548

Int'l Conf. Artificial Intelligence | ICAI'15 |

eJADE-S: Encrypted JADE-S for Securing Multi-Agent
Applications

Basit Ali', Umar Manzoorz, and Bassam Zafar’
'Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad,
Pakistan
*Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
umarmanzoor@gmail.com, bzafar@kau.edu.sa

Abstract — In the last two decades, Multi Agent System (MAS)
has been used in diverse areas because of its tremendous
capabilities; however, security and reliability issues are two
major hurdles in adaptation of this paradigm in real
distributed applications. Java Agent Development Framework
(JADE) is one of the most popular frameworks used for the
implementation of MAS, however, JADE has many security
issues. To overcome these security issues Jade-S is proposed,
however, it still has many security weaknesses. In this paper,
we have proposed Encrypted Jade-S (eJade-S) for securing
Multi-agent based applications. Cryptography new algorithm
using two s-box for encryption / decryption is integrated in
JADE-S to overcome the security issues. We have tested the
proposed solution on large number of multi-agent based
applications, experimental results show the effectiveness of
the proposed solution in securing multi-agent based
applications.

Keywords: Securing MAS, JADE, JADE-S, Multi-Agent
Systems, Encrypted JADE-S

1 Introduction

Agents are software programs that capable of
performing autonomous action on the behalf of the user [6, 7].
The central concept of autonomy in agent means it does not
have to receive instruction from the user and can decide the
action itself according to the situation. When these agents
work together to perform some common task(s) such a system
is known as Multi Agents System. Agents within Multi-agent
based application make can make virtual society for
negotiation / obtaining their common goals [13].

In the last two decades, Multi Agent System (MAS) has been
used in diverse areas such as (health sciences, bioinformatics,
software  modeling, distributed systems, biomedical
engineering, parallel computing, autonomic computing [10,
11, 14, 15] etc) Dbecause of its tremendous capabilities;
however, security and reliability issues are two major hurdles
in adaptation of this paradigm in real distributed applications.
In the last two decades, many frameworks for development /
implementation of multi-agent system have been proposed;

Java Agent Development Framework (JADE) [8] is one of the
better and most often used frameworks for the implementation
of MAS. Is JADE a secure framework for developing multi-
agent based application? The answer is not yet however
several steps have been taken for making JADE secure. The
architecture layer of JADE is unsecure which implies that any
application developed with JADE is also unsecure and can
easily get infected by different attacks. JADE-S [1] has been
design to overcome the security weakness of JADE; JADE-S
is the security add-on incorporated in the JADE version 3.2
and provides authorization, authentication, message
encryption, message signature and security policy features for
the agents.

Although JADE-S aims to provide the security goal, however,
it still has many security weaknesses [2, 3]. JADE-S saves the
information related to security policy / authentication in plain
text files, which can easily be modified / updated. In this
paper, we have proposed Encrypted JADE-S (eJADE-S) for
securing Multi-agent based applications. Cryptography new
algorithm using two s-box for encryption / decryption is
integrated in JADE-S to overcome the security issues.

The paper is organized as follows. The first section discusses
the background related to multi-agent system, possible attack
on agent based applications and possible solutions. This
section is followed by the discussion of the Encrypted JADE-
S (eJADE-S) which provides mechanism for securing multi-
agent based applications. In Section 4 performance analyses
of proposed solution on different test cases is presented. At
the end conclusion is drawn and we outline some questions
for future research.

2 Background

Because of tremendous capabilities of Agent technology,
it has been used in diverse areas especially distributed
systems. Many efficient solutions have been proposed using
agent paradigm, as a result, agent development has moved
from researcher communal to the practical fields. Java Agent
Development Framework (JADE) is one of the most often
used framework for the development / implementation of
multi-agent based applications. Foundation for Intelligent



Int'l Conf. Artificial Intelligence | ICAI'15 |

Physical Agents (FIPA) [9] is responsible for standard
stipulations for multi-agent expertise and JADE supports
(FTPA) stipulations.

In 2005, JADE proposed a plug-in named as JADE-S which
provides the security features for the agent development
framework (i.e. JADE). By extending the security model of
Java, JADE-S used customizable sandbox and provided
security modules which are essential for the development of
secure multi-agent system.

