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Abstract - This paper describes progress toward developing 
visual intelligence algorithms (VI) that can produce human-
like text descriptions (captions) from video inputs. Video 
frames are assumed to be generated according to an 
underlying “script’ that specifies a camera model and the 
content and action in a scene. VI is formulated as the problem 
of recovering the script (or relevant portions of the script) 
given a sequence of video frames. Three types of scripts at 
different levels of abstraction are recovered: C-scripts contain 
object detections, poses, and descriptive information on a 
frame-by-frame basis; B-scripts assign persistent IDs to 
objects across frames and “smooth” frame-by-frame 
information; A-scripts provide a symbolic representation of 
video content using a sparse timeline in which Planning 
Executing Agent (PEA) graphical models (behavior snippets) 
are associated with agents in the scene. From the script 
representations, a compact text description (caption) of the 
action in the scene, as well as an envisionment (3D rendering) 
showing what the algorithm believes happened, can be 
generated. Scripts have been derived automatically and 
evaluated on a set of 240 publicly available video vignettes 
containing over 100,000 frames. 

Keywords: video understanding, natural language, text 
description, caption, surveillance, behavior recognition. 

 

1 Introduction 
  On the TV show Jeopardy, IBM’s Watson provided 
convincing proof that a machine could answer challenging 
natural language questions on par with, or even better than, 
human experts [1]. Emerging consumer products, such as 
WolframAlpha [2] and Apple’s Siri [3], have also shown 
significant progress on this aspect of AI. We are interested in 
the related, but arguably more difficult, problem of visual 
intelligence (VI). Can a machine, given only video input, 
reliably answer complex natural language questions about 
the content of a video and/or produce human-like text 
descriptions of what it has seen? In this paper, we target 
automatic generation of text captions. Unlike the Jeopardy 
problem, simply looking up and conjoining readily available 
facts from the Internet is not likely to produce a good caption 
for a specific video input. (However, Barnard and Forsyth [4] 
did achieve some early success with text and image feature 
co-learning.) 

A robust VI capability will provide the foundation for a 
number of new applications. For the military, placing VI-
enhanced, persistent surveillance on unmanned air and 
ground vehicles could provide situational awareness without 
endangering personnel or requiring a large number of human 
eyes to monitor video feeds [5]. Similar benefits could be 
expected in law enforcement and homeland security. Other 
applications include human-robot interaction, video indexing 
and retrieval, sports analysis, retail intelligence, elder care, 
video games, and anonymization of video.  

2 Approach 
 Our approach combines a front-end computer vision 
pipeline that leverages state of the art work in human 
detection, pose estimation, object recognition, and tracking 
with a back-end, AI-based plan recognition system that uses 
Planning Executing Agent (PEA) graphical models to 
recognize and reason about higher level behaviors.  

The basic assumption in our approach is that video frames are 
generated according to a “script”. One can imagine that such 
a script would specify a camera model and the content and 
action in the scene. VI is the inverse problem of recovering 
the script (or relevant portions thereof) given the sequence of 
video frames. Three types of scripts at different levels of 
abstraction are employed. At the top (agent) level, “A-scripts” 
built from Planning Executing Agent (PEA) graphical models 
are used to represent and reason about agent behaviors and 
video content symbolically. At the mid (tracking) level, “B-
scripts” consisting of object pose trajectories provide a more 
literal encapsulation of what happened in the scene. At the 
low (detection) level, “C-scripts” consist of information 
extracted on a frame-by-frame basis. 

Figure 1 illustrates the forward and inverse problems. The top 
path in the figure flows from right to left, taking a high-level 
A-script as input and producing video frames as output. One 
can envision this process occurring in two stages: first, the 
physical state of the actors and objects in the scene are altered 
over time (either in physical reality or in a simulation) 
according to the script; second, the world in its updated state 
is imaged. 

