
An Intelligent Robotic System for Localization and Path
Planning Using Depth First Search

Andrea Doucette1 and Wei Lu1,2

1Department of Computer Science, Keene State College, USNH, Keene NH USA
2Department of Electrical and Computer Engineering, University of Victoria, Victoria BC Canada

Abstract - LeJOS is an open source project created to
develop a technological infrastructure and a tiny Java virtual
machine to develop software into Lego Mindstorm Products
using Java technology. LeJOS has been widely applied to
programming Lego robotic system since it was created in
2006. In this paper we propose and develop a new depth first
search algorithm and integrate it into the LeJOS system so
that the intelligent robotic system is able to complete the
localization and path planning automatically. Such a new
depth first search algorithm is a significant improvement to
the current path finding class provided by the LeJOS and
experimental evaluations with the Mindstorm robotics system
show that our approach can achieve the goal state
intelligently in a short time.

Keywords: LeJOS, Depth First Search, Java Virtual Machine

1 Introduction
 Searching falls under Artificial Intelligence (AI). A
major goal of AI is to give computers the ability to think, or in
other words, mimic human behavior. The problem with this
mimicry is that unfortunately, computers don’t function in the
same way as the human brain: they require a series of well-
reasoned out steps in order to find a solution. Therefore our
goal is then to take a complicated task and convert it into
simpler steps that the robotics system can handle. That
conversion from something complex to something simple is
what the search algorithm would do [1]. In this paper we
propose and implement a new depth first search (DFS) on a
tiny Java Virtual Machine (JVM), called LeJOS [2]. LeJOS is
an open source project created to develop a technological
infrastructure in which Java technology is applied for
programming software for robots. Java is an Object Oriented
programming language and one of the most important features
implemented in LeJOS is the LeJOS navigation API that can
be used to achieve the goal in which a convenient set of
classes and methods provided to control the robot. The classes
that control vehicles deal with several levels of abstraction. At
bottom, there are the motors that turn the wheels, controlled
by the NXTRegulatedMotor class. The DifferentialPilot class
uses the motors to control elementary moves: rotate in place,
travel in a straight line, or travel in an arc. At the next level,
the NavPathController uses a DifferentialPilot to move the

robot through a complicated path in a plane. To perform
navigation, the path controller needs the robot location and
the direction it is heading. It uses an OdometeryPoseProvider
to keep this information up to date.

 The contributions of the paper mainly include (1) a new
depth first search (DFS) algorithm that can be applied to build
arbitrary tree structures generically and (2) applying and
integrating the proposed DFS algorithm in the LeJOS based
robotics system for localization and path planning, enhancing
the existing pathfinding approaches within LeJOS system. The
rest of the paper is structured as follows. Section 2 introduces
the depth first search algorithm. Section 3 presents our
proposed leJOS based DFS algorithm. Section 4 outlines the
experimental evaluation settings and results for our system.
Finally Section 5 makes concluding remarks and outlines our
future work.

2 Overview of depth first search
 Let's first learn how we humans would solve a search
problem. First, we need a representation of how our search
problem will exist. The following Figure 1 is an example of
our search tree. It is a series of interconnected nodes that we
will be searching through:

Figure 1. Tree structure of a path.

 Depth first search works by taking a node, checking its
neighbors, expanding the first node it finds among the
neighbors, checking if that expanded node is our destination,
and if not, continue exploring more nodes. For example if we
want to find a path from A to E, we can use two lists to keep
track of what we are doing - an open list and a closed List. An
Open list keeps track of what you need to do, and the Closed
List keeps track of what you have already done. At the

