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Abstract— This paper describes a system which uses simple
video surveys to automatically construct an indoor floor
map for the purpose of supporting indoor people local-
ization, tracking, and navigation applications. We show
that this video-based system, using the concept of spatial
segmentation through similarity matching followed by graph
construction as developed in the WiFi RSS-based Intelligent
Mobility Mapping System (IMMS) presented in an earlier
work, is capable of constructing an indoor floor map based
on simple video survey sequences alone. We show also that
when used together with WiFI RSS, the video-based system
can easily identify and label points-of-interest such as rooms
along corridors, enriching the information content in the
indoor map.
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1. Introduction
Indoor localization based on WiFi RSS (Received Signal

Strength) fingerprinting has been a subject of research for

over a decade. The most important advantage of using

WiFi RSS is convenience. WiFi coverage is found in most

indoor environments today and WiFi RSS can be measured

without requiring permission. However, the off-line survey

process to create a fingerprint, or a radio map, is tedious and

time-consuming. Recently, an Intelligent Mobility Mapping

System (IMMS), proposed in [1], applies the concepts of

crowd-sourcing and Simultaneous Localization and Mapping

(SLAM) to simplify the off-line survey step. The concept in

IMMS is to make use of crowd-sourced WiFi RSS sequences

or traces to identify location segments within the indoor

coverage area by identifying highly similar segments across

many traces. Afterwards, the identified location segments,

which presumably are corridor segments in a grid-like

indoor environment, can be used to construct a graphical

indoor map through a graph construction algorithm. How-

ever, IMMS will create some false location segments and

vertices. In addition, the orientation of the individual location

segments are unknown, making matching of the graphical

map to the physical map difficult.

Other researchers have conducted research into indoor

localization using video devices. Compared to WiFi RSS,

video is more accurate for identifying the exact number

and positions of intersection points of corridor segments.

On the other hand, video is processing and bandwidth

intensive and possibly less convenient for the online lo-

calization/navigation phase. Our work intends to combine

WiFi RSS with video for indoor floor map and radio map

construction and localization.

In this paper, we describe methods to extract useful

information from video sequences labeled with WiFi RSS.

Our work first focuses on indoor physical spaces that are

grid-like and can be modeled as an interconnection of

corridor segments called Atomic Location Segments (ALSs)

[1]. The information of interest is the number and location

of the intersection points of corridors, and rooms and their

room numbers alongside corridors. Accurate identification of

corridor intersection points, which are combined with WiFi

RSS data, will enable accurate automatic reconstruction of

the indoor map, and labeling of rooms along corridors will

enrich the information content of the indoor map.

This paper is organized as follows. Section 2 gives an

overview of the system. Section 3 describes the algorithm

to find the intersection points. Section 4 describes the

unique ALS identification. Section 5 describes the floor map

construction. Section 6 describes the algorithm to find and

recognize room numbers. Experimental results are shown in

section 7.

2. System Overview
Figure 1 shows a simple floor map which illustrates

the concept of Atomic Location Segment (ALS), which

are corridor segments, and Breaking Point (BP), which are

intersections of corridors. A BP is where people can make

turn into different corridor segments. We call an intersection

a BP because it is where the similarity between two WiFi

RSS or video traces may end if the two WiFi RSS or video

signal collectors turn into different corridor segments. An

ALS is the corridor segment between two BPs.

Fig. 1: An indoor floor map model
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Our indoor map construction involves three steps:

1. Data collection: As described in the introduction, our

overall objective is to combine video and WiFi RSS to

perform indoor floor and radio map constructions to support

WiFi fingerprint based indoor localization. The primary

focus of this paper is on using video data to enhance

the map construction. To enhance the detection of corridor

intersections and points of interest, we will record two video

clips. The first clip is taken with the surveyor walking

causally around the coverage area without pausing, making

turn (randomly left or right) whenever an intersection is

encountered, until most of the corridor segments in the

coverage area is traversed more than once. In taking the

second clip, the surveyor pauses at all or selected rooms

along the corridors to direct the camera at the doorplate of

each for several seconds. Both clips are taken while WiFi

RSS measurements are collected at an interval of one second.

The timestamp for each frame in the video clips and for each

measurement in the RSS trace are synchronized.