The bottom (VI) path flows from left to right taking as input a 
sequence of frames and generating an estimate of the original 
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A-script. Computer vision attempts to invert the imaging 
process and recover a description of the state of the world 
versus time; the intermediate C-script and B-script 
representations describe the state in terms of the physical 
properties of the agents and objects, e.g., size, position, 
orientation, as well as any internal pose parameters versus 
time. Plan recognition techniques are used to recover the A-
script that was responsible for this evolving state. The result 
is a higher-level representation of the video content that 
associates PEAs embodying specific semantic concepts with 
agents.  

 

Figure 1. Video frames are produced according to an 
underlying script. Visual intelligence is formulated as the 
problem of recovering the script from the frames. Three 
levels of abstraction are used:  A-scripts, B-scripts, and C-
scripts. (C-scripts are used internally in the vision block.) 

3 Related Work 
 The survey paper by Aggarwal and Ryoo [6], which served 

as the basis for a CVPR tutorial [7], provides an extensive 
discussion and taxonomy of work in activity recognition. 
Under their taxonomy, our approach would be classified as a 
hierarchical description-based approach.  

The earlier work of Hongeng, Nevatia, and Bremond [8] is 
similar in some respects to ours. One difference is that we do 
not rely on temporal change detection to locate people and 
objects; we directly detect people and objects on a frame-by-
frame basis making our approach suitable for a moving 
platform or a scanning camera. While their activity 
representation is based on 2D shape and trajectory features, 
our approach includes detailed human pose information 
allowing us, for example, to identify and describe colors of 
individual pieces of clothing.  More importantly, our 
representations are fully generative, meaning we preserve 
enough information to create an envisionment (3D rendering 
versus time) that captures the essence of the original video. 
Other approaches from DARPA’s Mind’s Eye program can be 
found in [9-13]. 

A key difference between our work and many others is that 
others tend to use finite state machines and “Allen” temporal 
logic relations [14] to model and recognize complex behaviors 

involving multiple actors or actors and objects.  In our 
approach we use PEAs, which are general graphical models in 
which the nodes represent states, and arcs represent transitions 
between states. PEAs subsume state machines and Markov 
models, but are more powerful because PEAs provide an 
explicit representation of resources through member variables. 
Resources are values that change by persisting in, entering, or 
exiting a state. Resource “gateways” can be established that 
prevent transition to other states until a resource collection 
requirement is met. Our system allows for the efficient 
encoding of such a resource collection state without adding 
linearly many states per resource, or exponentially many 
states for combined resources, as would normally be required 
by a simple finite state automaton. Our pre-compilation of 
resource goals allows us to plan, in constant time, to achieve 
required resource levels. 

PEAs also provide more flexibility by associating arbitrary 
predicates with the arcs. For Hidden Markov Models 
(HMMs), which have been widely used for activity [15,16] 
and speech recognition [17], the transitions from state-to-state 
happen randomly according to some fixed probability 
distribution. In PEAs transitions are triggered by predicates, 
which can be complex (probabilistic, if desired) rules 
implemented as general procedural computer code, and as 
noted above may incorporate resource constraints. This 
flexibility enables PEAs to correctly model multi-agent 
interactions, e.g., the action of an agent can force another 
agent to make a state transition.  

PEAs are hierarchical allowing complex behaviors to be 
built up from simpler behaviors. A node in a PEA graph can 
correspond to another PEA graph that represents a subordinate 
behavior. Figure 2 shows a PEA model for the verb GIVE, 
which makes use of subordinate concepts such as HOLD, 
APPROACH, RUN, and WALK. 
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Figure 2. PEA model for GIVE in which subject is a human, 
direct object is a ball, and the indirect object is a human. The 
model for this complex verb is hierarchical making use of 
subordinate verbs such as HOLD, APPROACH, RUN, and WALK. 
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There are some preliminary VI efforts moving toward 
commercial applications in “video analytics” [18]. Some 
companies, such as Brickstream Corp. [19], provide analysis 
of overhead video taken in retail store scenarios, e.g., to 
detect shoplifting and to aid in marketing. Sports video 
analysis, especially for team sports such as football and 
soccer, has received significant attention in the academic 
research community.  However, it is common in sports 
domains to use multiple cameras deployed in favorable 
vantage points. Work on activity recognition with camera 
systems that provide 3D range measurements, e.g., the 
KINECT sensor or stereo vision systems, as well as sensor-
based activity recognition have shown some success. The 
annual NIST-sponsored TRECVID competition [20] also 
supports development of VI capabilities. Compared to 
existing work, however, we target a more general-purpose VI 
capability suitable for a monocular camera in unconstrained 
environments with a richer range of agent appearances and 
behaviors. 

