phrases and the grammar 
that constitute a subset of the general language. Since 
all languages are subsets of the general language, a 
general language interpreter can learn natural 
languages by interpreting input that causes it to 
construct a P that is approximate to some desired 
natural language in both phrase content and grammar. 
Because reduction is a computable function so with the 
formal grammar approximation of a natural language 
we have a mechanism to interpret this approximate 
natural language. 

 If semantics are defined for a general language 
approximation of a natural language, then reduction of 
this language is an approximation of intelligence use of 
this language. The speed and accuracy of these 
decisions improves as the language evolves within the 
system. 

The interpreter starts with an empty set of 
terminals, non-terminals, empty grammar, and empty 
semantics. Through encounters the interpreter accepts 
newer symbols, phrases, and semantics. Over time, 
through a process of interpretations and threshold 
values the system is taught and evolves with a set of 
grammar as well for further interpretations. 

Given formal semantics for a general language, an 
abstract machine can be designed for evaluation of 
general language strings. A machine that evaluates 
general language has an inherent ability to learn, due to 
general language's requirement of an extensible 
alphabet and grammar. Furthermore, since the 
interpretation machine must be Turing-complete, it has 
the ability to derive and perform computable function 
over its learned alphabet. Provided with the correct 
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input string, an abstract machine that evaluates general 
language can learn both the phrases that constitute a 
natural language, as well as the functions that correlate 
those phrases within its language. Thus, a general 
language interpreter can be made capable of improving 
its “intelligence” with respect to any language (domain 
oriented information), and therefore, trained for 
different domains. 

IV. LAMBDA CALCULUS AND ITS 
LIMITATIONS 

To address the semantics for the general language, 
and exemplify the ambiguities that arise in doing so, we 
start with a Turing-complete language, and 
progressively remove all syntax rules. We use λ-
calculus [5] as the starting language. 

To exemplify the ambiguities that arise from 
removing syntax rules from λ-calculus, we will 
examine three syntactically invalid λ-expressions: 

1. λxyz.a         

2. λλx.F.a         

3. λλx.xy.a         

Expressions (1), (2), and (3) each define a function 
whose body is composed of the symbol a and whose 
abstraction declaration contains syntax errors. Thus, in 
order for λ-calculus to meet the requirements of the 
general language, its semantics must be altered in such 
a way that each of these expressions is syntactically 
valid and unambiguously outputs the symbol a. 

Expression (1)'s abstraction declaration contains 
three symbols (x, y, z) where only one is allowed by λ-
calculus' formal grammar. To make this syntax valid, 
we suggest modifying λ-calculus such that a function 
with multiple symbols between λ and '.' is semantically 
equivalent to its fully curried version. 

Remedy 2: λS.a = λs1.λs2. … λsn-1.λsn.a for any 
sequence S of symbols s1..sn 

With this modification, Expression (1) becomes 
syntactically valid. And given any three inputs, 
Expression 1 retains unambiguous output of symbol a. 

Expression (2) contains two consecutive λ symbols, 
so it can be referenced in parts. Call part “λx.F ” the 
inner function, and everything else the outer function. 
Let F to be some oracle function that returns either 
symbol a or symbols xy. The output of F becomes the 
output of the inner function, which by way of Remedy 
2 becomes the abstractions used by the outer function. 
Should F return symbol a, the outer function no longer 
outputs symbol a, and instead behaves as the identity 
function. Although the behavior of Expression (2) may 
arbitrarily change, it remains unambiguous in either 
definition it is dynamically given. We suggest the 
acceptance of semi-decidable function definitions by 

means of evaluating all definitions. Since definition is 
a prerequisite of application, any definition must be 
evaluated before its function can be applied. Because a 
function could potentially be applied immediately after 
definition, the expression containing its definition must  
be evaluated in-order. 

Remedy 3:      λλx.F.a → λ (λx.F.a) 
Expression (3) also appears to have an inner and 

outer function. Ambiguously, the inner function may 
consist of either λx.xy or λx.x, depending on which 
function (inner or outer) owns symbol y. Should the 
inner function be provided another function for input x, 
that function x may be applied to one of two input 
sources, and in one of two orders. A function abstracted 
by x may be applied to y, or to whatever expression 
follows that which provided x. Additionally, that 
application may occur either before or after y has been 
provided with an expression to abstract. Depending on 
which of these evaluation pattern is taken affects 
Expression 3’s ability to output symbol a. To correct 
this ambiguity, we suggest marking both the start and 
end of both function definitions and function inputs 
with dedicated symbols. 