2. Information extraction: In this stage, for clip 1, each

encounter of an intersection and the surveyor’s turning direc-

tion is identified and the occurrence time is marked. For clip

2, each pausing and the room number captured is identified.

The methods of Scale Invariant Features Transform (SIFT)

and Optical Characters Recognition (OCR) are applied.

3. Map construction: In this stage, video clip 1 is divided

into segments based on the BPs identified. Video segments

that are taken at the same corridor segment are identified

so that a list of unique corridor segments called ALSs

can be created. The list of unique ALSs, their connectivity

relationships through BPs, and turning directions are used

to construct the floor map. The room numbers identified in

clip 2 are used to mark points of interest in the floor map.

3. Intersections Finding Algorithm (IFA)
For our indoor map construction, accurate identification

of the set of breaking points is very important. In the

WiFi RSS-based approach in [1], some superfluous BPs

are often identified, resulting in false location segments.

Another problem with the WiFi RSS approach in [1] is

that the right-handedness or left-handedness of intersections

of location segments is not determinable, and hence the

graphical planar floor map constructed is not unique. Thus,

unless the graphical floor map is manually aligned with the

actual floor map, the value of the graphical floor map is

limited in navigation applications as it cannot be used to

guide a user to make right turn or left turn. The objective of

IFA here is to use video clips to determine the set of BPs

accurately, and to record the direction of each turn.

3.1 Scene matching
In the video trace recorded as the surveyor walks through

the coverage area, scenes in successive frames are expected

to change slowly unless the surveyor is traversing a BP.

This means that we can find the BPs by monitoring changes

in successive video frames. We have considered different

ways for measuring changes in video frames. We first tried a

relatively simple method which is to compute the correlation

between frames (e.g.,[3], [4]). However, this does not work

well since the correlation can be easily affected by small

changes in the camera position or orientation. A more robust

method is to match two frames based on finding some inter-

est points in the frames and creating a descriptor for these

interest points. We can then match two frames by matching

their descriptors. There are many research studies and many

local descriptors have been proposed, including differential

invariants [7], steerable filters [6], SIFT [2], PCA-SIFT [5]

and SURF [8]. All these build a descriptor to model an

image patch around some interest points. Over time, SIFT,

PCA-SIFT and SURF are generally accepted to be superior.

[9] gives a comparison of SIFT, PCA-SIFT and SURF. [10]

also compares the performance between SIFT and SURF. In

terms of speed, SURF gives the fastest runtime while the

SIFT has the best performance in invariants, especially in

scale, rotation and blurring. In our study, the run time is

not a critical concern as BPs finding is performed offline.

Therefore, we choose the SIFT descriptor for matching our

video frames.

3.2 Review of the SIFT Algorithm
SIFT is a method to extract invariant features from

images[2]. There are four major stages in SIFT:

1. Scale-space extrema detection: A Difference-of-

Gaussian (DOG) function is used to find all potential interest

points by searching over all scales and image locations.

2. Keypoint localization: A model is applied to all

potential interest points to select keypoints based on their

stability.

3. Orientation assignment: Based on the local image

gradient directions, one or more directions are assigned to

each keypoint.

4. Keypoint descriptor: A model is applied to each

keypoint and its neighbours to transform them into a matrix

form to represent the keypoint.

3.3 Turning Point Position and Turning Direc-
tion

Since the camera records at 30 frames per second,

matching each frame with its next frames will lead to very

high computational cost. Furthermore, the changes over

too short a time interval may not be large enough to be

detectable. Therefore, we choose only one in every t = 10
frames and compare it with the d1 = 40 frames later.

Figure 2(a) shows the number of matched interest points

between the fi and fi+d1
as a function of time in the video.

By applying a threshold T and a smoothing function, we

obtain the binary graph shown in Figure 2(b), in which

each zero region represents the a BP region during which
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the surveyor is making a turn.

Fig. 2: BPs Finding. (a) Number of matched interest points as
function of time. (b) Binarized Graph.