4 From Video to B-scripts 
Figure 3 shows the vision pipeline that we use to convert raw 
video into a B-script representation. In addition to the raw 
video, the pipeline takes as input the known1 camera model 
consisting of the camera intrinsic parameters (focal 
parameters, skew, and principal point) and the camera 
extrinsic parameters (position and orientation with respect to 
the world coordinate system).  
  
 
 
 
 
 

 
 

 
 
 

 
 
 

 

Figure 3. Vision pipeline used to recover the C-script and B-
script representations from raw video frames. Note that we 
assume the camera model is known a priori. 

Detection: There are three detection branches or pathways 
through the pipeline, which we refer to as the human pathway, 
the named object pathway, and the un-named object pathway. 
The human pathway is based on the human detection and 2D 
pose estimation algorithm of Yang and Ramanan [21]. This 
approach uses a training set to learn part detectors and a tree-

                                                             
1 For arbitrary videos downloaded from websites such as 
YouTube, the camera model may not be provided; we assume 

structured model of the geometrical layout of the parts. The 
resulting human detector produces skeleton hypotheses, which 
delineate believed positions in the image plane of various 
body parts, along with an overall log-likelihood score that 
combines the part scores and geometry score. The named 
object pathway is based on the Deformable Parts Model 
(DPM) object detection algorithm of Felzenszwalb et al [22]. 
It is also based on learning part detectors and their 
geometrical layout from a training set. The output is a set of 
object hypotheses consisting of 2D bounding boxes and log-
likelihood scores. DPM is most effective for objects that have 
a well-defined characteristic structure such as cars, 
motorcycles, bicycles, etc. It is less useful or robust for 
objects that are: rare (for which there may not be a pre-trained 
model on hand), highly variable in appearance or deformable 
in structure (e.g., handbags), or relatively small (few pixels) 
compared to the image resolution. The un-named object 
pathway is intended to catch these types of objects for which 
there is not a reliable, pre-trained detector. The un-named 
object pathway was not used in the experiments of Section 6. 

 
Cleanup: Following the top-level detection blocks, there is 

a “cleanup” stage in which the candidate humans and objects 
are pruned. This stage includes thresholding the likelihood 
scores, applying a “camera test” to any human detections to 
ensure that the implied physical sizes under the known camera 
model are reasonable, and arbitration, which is a form of non-
maximum suppression to eliminate or reduce multiple 
overlapping detections of people or objects. Arbitration is 
applied separately to humans and objects. The highest scoring 
detection is allowed to claim real estate in the image. Lower 
scoring detections are rejected if their area of support overlaps 
too much with an existing higher-scoring detection. This 
process continues until all detections meeting a minimum 
score threshold have been considered.  

 
Attribute Extraction: This stage measures various 

properties of the surviving candidates that will be useful for 
composing a description and for tracking. This stage also 
involves situating the candidates in 3D space. For human 
candidates the Levenberg-Marquardt (L-M) nonlinear 
optimization algorithm is used to lift the 2D skeleton 
representation into a full 3D joint angle representation of 
pose. The optimization adjusts the joint angle parameters of 
an articulated humanoid model2 to bring the projected 
positions of the model joints into agreement with the 2D 
image plane observations of joint positions (junctions between 
links in the 2D skeleton). The errors in joint position 
projections are insufficient to uniquely determine the joint 
angles. This fact is clearly shown in the work by Taylor [23], 
which highlights that there is a depth sign ambiguity for each 

