
Automating Academic Advising and Course Schedule
Planning with a CLIPS Expert System

Edwin Rudolph and Adel Abunawass

Department of Computer Science, University of West Georgia, Carrollton, Georgia, USA

Abstract – A significant aspect of advising students is the
process of reviewing the students’ academic course history,
determining progress toward completion of degree
requirements, verifying satisfaction of various pre-requisites,
and identifying potential course schedule plans for future
enrollment. To assist advisors in accurately and efficiently
completing these tasks and to enable more time for qualitative
and personalized discussion with individual students, we
developed a simple expert system that automates those tasks.
Related to advising is the administrative problem of
determining what courses should be offered to meet students’
future needs. To aid and support decision making, the advising
expert system is designed to process data for multiple students
simultaneously and project the number of students needing to
take certain courses in the future. This poster discusses the
general design and implementation of this system using the
CLIPS expert system tool.

Keywords: Expert system; decision support system; academic
advising; CLIPS

1 Motivation
 As part of efforts to improve and streamline advising of
students in our department, we began looking for ways to
ensure students would receive consistent advice on their
academic progress as well as on issues relating to various
university administrative polices and procedures, while also
ensuring that each student had the opportunity to receive
substantive and personalized advisement on issues such as
personal and career goals and research and job opportunities.
The challenge with the former was that the routine and largely
mechanical advising tasks were dominating the advisement
process, and the fact that several faculty members participated
in this process also made it difficult to ensure that students
received consistent information.

 Our approach to addressing this challenge was to
implement a two-tier mandatory advising process where the
routine aspects of advising (reviewing progress toward a
degree, consulting on what courses to take for upcoming
semesters, discussion about administrative policies and
procedures, etc.) are centralized with a professional staff
advisor, with whom the student must first meet, and following
this, the student meets with an assigned faculty advisor where
academic, career, research, and personal issues may be
discussed. This process, which all students must complete

during each term of enrollment, achieved both the goal of
ensuring students receive consistent advice about degree
requirements and various policies and procedures, while
improving the quality and content of the consultation with a
faculty member. However, to do this in an effective manner,
we needed to find a way to automate the analysis of the
student’s progress to further ensure consistency and accuracy
as well as enable the staff advisor to efficiently meet with a
large number of students over a relatively short time period
(typically a one to two month period preceding the course
registration period).

2 Requirements
We identified three functional requirements for a system that
would help us to automate key advising tasks:

• To aid in reviewing a student’s progress towards
degree completion, list all requirements for the degree
and indicate for each whether or not the student has
satisfied the requirement. For satisfied requirements,
indicate the course(s) used to satisfy those
requirements. Since different sets of requirements
may exist depending on when the student
matriculated, the system must allow for multiple
requirement sets and allow the appropriate set to be
selected on demand.

• To aid in planning a student’s future course schedule,
list important program courses the student needs to
take, the future term(s) the department expects to
offer those courses, and whether or not the student is
eligible to take each course based on whether or not
the student has satisfied the pre-requisite(s).

• To assist in planning what courses should be offered
in future terms by projecting students’ needs, list
important program courses and for each indicate how
many students are eligible to take the course (based
on having satisfied applicable pre-requisites).

 Important non-functional requirements included the
ability to easily code new and/or modified degree requirements
as requirements change over time and to be able to handle input
and output in a simple text-based format.

Int'l Conf. Artificial Intelligence | ICAI'15 | 393

3 Implementation
 An initial prototype system was developed as a web-
based application using procedural code in PHP. However, it
quickly became obvious that this approach was both tedious to
code and difficult to maintain. This initial effort did prove
beneficial in that it highlighted the fact that the system was
primarily based upon a set of if-then rules, which led us to
rethink our implementation approach in terms of a rule-based
expert system. We chose the CLIPS expert system shell for
several reasons: low-cost (public domain), fast (shell
implemented in C), a straightforward syntax, and the ability
use and parse simple text input and output.

3.1 Overview

 The expert system is forward chaining, and uses input
facts about the student’s academic history (courses taken), the
requirements of the student’s program of study, and facts about
future planned course offerings to produce conclusions (output
facts) about what program requirements have or have not been
satisfied, and what courses a student may be able to take in the
future and when those courses are expected to be offered. The
rules that produce those conclusions consist of: program
requirement rules that match courses the student has taken with
individual program requirements; course pre-requisite rules
that match courses the student has taken with pre-requisites
needed to enroll in courses that the student has not taken; and
ancillary rules that handle issues such as grade replacements
for retaking a course, manual overrides to enable course
substitutions, and output conversion to enable reporting and
parsing of results.

 The following figure illustrates the basic components of
the expert system as described above:

3.2 Degree Program Requirements Progress Report

 To produce the list of all requirements for the degree
along with an indication of whether or not a student has
satisfied the requirement, the expert system works as follows.
First, individual input facts for each course the student has

taken along with the grade earned are asserted. Then, facts that
describe the individual degree program requirements (e.g.
“two elective courses are required from the following…”) are
asserted. For program requirements where there is a single
specific course required, the requirement fact is coded to match
the course number that would appear in the student’s academic
history facts. Then, a single rule is used to automatically match
all such simple requirements. For more complex requirements
where one or more courses are used to determine if the
requirement is met, a specific rule is defined to perform the
match. Once a match occurs between course(s) from the
student’s academic history and a program requirement, the
requirement fact is modified to indicate that the requirement
was met and which course(s) were used to meet it.

3.3 Course Enrollment Eligibility

 To produce a list of courses a student has not taken but is
eligible to take based on courses already completed (or in
progress), the system uses the student’s academic history facts
(courses taken) to activate pre-requisite satisfaction rules. For
example: “CS 201 requires completion of CS 102 with a grade
of C or higher”. This rule would fire and generate a new
eligibility fact for CS 201 if the student’s academic history
contained a fact for CS 102, the grade for that course was a C
or better, and the academic history did not already contain a
fact for CS 201.

 To aid the student in schedule planning, additional input
facts are asserted for projected course offerings, indicating that
the department expects to offer a course during a given term
(e.g. “CS 201 will be offered in Spring 2016”). These facts are
then matched with the eligibility facts; resulting in a list of
courses the student can take in the future along with the term(s)
the department expects to offer those courses.

3.4 Course Offering Needs Projection

 To aid in projecting how many students may need to take
a certain course, the system uses the same functionality
described above for course enrollment eligibility. Instead of
only considering a single student, data for all students is
asserted (using student IDs to differentiate). Eligibility facts
are asserted for each student and these are then counted to
produce a projected number of students who may need to take
certain courses in the future. For this use case, the program
requirement rules for analyzing students’ degree progress are
not utilized and are disabled so as to minimize processing time.

4 Results
 Since 2007, the system has been successfully used in
support of over 3,000 advisement sessions and in the planning
of course offerings. The CLIPS implementation has enabled
us to easily update the system over time to support changes to
degree requirements and course pre-requisites (while
maintaining older ones), as well as, adapt the analysis engine
for use with different user interfaces and reporting needs.

CLIPS engine

RULES
Program Requirements
Course Pre-Requisites
Ancillary Rules

INPUT FACTS
Student Academic History
Program Requirements
Projected Course Offerings

OUTPUT FACTS
Program Requirements (Met/Unmet)
Course Eligibility w/Projected Offerings

394 Int'l Conf. Artificial Intelligence | ICAI'15 |