After finding a BP, the next step is to determine the turning

direction of the surveyor at this BP. We assume that there

can be only two possible turning directions (left L, right

R), and compute the average shifting of the matched interest

points inside each BP region in Figure 2(b). For a BP region

covering N frames, for every t = 10 frame we sample a

sample frame fi and compute the average shifting of the

frame fi + d2 where d2 = 5. d2 is smaller than d1 so that

shifting of shifting in the frames can be tracked. Assuming

there are n matched interest points between frame fi and

fi+d2 , the shift of frame fi+d2 is computed as:

si+d2 =
1

n

n∑
j=1

(gi+d2(xj , yj)− gi(xj , yj)), (1)

where si(i+ d2) is for shift for frame i+ d2 and gi(xj , yj)
is the coordinate of the j − th interest point in the i − th
sample frame.

The shifting in a particular turning point region can be

computed as:

S =
1

N/t

N
t −1∑
i=1

si+d2
, (2)

A negative S means the surveyor is turning to left while

a positive S means the surveyor is turning to right.

4. Unique ALS and BP Identification
As described in the system overview, the segment between

two intersection points is called an ALS. During the survey

process, the surveyor go around the survey area randomly,

and makes turn whenever an intersection is encountered,

until most of the ALSs are passed through by the surveyor

in the same direction more than one time. Identification of

repeated ALSs will enable us to construct the floor map.

Assume K BPs are found by IFA, we divide the video

trace into K + 1 individual video segments and label them

as (li; i = 1, ...,K + 1). Then, we determine if two video

segments li and lj are taken at the same ALS by computing

the average number of matched interest points (Am) between

these two segments, as described in Algorithm 1. In the

algorithm, a unified number of Ns frames are selected

at a regular interval from each of the two segments for

comparison. Ns is chosen as min(C,Nshort/30) where

C = 10 is a constant and Nshort is the number of frames

in the shorter of li and lj . This means at most 10 frames

totally or one frame per second are used for the comparison.

The value of Am between all pairs of video segments are

computed. We assume that the surveyor is traversing the

same corridor segment in the same direction if Am for the

two corresponding video segments is larger than a threshold.

Algorithm 1 Function:TestVideoSeg

1: function TESTVIDEOSEG(li, lj )
2: C = 10
3: Ns = min(C,Nshort/30)

4: Am =

∑C
k=1 match(lik

,ljk
)

C � where lik and ljk are the k-th
selected frames in trace li and lj , and match() is a function in SIFT

5: if Am > Threshold then
6: Tru = 1 � Tru is the Boolean type variable.
7: else
8: Tru = 0
9: end if

10: return Tru
11: end function

The video-based approach allows us to recognize BPs

without ambiguity and to identify with very high accuracy

video segments taken while surveyor is travelling in the

same corridor in the same direction. However, if the surveyor

traverses the same corridor segment in opposite directions,

the images observed by the camera would be quite different

and the two video segments will not be recognized as a

match. To deal with this reverse path problem, we make use

of the sequence of WiFi RSS values recorded and reuse the

function TestHCP described in [1]. This function examines

the correlation of two WiFi RSS trace segments and returns

as output whether the two WiFi RSS trace segments are in

the same ALS by detecting if there is a "high correlation

pattern" in the correlation matrix that extends in either the

+45 or -45 degree direction corresponding to two trace

segments traversing the same corridor segment in the same

or opposite direction.

With the addition input from WiFi, we can proceed to

identify all the unique atomic location segments (ALS)

contained in the video. We consider the K+1 video segment

one by one, as described in Algorithm 2. If a segment li
has not been identified as a match to any segment already

examined, we assign a new ALS ID, and li will become the

reference segment of this new ALS ID. The directionality

of the reference segment is labelled as +1. For a segment

lj , if TestV ideoSeg(li, lj) is true in Algorithm 1, it will
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be given the same ALS ID and assigned a directionality

of +1. On the other hand, if TestHCP (li, lj) is true but

TestV ideoSeg(li, lj) is false in Algorithm 1, it will be

given the same ALS ID but assigned a directionality of

-1. After all video segments are examined, the result is

a set of unique ALSs E = {E1, ..., ENe}, where Ne is

the number of unique ALSs identified. Knowing the set of

unique ALSs, we can further identify the set of unique BPs

which connects to the unique ALS. Let the set of unique

BPs be U = {U1, ..., UNu}. Further, we produce through

Algorithm 3 a vector D = {D1, ..., DNd} that describes the

turning direction between any two ALSs that are connected

as follows: Di is a vector that includes the two connected

ALSs (Ei and Ej), the BP (Uk) that connects them, and a

turning direction indicator Tij which is either L or R.