                                                             
2 We use a 17-bone model for the skeleton. Internal pose 
consists of 36 degrees of freedom with 6 additional degrees of 
freedom for the overall position and orientation with respect 
to world frame. 
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link (‘bone”) in the humanoid model.  We have added several 
ad hoc constraints (freezing some degrees of freedom such as 
trunk torsion in the humanoid model, adding penalty terms to 
keep one foot close to the ground plane, allowing an overall 
scale factor, etc.), but incorporating a stronger prior model of 
probable joint angle configurations as in [24] and leveraging 
pose information from temporally-nearby frames could 
improve the results. The Levenberg-Marquardt optimization is 
run with four initial seeds corresponding to different facing 
directions. The best scoring result yields an estimate of the 
position and orientation in 3D, as well as an overall skeleton 
scale factor and the internal pose parameters (joint angles). 
For monocular localization of the humans in 3D, we found 
that the L-M whole body procedure was more robust than 
reverse ray-tracing feet pixels to the ground plane, since foot 
estimates from the pose estimator tend to be unreliable.  

In addition to the joint angles, colors are extracted for each 
body part of the human detections. The colors are found over 
a rectangular region centered along the corresponding “bone” 
in the 2D skeleton estimate. 

For objects, the algorithm currently extracts a 3D position 
and a single average color for the object. We have yet to 
implement an estimator for object pose or for the physical size 
of objects. Even estimating the 3D position of objects is non-
trivial since it requires reasoning about support relationships. 
Is the object supported by the ground, by a human, by another 
object, or is it free flying? Currently, if the bounding box of 
an object intersects with a dilated version of a detected 
human, then we assume the object is at the same depth from 
the camera as the human. We then reverse ray-trace the 
object’s position in the image plane to a vertical plane in the 
world that is at the same depth from the camera as the human. 
For objects that are not close enough to be in a support 
relationship with a human, we ray-trace the bottom of the 
object’s bounding box in the image plane back to the 
horizontal ground plane to determine its 3D coordinates. 

Although this object support logic works well most of the 
time, there are still some problem cases. One situation is when 
the detection of a human carrying an object is unreliable so 
the human detection drops out in some frames. In these cases, 
the object is not deemed to be in a support relationship and is 
projected out into the distance onto the ground plane rather 
than being put closer but off the ground. Another situation 
occurs if there is an object on the ground in the distance 
beyond the person. When the two bounding boxes in the 
image plane get close together, the object is brought forward 
to the human’s depth.  

The output from the attribute extraction stage is a C-script, 
consisting of frame-by-frame detected humans and objects 
with color and 3D position information, and estimated pose 
(humans only for now). Each appearance of a human or object 
in a frame is given a separate label. 

 
Tracking: A tracking algorithm is applied to upgrade C-

scripts into full-fledged B-scripts in which the humans and 
objects maintain a persistent identity (trackID) across time. 

We currently use a greedy data association strategy based on a 
combination of distance in world coordinates, distance in 
pixel coordinates, and distance in color space to match 
detections from a new frame with previously seen 
agents/objects (tracks). We plan to incorporate a multiple 
hypothesis tracker (MHT) [25,26] in future work. 
 
5 From B-scripts to A-scripts 

Recovering an “A-script” from a video clip enables the 
system to not only recognize what happened, but also why it 
happened, what is likely to happen next, etc. An A-script 
consists of a sparse timeline in which parameterized behaviors 
(PEA graphs) are associated with agents.   

5.1 Planning Executing Agent (PEA) Models 
As shown earlier in Figure 2, PEAs are graphical models 
consisting of a set of resources, states (nodes), and transitions 
between states (arcs). PEAs have provided the core agent 
reasoning capability in several real time games and 
simulations. PEAs are computationally lightweight enabling 
simulation of millions of agents in a real-time, distributed, 
massively multiplayer game; the same PEA models can be 
used both to simulate and to recognize behaviors. 

 Transitions in PEA graphs are regulated by a set of 
predicates that indicate whether particular conditions required 
for transition are true. For example, if an insurgent is in the 
observe state and is notified that an IED is arriving, he 
immediately transitions to the egress state. Resource 
requirements may be imposed as part of a predicate, e.g., a 
shopper is not allowed to transition to the 
buyingFromMerchant state unless money > 0. Predicate 
values can be produced by random number generators or any 
user-defined procedural computer code.  