Mobile Agents [4, 5] are usually distributed over different
hosts, to provide security in such a distributed and open
environment JADE-S presented the idea of multi-user system
where all the activities are performed by the authenticated
agents. The administrator of the system assign privilege to
these agents. Moreover, each agent owned a public and
private key through which it can encrypt and sign messages.

2.1 Authentication — JADE-S

The authentication process is the base of whole system
and all other services that are used by this JADE-S. The
authentication of the JADE-S module is supported by the
security service which is composed of two elements of JAAS
API (Java Authentication and Authorization Service) namely

[6]:

. A Callback Handler that force the user to provide
username and password.

= A Callback Handler that authorize the user.

Every user that start / create the container or agent must
authenticate itself by providing username / password to the
system, if the authentication is successful, the user becomes
the owner of the container. This implicates that the user who

File Edit Format View Help

549

starts the platform, by executing the main container also own
the AMS and Directory Facilitator (DF). With the help of
Callback Handler the user send their username and password
to the local containers which passes the same to the main
container. After receiving the information, Main container
verifies the same with the login module which matches the
user name / password to the corresponding user name /
password stored in the password text file as shown in figure 1.
If the login is successful, the authenticated agent and its
container may start execution in the form of platform
otherwise the system will generate error message and exits.

e v+ S TR
Eie_EdrE_ Format  View Help

alice alice

bab bob

|

Figure 1. Sample Password.txt file

2.2 Authorization — JADE-S

The Authentication module of JADE-S assigns
permissions to the agents (i.e. all possible actions and
operations which the agent can perform are listed). With the
help of these rules the action are permitted and denied by
JADE-S. These set of rules or access control list is saved in
the policy file usually named as policy.txt. This file follows
the default JAAS syntax, any action that is not defined in the
policy is denied forcefully by the system. The following rights
can be issued to the agents:

Platform Permission: Right to create / kill Main Container of
the system, Create container / agent, Kill agent / container etc.
These permissions are normally assigned to the administrator
of the system.

lgrant codebase "file: g"'l'lbr’_‘iadesecur‘lty jar" i
permission j'w‘l -'m'uri‘ry AllPermission; 3

grant codebase "file: /! "I‘lbqade jar
ermission j1v1 -'r-cur'i‘ry Allperm ssion; H

grant codebase "file:../../. / "Hbqademo]s jar‘ {
permission java Jccurity Allperm

ssion; 1;
JJ) === startup example ---
// ==-- Policy on the MAIN container ---
grant principal jade.security.Name “"alice” {

permission jade.security.PlarformPermission "7,
permission jade.security.Containerpermission ™"
permission jade.security.AagentPermission ",
permission jade.security.agentPermission "
permission jade.security.amMspermission it
permission jade.security.messagerermission ™"

b

grant principal jade.security.nName "bob" {
permission jade.security.containerrermission
permission jade.security.agentPermission "

permission jade.security.aMspermission
permission jade.security.Messagerermission

“create,kill”;

“create, kﬂ'l"'
“create,kil i

"suspend resume

"register dereg‘lster modify";
‘send-to

“container-owner=bob”
‘agent-owner=hbaob, fan‘r.'-nner owner-hob agent -name=hob-*",
permission jade.security.agentrermission ' agent owner=bob"
"agent-owner=bob"
“send-to";

“create, kill”

“create’”;
‘ki111,s5uspend, resume

reg‘ister deregister, mnd‘ify H

Figure 2. Sample Policy.txt file



550

=  Container Permission: Right to create / kill a container.

= Agent Permission: Right to create / kill an agent in the
local container.

=  AMS Permission: Right to register and de-register agent
in the AMS.

=  Message Permission: Allows agent to send messages to
other agents.

2.3 Encryption and Signature — JADE-S

Agents communicate with each other through messages
on same or different platform, signature mechanism ensure the
data reliability and non-manipulation whereas encryption
assurance confidentiality. The signature and encryption
mechanism of JADE-S is assured by assigning asymmetric
public and private key to each agent. The signing and
verifying operations are assured by the signature whereas
encrypt and decrypt operation are handled by Encryption.
These operations always operates on the platform in order to
protect the sensitive data / information.

Agents call the appropriate security function in order to
achieve the security and confidentiality of messages. Before
sending message the Security Helper class function is applied
on ACL Message. The sending agent has no concern with the
decryption and verification of signature. These services are
performed on the receiving end. In case of any failure during
decryption or signature verification process, ACL Failure
Messages is send to the sender.