Algorithm 2 Unique ALS Identification

1: e = 1
2: for (i = 1,i <= N + 1,i + +) do
3: if li is unlabeled then
4: li = +e � The first direction found is label as positive.
5: for (j = i + 1,j <= N + 1,j + +) do
6: if lj is unlabeled then
7: Vs(i, j) = TestV ideoSeg(li, lj)
8: cpc(i, j) = TestHCP (li, lj)
9: if Vs(i, j) = 1 and cpc(i, j) = 1 then

10: lj = +e
11: else if Vs(i, j) = 1 and cpc(i, j) = 0 then
12: lj = −e
13: end if
14: end if
15: end for
16: e = e + 1
17: else if li is labeled then
18: for (j = i + 1,j <= N + 1,j + +) do
19: if lj is unlabeled then
20: Vs(i, j) = TestV ideoSeg(li, lj)
21: cpc(i, j) = TestHCP (li, lj)
22: if Vs(i, j) = 1 and cpc(i, j) = 1 then
23: lj = li
24: else if Vs(i, j) = 1 and cpc(i, j) = 0 then
25: lj = −li
26: end if
27: end if
28: end for
29: end if
30: end for
31: return Ne = e

Algorithm 3 Turning Direction Vector Generation Algorithm

1: j = 1 , k = 1
2: for (i = 1,i < Ne,i + +) do
3: D(i, 1) = Ei

4: D(i, 2) = Ej

5: D(i, 3) = Uk

6: D(i, 4) = Tij � Tij is the turning direction either left or right.
7: j = j + 1, k = k + 1
8: end for

5. Floor Map Construction
With the set of vertices U , the set of unique edges E

and the set of turning vectors D, the floor map construction

algorithm aims to create a planar graph G = (E,U,D)
that is more intuitive for human observers to read. There

are three steps in the algorithm: (1) Depth First Block

Search (DFBS), (2) path search, and (3) straight-line and

turning direction embedding. Steps (1) and (2) follow [1]

and step (3) incorporates information on turning directions

to construct a floor map that would more closely resemble

the actual physical map.

1. Depth First Block Search
The step of DFBS is based on Tarjan’s DFS block search

algorithm [16]. We also follow the notation in [1]. DFS

starts from a vertex of G with the highest node degree and

chooses an edge to follow. Traversing the edge leads to new

vertex. If it reaches the end vertex in the path, it goes back

to the preceding vertex and goes to another unexplored edge.

It stops when all the edges are explored. DFS labels each

vertex with a DFS number DFSN(v) and create a spanning

tree for the path search in step (2). For any vertices v and

w in U , the spanning tree is constructed by a set of arcs

v → w, where DFSN(v) < DFSN(w), and a set of fronds

v ��� w, where DFSN(v) < DFSN(w).
Moreover, DFS assigns each vertex a number called the

low point value (LPV ) to determine whether a ’block’ is

a biconnected component of the graph or not. A bicon-

nected component of graph G is a subgraph Gi. such that

the remaining graph remains connected if the biconnected

component is removed. For any vertex (v ∈ U ), its low

point value is defined as:

LPV (v) =min({DFSN(v)} ∪ {LPV (w) | v → w}
∪ {DFSN(w) | v ��� w}), (3)

Initially, the low point value in a vertex v is set equal

to its DFSN(v). After all of the low point values are

calculated, we look for the vertices with DFSN(v) ≤
LPV (v), excluding the start vertex of the spanning tree.

A path including these vertices is grouped into a sub-graph

Gi called a block. Figure 3 shows an example of spanning

tree. Each node is a vertex in the graph, and the numbers

next to each node are the DFS number and low point value

respectively. There are three blocks in the example. The

largest block is the original graph with edges (2, E) and

(1, S) excluded, and (2, E) and (1, S) each forms its own

block, while S and E is the start and end BPs of the video

path. The ALS ID of each edge can be identified by its start

and end vertices and is labelled by E1 to E18 in Figure 3.

2. Path Search
In path search, we search all blocks one by one. In the

beginning, all the vertices and edges in the spanning tree

are labeled as unexplored. We start from the vertex with the

smallest DFS number in a block and mark it as explored.

Then we extend the path to the next unexplored edge that is

connected to the vertex until all of the vertices in the block

are explored. The output of the search of each block is a

path that covers all vertices in the block. The search step is

completed when all the blocks are explored.