Goals levied on PEAs come in two basic types: resource 
goals and state goals. A resource goal is an expression about 
one of the resources that should be achieved during the 
execution of the PEA, e.g., money > 100. A state goal is 
merely a state in the PEA graph, e.g., playing_tag. These 
basic goals can imply subgoals. For example, if we have a 
goal that food > 10, but transitioning into a food-increasing 
state requires that money > 10, then we have a subgoal that 
money > 10. The process of PEA compilation provides a set of 
lookup tables that allow us to know what our next step should 
be, given our current state, resources, and goals. More 
specifically, PEA compilation provides tables that are indexed 
in goal-state pairs for each PEA. These tables represent what 
edge a PEA should prefer or take, if given the opportunity, 
given the state and goal being achieved. Note that a goal could 
be another state or a resource request. 

The PEA model in Figure 2 represents the complex verb, 
give, which involves a subject, direct object, and indirect 
object. The hierarchical nature of the PEA framework allows 
complex concepts to be built up from simpler concepts. Many 

410 Int'l Conf. Artificial Intelligence |  ICAI'15  |



subordinate verbs may also be observed during the execution 
of a complex transaction. 

PEA models are hand-constructed as opposed to learned 
from data. Since the state transitions are governed by arbitrary 
computer code, there is no compact way to present full details 
on all the PEAs used in our system (short of listing the code).  

5.2 Recognizing Behaviors 
To determine which PEA/goal combination best describes a 

series of observations, we must first map observable actions to 
states in each PEA. This process is via notification from the 
vision system that certain predicates, such as movement and 
proximity to other agents, have occurred. Given this mapping, 
we can compute the likelihood that one PEA/goal 
combination is more likely than another by computing the 
odds of each transition. Gaps in knowledge about an agent are 
patched by adding a goal at the start of the gap that gets us to 
the state at the end of the gap. Transitioning through a PEA 
graph to the end state of a particular verb means that verb is 
believed to have occurred. 

PEAs can also be used to project future behavior by simply 
simulating the PEA in its environment. Multiple runs that 
include all agents will provide a set of execution traces. The 
accuracy of conclusions on the likely short-term future 
behavior depend highly on how probabilistic the environment 
is and how faithful the model is to reality. Projection has been 
demonstrated against human opponents in games and is 
reliable for determining interception paths and likely subgoals 
the human is trying to achieve. 
 
6 Experiments and Results 
We have applied our system to the 240 videos in the 
mindseye-y1-description-task available from visint.org [27]. 
No camera models or calibration data, e.g., checkerboard 
images [28,29], are available for these videos; hence, 
approximate camera models for each video were derived 
offline through various methods (horizon line, assumption of 
standard human height, etc.). A Matlab mex implementation 
of the Yang-Ramanan pose estimation algorithm was applied 
to every frame of every video with the output results (2D 
skeletons) saved in files. The part detection models were 
trained on a completely different video corpus. A third party 
[30] kindly provided object detection results from the 
Felzenszwalb DPM algorithm for every frame of every video. 
The DPM models were trained on a development corpus that 
was similar in style and content to the evaluation corpus.  

One quirk with the object detection results, however, was that 
only the DPM-based detectors for objects known to occur in a 
particular video were applied. For example, if a video 
contained two people and a bicycle, only the DPM detector 
for “bicycle” was applied. (DPM-based human detections 
were not used; only Yang-Ramanan results were used for 
human detection.)  

6.1 Envisionments and Text Descriptions 
An advantage of our approach is that the scripts we derive are 
fully generative; they can be reformed into a graphical display 
(synthesized movie) called an envisionment or playback. 
Figure 4 (top) shows a frame of an envisionment constructed 
from an automatically extracted B-script.   

Figure 4. (Top) A single frame in a B-script reconstruction 
of a video. The background is a textured canvas, while the 
humans and bicycle are full-fledged 3D objects. (Bottom) 
Original frame.  