2.4 IMTP over SSL — JADE-S

This is last and most important security feature provided
by the JADE-S which includes privacy, data reliability and

Int'l Conf. Artificial Intelligence | ICAI'15 |

Transport Protocol (IMTP) over SSL (i.e. RMI over SSL).
The container-to-container mechanism of JADE-S is slightly
different from the agent-to-agent where each container is
awarded with a certificate. The certificate of all containers in
the platform is saved in the trusted block of container. The
security algorithms like mutual authentications, encryption
and signature are performed by the TSL/SSL Protocol. Every
container must share his owns certificate to the other
communicating container and verifies the one presented to it
using the trusted store. After Successfully verification, the
TLS/SSL protocol continues with encryption and signature of
all information exchanged between the containers.

3 Encrypted JADE-S

Jade-S creates some configuration files during
installation in the root directory of the system. These files
contain necessary credentials of user i.e. login username and
password, privacy and policies of the system, agent roles etc
are defined in the same configuration files.

] e-jade.txt -
File  Edit
¥ofd;

Format Yiew Help
"-"n-fﬂéi

8«0 B«B

Figure 3. Encrypted JADE-S Password File

These files are simple text files as shown in figure 1 and 2
respectively. These configuration files are usually placed at
the project root, and any mobile agent running on the host
(where these files are stored) can access / change these
configurations. For example, adding more privileges to itself
by making changes to the configuration files.

authenticated connection between the agents’ Container

[lle Edlt Format  View ﬂ:lp

grant codebase ﬁle rhb’%adesecur'ity jar" {
permission ]ava securjty allpermission; i

grant codebase "file: {lib/jade. jar” {
ermission ]av .sef;urwy ATIPerm‘lss‘lon, H

4]
qrant codebase "file: Vi "I1bqademn'lﬁ ']ar'“ {
permission java secur‘lty allperm ssion; };
// --- startup example ---
J// ==-- Policy on the MAIN container ---

grant principal jade.security.Name "¥=f¢;" {
permission jade.security. P‘Eatfurmperm'issmn s
permission jade.security.containerrermission
permission ade.secur‘ity.AgentPer‘miss‘ion R

permission jade.security.agentPermission "™

¥
grant principal jade.security.Name "B«B" {

permission jade.security. (nnra1nprP9rm1qﬁ1nn
permission jade.security.AgentPermission

i

wi ig‘fnﬁ  Axoa';
"ECTD
"ECIDRG, S%ﬂ&'em

"container-owner=bobh"
agent -owner=bob, container owm.r-bub .lgLnL name=bob-%",
permission jade.security.AgentPermission "agent-owner=bob", "

10A0, A00";

"ECTBRG, Asfoe"
"ECTENG";
Azoo, $xr&*<R";

Figure 4. Encrypted JADE-S Policy File



Int'l Conf. Artificial Intelligence | ICAI'15 |

In this paper, we have proposed Encrypted JADE-S (eJADE-
S) by incorporating a new cryptographic algorithm in JADE-S
to secure the configuration files (i.e. secure the login
credentials, agent roles, and policy etc) generated by JADE-S.
Our proposed techniques uses multi-substitution box in data

551

encryption which makes it nearly impossible to change /
modify the configuration settings. In eJade-S the password file
is renamed to e-jade.txt, if any agent locates / open this file, it
can’t understand the contents because they are encrypted

using our proposed algorithm discussed later in the section.

Input:
Text Data

p
For each character of Yy

inputte"t[ Take ASCII of character ]

Y

binary of 8 bits

[ Convert ASCII decimal value into ]

Y

frame

Split 8 bits into two four bits

Four Four
MSBs LSBs
\

1

Convert into
decimal

H=

Corresponds
to S-Box nth
row position

T

— M

Convert into
decimal

——

Corresponds

to S-Box mth
column

position

———

Logistic Map ]

Seleclion
of S-Box

AES
S-Box

(n, m) value

—

Replace the text value with the S-Box]‘

S

Finite
Precision
Digital Format

Under
Modulo 2

3

Decision

Special
Character's
S-Box _

\ ]

Encrypted Text

Figure 5. Proposed Substitution algorithm



552

After the encryption is applied on the login information, the
username and password of the each agent is encrypted as
shown in figure 3. Similar to password file, policy file which
includes the rules / rights of the agents is also encrypted using
the same algorithm; therefore, it becomes really hard for the
unauthorized agent to understand which right is given to what
particular agent. Once these configuration files become
encrypted, entire application becomes more secure than
before.