3. Planar Embedding
In this step, we use the paths identified in step (2) to draw
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the floor map. We assume that all edges/corridor segments

are straight-lines. While [1] uses a planar layout algorithm

based on [17], here we can simply make use of the direction

relationships described in the matrix D. The result is a draft

floor map that shows the relationship between vertices and

edges. An example is shown in Figure 8.

Fig. 3: A sample of spanning tree.

6. Room Number Finding Algorithm
Having a floor map that is labeled with room numbers is

useful for navigation and other applications. In our Room

Number Finding Algorithm, we make use of the WiFi RSS

trace associated with clip 2 to reduce the search process in

finding potential doorplate frames in the survey video. We

have also applied different methods for preprocessing the

image for character recognition.

6.1 Doorplate Frame Extracting
First, we need to find the video frames in which a

doorplate may be present. To increase the searching speed,

we get help from the WiFi RSS data. We compute a single-

trace correlation (STC) which is the autocorrelation of the

WiFi RSS trace to identify the times that the surveyor is

pausing in front of a doorplate. The curve in Figure 4 shows

the autocorrelation of the WiFi RSS sequence. Peaks in the

autocorrelation curve reflect the potential times at which

the surveyor is pausing in front of a doorplate. From the

figure, we see that a video clip with more than 18000 frames

can be reduced to about 80 frames for which the surveyor

is potentially pausing. It needs to promise that there is a

doorplate template in order to find the accurate doorplate

frames inside the potential frames. The number of matching

interest points between the template and each found frame

will be calculated. The frame will be determined to be a

doorplate frame if the number of matched interest points is

larger than a threshold.

Fig. 4: The autocorrelation of the WiFi RSS measurements of a
path.

6.2 Character Recognition
Character recognition is the final step of the Room Num-

ber Finding Algorithm. We use optical character recognition

(OCR) [11] technique to perform the character recognition.

There are standard steps in OCR for off-line characters

recognition [14], [11], [13]:

1. Preprocessing: Before applying any feature extraction

technique, the character images must be converted into

a black-and-white image. The recognition performance is

often highly dependent on this step, and we will discuss in

greater details this later.

2. Location and segmentation: Segmentation is the

segregation of words into individual alphabets/characters.

The segmentation step typically works under the assumption

that the characters are not connected together.

3. Feature Extraction, or template-matching and cor-
relation method: There are two methods to complete the

final step of OCR. The first method is to extract features

contained in the character represented as a binary matrix.

The second method is to compute the distance between the

character with a set of templates to find the best match. We

use the second method and the templates are provided in

[12].

6.3 Binarization
The preprocessing, especially the binarization, is ex-

tremely important to the OCR performance [11]. Binariza-

tion methods can be classified as local or global. Global bi-

narization methods include the Fixed Thresholding Method,

Otsu Method and Kittler Method, while local binarization

methods include the Niblack Method, Adaptive Method,

Sauvola Method and Bernsen Method [15]. As [15] points

out that the Otsu Method and Sauvola Method produce

the best result for global binarization and local binarization

respectively, we will compare only these two methods and

choose one to perform the binarization step. Figure 5 shows

that the Otsu Method gives a better binarization quality in
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our case. Hence, the Otsu Method is used as the binarization

method.

Fig. 5: The image under different binarization methods. (a)The
original gray image. (b)The image under binarization with the Otsu
Method. (c)The image under binarization with the Sauvola Method

7. Experiment and Result
The experiment took place in the lab area on the second

floor of the academic building of our university. The actual

floor map of the area is shown in Figure 6. In the experiment,

a student equipped with an LG Nexus 5 walks at a relatively

constant speed around the area. Two traces, one for the

Intersections Finding Algorithm and the other for the Room

Number Finding Algorithm, are recorded. Both videos are

in 720p and WiFi RSS values are recorded along with them.

The first trace starts from point A, and covers the area in

a zigzag pattern until ending at point B. The second trace

travel through the area randomly and stops for seconds to

capture doorplates.