 
Another result is shown in Figure 5, which is a hybrid 
between a B-script and A-script: the detailed pose trajectories 
from the B-script and the text from the A-script are combined. 
The text annotations say: “Addison stopped”, “Bailey 
walking”, “Bailey held the dark olive green skateboard”, 
“Bailey carried the dark olive green skateboard” and the 
skateboard itself is labeled with “the dark olive green 
skateboard”. The names of the people are arbitrarily assigned 
(first person is assigned a name that starts with “A”; there is 
no gender recognition or face recognition at present). Further 
information readily available in the script indicate that Bailey 
is the person in the blue shirt. We have, in separate work, 
demonstrated noun-adjective queries over the video corpus 
such as “find bicycle and red shirt”. 

The PEAs currently implemented do not include a concept 
of “ride”, so the system (somewhat incorrectly) concludes that 
Bailey is walking, based on his rate of travel, and that he is 
holding/carrying the skateboard since it travels with him. The 
people and the skateboard are full-fledged 3D mesh objects 
that are rendered according to the camera model. Only the 
position and color of the skateboard were derived from the 
image data, however; the size, orientation and CAD model are 
based on default values. Pose estimation for inanimate objects 
is intended for future work. 

 

 

Int'l Conf. Artificial Intelligence |  ICAI'15  | 411



 

Figure 5. (Top) Hybrid AB-Reconstruction. (Bottom) Original 
Frame. The text annotations say: “Addison stopped”, “Bailey 
walking”, “Bailey held the dark olive green skateboard”, 
“Bailey carried the dark olive green skateboard” and the 
skateboard itself is labeled as “the dark olive green 
skateboard”. Bailey is the person in the blue shirt. 

6.2 Quantitative Performance Metrics 
While envisionments are useful for qualitative performance 

assessment, it is desirable to have quantitative metrics as well. 
Currently, we have only systematically assessed the person 
detection performance, which combines the Yang-Ramanan 
detector with the “cleanup” described in Section 4. Head 
positions reported in the C-scripts were projected back to 
image coordinates and compared to manually clicked ground 
truth locations. If the C-script head circle3 encompassed the 
ground truth location, it was counted as a correct detection.  

Table 1 shows the head-detection performance over the 
113,268 frames of the corpus. Ignoring the FAs column for 
the moment, the entry in (row=i, column=j) is the number of 
frames for which there were i people present in the ground 
truth and the algorithm correctly detected j of them. The (0,0) 
entry is simply the number of frames in which there were no 
people present. The FAs column is the number of false alarms 
given that the true person count of the frame was i. 
Converting into normalized values we see that the conditional 
probability of correctly detecting one person when only one 
person is present is about 64.4%. The conditional probability 
of correctly detecting two people when two people are present 
is only 30.41%. The probability of detecting a person (without 
conditioning on the number of people present) is 60.4%. The 
average number of false positives per frame over all situations 
is about 0.3751. Videos where the person detection rate is 
below 20% typically have the person in an elevated position 
relative to the ground (e.g., on a ladder, atop stairs, on a fence) 
or sitting on the ground. These comprise about 12% of the 
videos in the corpus. 
                                                             
3 Because the manual clicking was only done every 10th frame 
with interpolation between, we expanded the head radius by a 
factor of 1.5 for scoring. 

 
 0 1 2 3 4 FAs 

0 19105 - - - - 4900 
1 26507 47993 - - - 28876 
2 4537 8335 5625 - - 8159 
3 52 381 694 8 - 498 
4 3 11 8 8 1 55 
 

Table 1. Human (head) detection performance from C-scripts 
evaluated over 113,268 frames of the corpus. The entry in row 
i and column j is the number of frames in which j persons 
were correctly detected given that i persons were present. The 
FAs column is simply the total number of false alarms (not the 
number of frames) that occurred in situations where i people 
were present in the frame. For example, from the row with 
i=4, one can conclude that only 31 frames had 4 people 
present and in only one of those frames did the algorithm 
correctly detect and localize all 4 people. In those 31 frames, a 
total of 55 false alarms occurred. 