A

B C
D

E F G

Int'l Conf. Artificial Intelligence | ICAI'15 | 401

beginning, we only have our starting point, node A. We
haven't done anything to it yet, so let's add it to our open list.
Then we have open list including <A> and closed list
including <empty>. Now, let’s explore the neighbors of our A
node. Node A’s neighbors are the B, C and D nodes. Because
we are now done with our A node, we can remove it from our
open list and add it to our closed list. Then our current open
list include <B,C,D> and closed list contain <A>. Now our
open list contains three items. For depth first search, you
always explore the first item from our open list. The first item
in our open list is the B node. B is not our destination, so let's
explore its neighbors. Because we have now expanded B, we
are going to remove it from the open list and add it to the
closed list. Our new nodes are E, F and G, and we add these
nodes to the beginning of our open list. Then we have open
list including <A,B> and closed list including <E,F,G,C,D>.
We now expand the E node. Since it is our intended
destination, we stop. Therefore we receive the route A->B->E
that is interpreted from the closed list by using the regular
depth first search algorithm.

3 LeJOS based DFS algorithm
 In our LeJOS based DFS algorithm each node on the
path is a class node called WPNode defined as:

 public WPNode(String newname, WayPoint newwp) {
 nodename = newname;
 nodewp = newwp;
 seen = false;
 parent = this;
 connections = new ArrayList<WPNode>();
 }

The pseudocode for the LeJOS based DFS algorithm is
described in the following:

(1). Constructing the generic tree for search space, such as:

 A = new WPNode("A", new WayPoint(0, 0));
 B = new WPNode("B", new WayPoint(-5, 5));
 C = new WPNode("C", new WayPoint(5, 5));
 A.addLeaf(B);
 A.addLeaf(C);

(2). Declare a stack to save the route path, such as:

 Stack<WPNode> DFSpath = new Stack<WPNode>();

(3). Set the current node to root node, say A. While the
destination node is not found, loop the following:

a. if current node has children, set first node unseen node
to current node then return;

b. if current node has no unseen children, set its parent to
current node then return;

(4). Once the destination node is found, push the destination
node to the stack and then push each parent node to the stack;

(5). Generate pilot for two-motor movement and then set pilot
to use appropriate dimensions and motors

(6). Pop waypoint of each path node and apply goto method
to direct robots moving to the next node.

 The completed source code package can be found at [3]
in more details.

4 Experimental evaluation
 As illustrated in the Figure 1, we evaluate our
Mindstorms robotic system to find the path from both node A
to node G and node A to node F. Lego Mindstorms NXT is an
educational product designed to build easy robots with an
intelligent, computer-controlled NXT brick that lets a robot
come alive and perform different operations [4]. In our
experiment, the coordinate at A is (0,0), the coordinate at B is
(-5,5), the coordinate at C is (0,5), the coordinate at D is (5,5),
the coordinate at E is (-10,10), the coordinate at F is (-5,20)
and the coordinate at G is (0,20).

 The path from node A to Node G is A B G and
path from node A to Node F is A B F, the Mindstorms
robotics system with LeJOS DFS algorithm traverses each
node until it reaches the destination G and F, respectively,
showing the algorithm works successfully in the LeJOS JVM.

5 Conclusions
 In this paper we propose and implement a LeJOS based
DFS algorithm running under the LeJOS JVM. Experimental
evaluation shows that our algorithm works successfully to
achieve its goal within a short time. In the near future we will
implement the Breadth First Search (BFS) and Heuristic
based Hill Climbing algorithms to improve the current LeJOS
path finding class. To the best of our knowledge the proposed
work is the first attempt to improve the path finding class
under the LeJOS JVM by integrating more generic searching
algorithms in the LeJOS API functions.

6 References
[1] Stuart Russell and Peter Norvig, Artificial Intelligence:
A Modern Approach, Prentice Hall, 2009.

[2] LeJOS, http://www.lejos.org/ retrieved in Mar. 28 2015.

[3] LeJOS DFS, http://sl.keene.edu/lejosDFS.zip

[4] Lego Mindstorms NXT 2.0, http://www.lego.com

402 Int'l Conf. Artificial Intelligence | ICAI'15 |