Fig. 6: Physical topology of corridors in survey area

7.1 Experimental Result for TPs Finding Algo-
rithm

The BPs and turning directions in the trace are determined

by the Intersections Finding Algorithm. As shown in Figure

7, the trace passes through 12 different BPs a total of 22

times, passing through 10 BPs twice. The result of IFA is

shown in Figure 7. A threshold is applied into the curve in

Figure 7(a) to obtain the curve in Figure 7(b). Figure 7(b)
shows that all the BPs, each indicated by a zero region of

the curve, have been found by the algorithm.

The turning time of the BPs, taken as the middle of the

zero regions, are shown in Table 1. The turning directions

at each BP is also shown in the table, where 1 indicates a

left turn and 0 a right turn.

Fig. 7: BPs Finding. (a) Number of matched interest points as
function of time. (b) Binarized Graph.

Table 1: The turning time and its turning direction in the trace
The nth BP Time (seconds) Turning

direction

(1/0)

1 28.7 1

2 50.4 0

3 74.2 0

4 94.7 1

5 107.9 1

6 129.4 0

7 142.2 0

8 164.9 1

9 179.9 1

10 201.9 0

11 215.0 0

12 233.9 0

13 246.2 0

14 265.5 1

15 279.7 1

16 298.9 0

17 311.0 0

18 331.2 1

19 343.5 1

20 362.7 0

21 283.2 0

22 402.0 1

7.2 Experimental Result for Unique ALSs La-
beling and Map Construction

Table 1 shows all the BPs in video clip 1 and table 2 shows

the level of matching of the segments between the BPs.

The high matching values are shaded, indicating that the

two corresponding segments are the same ALS. Each unique

ALS is assigned an ID. From the table, 5 pairs of segments

are repeated segments so there are 18 unique ALSs. After

identifying the unique ALSs, the data will be passed to the

WiFi-RSS based system to construct the radio map. The

resulting draft floor map shown in Figure 8 can also easily

construct by followed the steps in floor map construction.

7.3 Experimental Result for Room Number
Finding Algorithm

There are 34 rooms in the survey area, as shown in

Figure 6. The surveyor goes around records all the doorplates

in video clip 2. The result of the room number finding

algorithm is shown in Table 3. There are 3 doorplates
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Fig. 8: The resulting graphical floor map

Table 2: The average matched interest point(Am) between two
trace segments

Segments 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 (ALS1) - 0.6 0.5 0.4 1.4 0.8 0.6 0.5 1.2 0.4 1.2 0.9 0.7 0.1 0.3 0.5 1 0.4 0.4 0.7 0.3 0.3 0.5