7 Conclusion 
We have developed a visual intelligence system for 

automatically processing HD video into a highly compressed4 
script that identifies the actors, objects, and actions in the 
original video. The script is fully generative and can be used 
to produce graphical renderings (“envisionments”) of the 
action and/or natural language text descriptions. The system 
combines state of the art vision components for human pose 
estimation and object detection with extremely powerful 
backend graphical models that allow video content to be 
represented and reasoned about at a symbolic level.  

The performance of the overall system is currently limited 
by the human detection and pose estimation step. We have 
avoided the use of background subtraction so that the method 
can be applied from a moving platform or in situations where 
there is significant background motion. However, the state-of-
the-art in person detection from static frames does not appear 
to be sufficiently robust to achieve desired performance 
levels. To be sure, in some cases, the person detection and 
pose estimation work well yielding convincing envisionments 
and text descriptions that match the action in the scene. But in 
many cases, the human detection is not reliable enough, 
particularly for non-standing poses. Making human detection 
and pose estimation robust, is a much-needed improvement. 
 Another interesting direction is to automatically determine 
which adjectives most clearly separate and uniquely identify 
the individuals involved in an action. Is it more informative to 
say “the person in the blue jeans” or “the taller person”? From 
descriptions provided by human annotators, it appears that 
gender designation (“the man approached the woman”) is very 
common. Adding a gender classification component could 
provide a more human-like character to the descriptions.  

                                                             
4 Five orders of magnitude more compact than the original 
raw video. 

412 Int'l Conf. Artificial Intelligence |  ICAI'15  |



8 Acknowledgments 

This research was carried out at the Jet Propulsion Laboratory, 
California Institute of Technology, under a contract with the 
National Aeronautics and Space Administration. The authors 
thank James Donlon and Pietro Michelucci for organizing the 
Mind’s Eye program and providing support, Deva Ramanan 
of UCI for making his pose estimation code available, Jeff 
Siskind of Purdue University for sharing the Felzenszwalb 
object detection results he generated over this dataset, and 
Allan Runkle of JPL for developing the DisplayServer tool 
used to show the envisionments.  

©2015 California Institute of Technology. U.S. Government 
sponsorship acknowledged. 
 

9 References 
[1] Ferrucci, D., Brown, E., Chu-Caroll, J., Fan, J., 
Gondek, D., Kalyanpur, A.A., Lally, A., Murdock, J.W., 
Nyberg, E., Prager, J., Schlaefer, N., Welty, C., “Building 
Watson: An Overview of the DeepQA Project”, Assoc. for 
Advancement of AI, pp. 59-79, (2010). 
[2] Wolfram, Stephen, “WolframAlpha: Computational 
Knowledge Engine”, URL: http://www.wolfram.com/ 
[3] Siri, URL: http://www.apple.com/ios/siri/ 
[4] Barnard, K. and Forsyth, D., “Learning the 
Semantics of Words and Pictures”, Int. Conf. on Computer 
Vision (ICCV), vol. 2, pp. 408-415, (2001). 
[5] Ackerman, S., “Beyond Surveillance: DARPA wants 
a thinking camera”, Wired, (2011/01/05). 
[6] Aggarwal, J.K., Ryoo, M.S., “Human Activity 
Analysis: A Review”, ACM Computing Surveys, 43(3), 
(2011/04/XX). 
[7] Aggarwal, J.K., Ryoo, M.S., Kitani, K. ”Tutorial on 
Human Activity Recognition – Frontiers of Human Activity 
Analysis”, IEEE Conf. on Computer Vision and Pattern 
Recognition, (CVPR), (2011). 
[8] Hongeng, S., R. Nevatia, F. Bremond, “Video-based 
event recognition: activity representation and probabilistic 
recognition methods”, Computer Vision and Image 
Understanding (CVIU), 96, pp. 129-162, (2004). 
[9] Van den Broek, S., ten Hove, J.-M., den Hollander, 
R., Burghouts, G., “Automated recognition of human 
activities in video streams in real time”, SPIE Newsroom, 
(2014). 
[10] Das, P., Xu, C., Doell, R.F., and Corso, J.J, “A 
thousand frames in just a few words: Lingual description of 
videos through latent topics and sparse object stitching.”  
CVPR, (2013). 
[11] S. O’Hara and B. Draper, “Using a Product Manifold 
Distance for Unsupervised Action Recognition”, Image and 
Vision Computing, 30(3):206-216, (2012). 
[12] Siddharth, N., Barbu, A., and Siskind, J.M., “Seeing 
What You're Told: Sentence-Guided Activity Recognition In 
Video”, CVPR, pp. 732-739, Columbus, OH,  (2014/06/XX). 