3.1 Encryption Algorithm

The encryption algorithm uses multiple S-box instead of
single S-Box in substitution method.
Input: Simple text that need to encrypt.

Output: Encrypted Text.

While characterarray[]! = null do
Ascii number = characterarray|[i]Asciivalue
Binarynumber = convert Ascii number to binary
Binaryarray[] = Binarynumbersplitby4digits:
Rowvalue = Binaryarray[0]
Columnvalue = Binaryarray|[1]
Sum = Rowvalue + Columnvalue
Mod = Sum/2
If Mod == 0 then
Encrpytedvalue = SO[Rowvalue][ Columnvalue]
characterarray([i] = Encrpytedvalue
else
Encrpytedvalue = S1[Rowvalue][ Columnvalue]
characterarray([i] = Encrpytedvalue
end if
End While

3.2 Decryption Algorithm

Decryption Algorithm follows the same step in reverse order
to convert the encrypted data into original text.

Input: Encrypted Text Data.
Output: Original Simple text data.

While decryptedlettersarray[]! = nulldo

Int'l Conf. Artificial Intelligence | ICAI'15 |

Find the location of decrypted character in both S-boxes.
Once the letter found save the row and column index of that
character.

Row = decryptedlettersarrayrownumber:

Col = decryptedlettersarraycolnumber

Rowbinarynumber = Convert Row number to binary

number
Colbinarynumber = Convert Col number to binary number

Binary = Add both  Rowbinarynumber  and

Colbinarynumber as a string to become 8 or 16 digit
numbers.

ASCII = Convert Binary to decimal number.

Orignaltext = Get the character value against the ASCII
number.

End While

4 [Experimental Analysis

eJade-S is design to secure the Multi Agent System, the
end user can upload the multi-agent based application as input
and the proposed framework yields secure MAS application
as output. The GUI of application is shown in Figure 6. The
end users select the MAS project that needs to be secured by
clicking on the Upload Project. All the agents in the uploaded
project are listed in the list box which is on the left side of the
window. The user must select the Agent from the agent list
and assign the roles / right by clicking on the check box which
are on the right side of the window. The users must repeat the
same step to assign the roles to each and every agent
individually. Once the roles are assigned, the user needs to
click the secure project Button which yields secure multi-
agent application as output.

"p Elades : i4 Browse For Folder ﬁ
Agent List Holes
- etz a HRMS-NCN-SCALED Version
Supend Rasine 4 | jadeSecunity
- 4 4 jade
core
domain
4| imip!
oiwe]  [Somb o
. Dute created: 77132013 12:25 AM
‘ = in
Mace Hew Foider [+ 3 Carcel

Figure 6. GUI of Encrypted JADE-S

We have evaluated the proposed solution on large number of
test cases; in this section we have discussed one test case




Int'l Conf. Artificial Intelligence | ICAI'15 |

which is multi-agent based application proposed by Manzoor
et al [12] for activity or resources monitoring over the
networks. An agent based system for activity monitoring on
network (ABSAMN) is fully autonomous and manage the
resources with the help of mobile agents. The ABSAMN uses
XML configuration files for managing / monitoring the
network, these configuration files are unsecure as any agent
can amend or modify them. Furthermore, no authentication /
authorization feature is included in the system which means
any agent can access any application module and perform
unauthorized operation. Seven agents are being used in
ABSAMN and the administrator has to assign rights /
permission to each one using eJADE-S inferface.

No Agent Name Rights / Permissions

1 Master
Controller Agent

Create, Kill, Send Messages,
Suspends, File Sharing

2 Controller Agent | Create, Send Messages, File

Sharing

3 Monitor Agent Task performing, File Sharing

4 Action Agent Start Or Kill Process, Receive
Messages
5 Statistical Agent | Task Performing
6 Information Store Information and Send
Agent Messages
7 Messaging Send Receive Messages
Agent
Table 1. Shows the rights / permissions assigned to
ABSAMN agents.