Remedy 4:        λx.y z → (λx.y) [z] 
By using these symbols purposefully and without 

restriction we can preserve the general language's first 
requirement (lack of syntax rules) and prevent 
ambiguity. This language is implemented as the EESK 
languages as described below. 

V. CURRENT WORK & THE 
LANGUAGE - EESK 

The High-level programming language Eesk is 
implemented and available on github. This language is 
based on lambda calculus and attempts to be a general 
language on the lines described in this paper. The Eesk 
system behaves as a lambda calculus interpreter that 
has, for the most part, remedied the ambiguities related 
to the double-lambda problem described above. With a 
few exceptions, this language meets all the three 
criteria of the general language. 

The Eesk runtime environment has shown 
equivalent to an abstract machine that performs 
reduction on arbitrary learned languages for all halting 
inputs that have been tested. We intend to continue 
developing this system to use as a framework for 
further investigating the use of general language 
reduction as an approach to improving both the speed 
and accuracy of artificial general intelligence. 

As with any correct implementation of the general 
language, Eesk’s syntax is arbitrary. Valid Eesk is 
defined as any sequence of symbols. Conceptually, any 
symbol is either of the terminal or non-terminal type. 
Operators may be treated as terminal symbols. 
Operators that may be applied to an operand of one 
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type may equally be applied to any operand of the other 
type. Thus, the language is weakly and dynamically 
typed. Since the typing is implicit, automatic, and 
prone to change, it does not necessarily concern an 
Eesk programmer. 

Similar to other homoiconic functional languages 
like Scheme and Racket [8,9], Eesk is lexically scoped 
and full funarg [10] capable. The availability of 
symbols to their sub- and super-scope can be explicitly 
decided using “public” and “private” modifiers. 
Declaration of new symbols is done implicitly upon 
first encounter, defaulting to accessibility for all sub-
scopes, but not the super-scope. 

Due to general language’s third requirement, Eesk 
may be parsed by a means as simple as LL(1) [11]. 
Each symbol encountered by such a naive left-to-right 
parser could be translated directly into machine code 
without respect to what symbols come next. The 
current implementation however, uses a recursive 
descent approach instead. Each descent may be 
implicitly escaped by encountering the end of a symbol 
stream. This solution permits much of the 
computational expense associated with determining 
scope to be handled at compile time. 

To accommodate the remedies prescribed in this 
paper, Eesk employs a runtime architecture composed 
of three stacks, separating it from the list-processing 
approaches taken by philosophically similar languages 
[8, 9, 14]. The first of these stacks is used to store 
intermediate computed symbols, and the second to 
store function arguments. The Eesk calling convention 
causes these first two stacks to exchange 
responsibilities. This stack rotation method allows 
Eesk functions to both accept and produce syntactically 
arbitrary Eesk expressions without causing stack 
corruption. Furthermore, stack rotation permits the 
elements belonging to many sequential dynamic data 
structures to be accessed in constant time. 

Eesk’s third stack maintains control information for 
the calling convention, and its presence is opaque to an 
Eesk programmer. The third stack can be modeled 
using only the first two stacks, but in doing so, the 
runtime environment loses constant-time lookup of 
symbols in the super-scope. 

Through the remedies provided in this paper, Eesk 
is a reflective language in which syntax is a first class 
citizen, and reduction of syntax is the primary mode of 
evaluation. Eesk expressions can be dynamically 
generated and evaluated by means of reduction. 
Beyond the primitive operators suggested for a pure 
reduction system, Eesk delivers additional predefined 
(but overridable) operator symbols that permit pattern 
matching between expressions, similar to use of (quote 
…) and (match …) in some languages [8,9] of LISP [14] 
heritage. Also, through intentional placement of 
function application operators, an Eesk programmer 

can explicitly denote whether a function is evaluated 
eagerly or lazily [12]. Additional features provided by 
the Eesk language framework include first class 
citizenship of continuations [13] and a foreign function 
interface. 

The EESK language was implemented by an 
undergraduate senior student – Theron Rabe. 

VI. CONCLUSION 
We have defined complementary tools of reduction 

and general language that characterize general 
intelligence in language processing. The process of 
reductions is aimed at simplifying the complexity of 
decision-making over uncertain problem domains. The 
beneficial and problematic implications of 
implementing such a framework is discussed. The use 
of λ-calculus, and suggestions for modifying its 
syntactic structure to make it suitable for use as the 
general language, are presented as well. We are calling 
on the need for the formulation of formal semantics of 
the general language as an approach to general 
intelligence. 
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