[13] Guadarrama, S., Krishnmoorthy, N., Malkarnenkar, 
G., Venugopalan, S., Mooney, R., Darrell, T., Saenko, K.,  
“YouTube2Text: Recognizing and Describing Arbitrary 
Activities Using Semantic Hierarchies and Zero-Shot 
Recognition”, ICCV, (2013). 
[14] Allen, J.F., “Maintaining Knowledge about Temporal 
Intervals”, Comm. of the ACM, pp. 3-843, (1983/11/26). 
[15] Brand, M., Oliver, N., Pentland, A., “Coupled 
Hidden Markov Models for Complex Action Recogntion”, 
CVPR, pp. 994-999, (1997). 
[16] Oliver, N., Horvitz, E., Ashutosh, G., “Layered 
Representations for Human Activity Recognition”, Fourth 
IEEE Int. Conf. on Multimodal Interfaces, (2002). 
[17] Rabiner, L.R., “A Tutorial on Hidden Markov 
Models and Selected Applications in Speech Recognition”, 
Proc. of IEEE, vol. 77, no. 2, (1989/02/XX). 
[18] IP Video Market, URL: 
http://ipvideomarket.info/comapnies/videoanalytics/ 
[19] Brickstream, Inc., URL: 
http://www.brickstream.com/ 
[20] Smeaton, A.F., Over, P. , Kraaij, W., “Evaluation 
Campaigns and TRECVid”, Eigth ACM Int. Workshop on 
Multimedia Information Retrieval, Santa Barbara, CA, pp. 
321—330, (2006). 
[21] Yang, Y., and Ramanan, D., “Articulated pose 
estimation with flexible mixtures-of-parts”, CVPR, (2011). 
[22] Felzenszwalb, P., Girshick, D. McAllester, D. 
Ramanan, “Object Detection with Discriminatively Trained 
Part Based Models”, IEEE Trans. on PAMI (TPAMI), vol. 32, 
no. 9, (2010/09/XX). 
[23] Taylor, C., “Reconstruction of articulated objects 
from point correspondences in a single uncalibrated image”, 
CVIU, 81(3):269-284, (2001/03/XX). 
[24] Ramakrishna, V., Kanade, T., Sheikh, Y., 
“Reconstructing 3D Human Pose from 2D Image 
Landmarks”, Euro. Conf. on Comp. Vision (ECCV),  pp. 573-
586, (2012). 
[25] Cox, I.J., and Hingorani, S.L., “An Efficient 
Implementation of Reid’s Multiple Hypothesis Tracking 
Algorithm for the Purpose of Visual Tracking”, TPAMI, vol. 
18, no. 2, pp. 138-150, (1996/02/XX). 
[26] Blackman, S.S., “Multiple Hypothesis Tracking for 
Multiple Target Tracking”, IEEE Trans. on Aerospace and 
Electronics Systems (AES), vol. 19, no. 1, pp. 5-18, 
(2004/01/XX). 
[27] Visint.org, “Resources for visual intelligence 
research”, URL: http://www.visint.org/index.html 
[28] Bouguet J.-Y., “Camera Calibration Toolbox for 
Matlab”, URL: 
http://www.vision.caltech.edu/bouguetj/calib_doc/ 
[29] Zhang, Z., “Flexible Camera Calibration by Viewing 
a Plane from Unknown Orientation”, ICCV, (1999). 
[30] Siskind, J., Purdue University, private 
communication via e-mail. (2011/07/19) 
 

Int'l Conf. Artificial Intelligence |  ICAI'15  | 413