2 (ALS2) 0.6 - 2.1 2.2 1 0.9 1.1 1.3 0.3 1.5 1.7 1.5 1.6 0.9 0.3 2.1 0.8 0.8 0.6 1.1 0.9 47.6 0.6

3 (ALS3) 0.5 2.1 - 0.5 0.9 0.1 1.8 0.9 0.6 0.8 2.4 1.1 2.5 0.3 0.5 0.7 1 0.3 0.8 1.1 1.8 2 0.6

4 (ALS4) 0.4 2.2 0.5 - 0.9 1.4 0.3 3.2 0.5 0.7 0.6 1.9 1.1 1.5 0.4 2 0.2 1.4 0.2 20.5 0.7 1.2 0.5

5 (ALS5) 1.4 1 0.9 0.9 - 0.1 0.5 0.4 3.8 0.4 0.4 0.7 1.4 0.5 0.7 0.1 0.7 0.4 0.8 0.7 0.4 0.8 0.4

6 (ALS6) 0.8 0.9 0.1 1.4 0.1 - 1.7 3.6 0.6 4.2 0.9 1.5 1.2 6.6 0 5.6 0.4 58.1 0.2 1.6 1 2 0.3

7 (ALS7) 0.6 1.1 1.8 0.3 0.5 1.7 - 0.5 1 0.6 1.3 1.1 1.6 0.1 0.7 0.8 1 0.2 0.6 0.4 0.8 1 0.7

8 (ALS8) 0.5 1.3 0.9 3.2 0.4 3.6 0.5 - 0.5 2 0.2 1.8 1 2 0.4 39.2 0.9 2.5 0.6 2.4 0.3 1.7 0.4

9 (ALS9) 1.2 0.3 0.6 0.5 3.8 0.6 1 0.5 - 0.3 0.5 1.2 1.1 0.1 0.7 0.1 0.4 0.1 1.7 0.2 0.3 0.7 0.3

10 (ALS10) 0.4 1.5 0.8 0.7 0.4 4.2 0.6 2 0.3 - 0.8 1.8 0.7 39 0.3 2.2 0.4 3.7 0.7 1.5 0.6 1.5 0.2

11 (ALS11) 1.2 1.7 2.4 0.6 0.4 0.9 1.3 0.2 0.5 0.8 - 1.3 1.1 1 0.3 0.8 1.7 0.3 0 1.6 0.3 1.2 1

12 (ALS12) 0.9 1.5 1.1 1.9 0.7 1.5 1.1 1.8 1.2 1.8 1.3 - 1.4 0.6 0.1 1.7 0.7 1 0.5 1.8 0.7 2 0.6

13 (ALS13) 0.7 1.6 2.5 1.1 1.4 1.2 1.6 1 1.1 0.7 1.1 1.4 - 0.2 0.1 0.6 2.6 0.5 0.5 0.3 0.5 0.9 0.3

14 (ALS10) 0.1 0.9 0.3 1.5 0.5 6.6 0.1 2 0.1 39 1 0.6 0.2 - 0.3 2.7 0.5 5.4 0.2 0.8 0.5 1.9 0.3

15 (ALS14) 0.3 0.3 0.5 0.4 0.7 0 0.7 0.4 0.7 0.3 0.3 0.1 0.1 0.3 - 1 1.1 0.4 2.6 0.7 0.7 1.3 0.7

16 (ALS6) 0.5 2.1 0.7 2 0.1 5.6 0.8 39.2 0.1 2.2 0.8 1.7 0.6 2.7 1 - 0.7 3.4 0.2 2 0.2 1.5 0.2

17 (ALS15) 1 0.8 1 0.2 0.7 0.4 1 0.9 0.4 0.4 1.7 0.7 2.6 0.5 1.1 0.7 - 0.6 0.5 0.3 0.7 0.4 0.3

18 (ALS6) 0.4 0.8 0.3 1.4 0.4 58.1 0.2 2.5 0.1 3.7 0.3 1 0.5 5.4 0.4 3.4 0.6 - 0.2 1.4 0.5 1.8 0.5

19 (ALS16) 0.4 0.6 0.8 0.2 0.8 0.2 0.6 0.6 1.7 0.7 0 0.5 0.5 0.2 2.6 0.2 0.5 0.2 - 0.5 0.6 0.6 0.4

20 (ALS4) 0.7 1.1 1.1 20.5 0.7 1.6 0.4 2.4 0.2 1.5 1.6 1.8 0.3 0.8 0.7 2 0.3 1.4 0.5 - 0.6 0.6 0.4

21 (ALS17) 0.3 0.9 1.8 0.7 0.4 1 0.8 0.3 0.3 0.6 0.3 0.7 0.5 0.5 0.7 0.2 0.7 0.5 0.6 0.5 - 1 0.4

22 (ALS2) 0.3 47.6 2 1.2 0.8 2 1 1.7 0.7 1.5 1.2 2 0.9 1.9 1.3 1.5 0.4 1.8 0.6 2.4 1 - 0.7

23 (ALS18) 0.5 0.6 0.6 0.5 0.4 0.3 0.7 0.4 0.3 0.2 1 0.6 0.3 0.3 0.7 0.2 0.3 0.5 0.4 0.4 0.4 0.7 -

discarded because of failed matching with the template. Two

of these are because of low brightness in the environment, as

the performance of SIFT is highly sensitive to differences in

brightness. The third is because of a low number of matched

interest points with the template.

Table 3: The number of doorplates under different stage of the
algorithm

The stage of algorithm Percentage of doorplate un-

der the stage

Correct output doorplates 90.6%

Incorrect output doorplates 0%

Objective doorplates dis-

cards by matched with tem-

plate

9.4%

Objective doorplates dis-

cards by STC

0%

8. Conclusion and Future Work
We have proposed to use video data to assist crowd-

sourced WiFi RSS data in floor map and radio map con-

struction for indoor WiFi localization applications. This

paper shows that intersections and turning directions can

be accurately determined from video data, by using SIFT

to match interest points in successive video frames. This

paper focuses on indoor areas that are grid-like, with corridor

segments joining at intersected. The next step of our work

will be to include different types of areas such as open flow

and enclosed areas.
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