Once the administrator assigns the rights to each ABSAMN
agent, eJADE-S configuration files (policy and password) are
generated which contains encrypted contents. After that
eJADE-S library files are added to ABSAMN project and
secured ABSAMN jar file is generated. After securing the
ABSAMN, agents needs to authenticate / authorize with the
system and can only perform the actions which are assigned to
them by the administrator.

5 Conclusion

Java Agent Development Framework (JADE) is one of
the better and most often used frameworks for the
implementation of MAS. The architecture layer of JADE is
unsecure which implies that any application developed with
JADE is also unsecure and can easily get infected by different
attacks. JADE-S [2] has been design to overcome the security
weakness of JADE; however, it still has many security
weaknesses. In this paper, we have proposed Encrypted
JADE-S (eJADE-S) for securing Multi-agent based
applications. Cryptography new algorithm using two S-box
for encryption / decryption is integrated in JADE-S to
overcome the existing security issues. The proposed
framework has been tested on larger number of applications,
the experimental results shows the efficiency and
effectiveness of the same.

553

6 References

[1] Salvatore Vitabile, Vincenzo Conti, Carmelo Militello,
Filippo Sorbello "An extended JADE-S based framework for
developing secure Multi-Agent Systems", Computer
Standards & Interfaces, Volume 31, Issue 5, September 2009,
Pages 913-930.

[2] X. Vila, A. Schuster, A. Riera "Security for a Multi-
Agent System based on JADE", Computers & Security,
Volume 26, Issue 5, August 2007, Pages 391-400.

[3] S. Venkatesan, C. Chellappan, T. Vengattaraman, P.
Dhavachelvan, Anurika Vaish "Advanced mobile agent
security models for code integrity and malicious availability
check" Journal of Network and Computer Applications,
Volume 33, Issue 6, November 2010, Pages 661-671.

[4] T. Sander and C. F. Tschudin, “Protecting mobile agents
against malicious hosts” Mobile Agents and Security, Lecture
Notes in Computer Science, Vol. 1419, pp. 44-60, 1998.

[5] M. Loulou, Sfax ENIS , M. Tounsi, A.H. Kacem, M.
Jmaiel, "A Formal Approach to prevent Attacks on Mobile
Agent Systems" The International Conference on Emerging

Security  Information,  Systems, and  Technologies
(SecureWare), Pages 42-47, 2007.
[6] Umar Manzoor, Samia Nefti, Yacine Rezgui

"Categorization of malicious behaviors using ontology-based
cognitive agents" Data & Knowledge Engineering, Volume
85, May 2013, Pages 40-56

[71 Umar Manzoor, Samia Nefti "iDetect: Content Based
Monitoring of Complex Networks using Mobile Agents",
Applied Soft Computing, Volume 12, Issue 5, May 2012,
Pages 1607-1619
[8] Java Agent Framework
http://jade.tilab.com/

DEvelopment (JADE),

[9] Foundation for Intelligent Physical Agents (FIPA),
http://www.fipa.org/

[10] K.A Karasavvas, R Baldock, A Burger "Bioinformatics
integration and agent technology" Journal of Biomedical
Informatics, Volume 37, Issue 3, June 2004, Pages 205-219

[11] Chuan-Jun Su, Chia-Ying Wu "JADE implemented
mobile multi-agent based, distributed information platform for
pervasive health care monitoring" Applied Soft Computing,
Volume 11, Issue 1, January 2011, Pages 315-325

[12] Umar Manzoor, Samia Nefti "An agent based system for
activity monitoring on network — ABSAMN" Expert Systems



554 Int'l Conf. Artificial Intelligence | ICAI'15 |

with Applications, Volume 36, Issue 8, October 2009, Pages
10987-10994

[13] Umar Manzoor, Samia Nefti "QUIET: A Methodology
for Autonomous Software Deployment using Mobile Agents"
Journal of Network and Computer Applications, Volume 33,
Issue 6, November 2010, Pages 696-706

[14] David Isern, David Sanchez, Antonio Moreno "Agents
applied in health care: A review" International Journal of
Medical Informatics, Volume 79, Issue 3, March 2010, Pages
145-166

[15] Jiannong Cao, Yudong Sun, Xianbin Wang, Sajal K.
Das "Scalable load balancing on distributed web servers using
mobile agents" Journal of Parallel and Distributed Computing,
Volume 63, Issue 10, October 2003, Pages 996-1005.





