
Proactive Control of Traffic in Smart Cities

Benjamín Zavala and Germán H. Alférez
Global Software Lab

Facultad de Ingeniería y Tecnología, Universidad de Montemorelos
Montemorelos, N.L., Mexico

Abstract - The excessive growth of modern cities
generates major problems in public administration. One
problem is the control of traffic flow during peak hours.
In this paper we propose a solution to the problem of
vehicular control through a proactive approach based on
Machine Learning. Through our solution, a traffic
control system learns about the traffic flow in order to
prevent future problems of long queues waiting at traffic
lights. The traffic system architecture is based on the
principles of Autonomic Computing to change the timers
of the lights automatically. A simulation of the streets on
a smart city and a tool based on Weka were created in
order to validate our approach.

Keywords: Machine Learning, Proactive Control,
Traffic, Smart Cities, Autonomic Computing.

1 Introduction

In recent years, the world has experienced mass
migration from the countryside to the city. For example,
in Mexico today over 70% of the population lives in the
city [1]. There is an exponential growth in the population
of cities turning them into mega cities. This phenomenon
leads to many problems. One of these problems is traffic
congestions [2]. Traffic congestions negatively affect the
quality of life of citizens by increasing travel time,
generating stress and economic losses, and increasing
environmental pollution.

The current solutions to control traffic in smart cities
wait for an event to happen (i.e., a long queue at a traffic
light) to generate an action to try to solve this event.
These solutions may be referred to as “reactive”.
However, we believe that for cities to become truly
intelligent, they need “proactive” solutions that anticipate
traffic problems and prevent these problems from
becoming evident.

In this paper, we present a proactive solution for
controlling vehicular traffic in smart cities. Our solution is
based on Machine Learning and Autonomic Computing.
First, our approach analyzes data traffic levels with
Machine Learning. Using this technique of artificial
intelligence, the system takes proactive decisions based
on historical traffic data. In order to perform autonomous
adjustments at traffic lights, the system self-adjusts
according to the principles of Autonomic Computing of
IBM [3]. A simulation of traffic in a smart city
demonstrates the efficiency of our solution. In order to
predict the problems that can occur in the future, our
solution is based on Weka API [4].

The remainder of this paper is organized as follows.
Section II presents a simulation that demonstrates the
problem of traffic congestions in big cities. Section III
presents related work. Section IV presents the

underpinnings of our approach. Section V describes our
solution to carry out proactive adaptations of traffic lights.
Section VI presents our running prototype and evaluation
results. Section VII presents conclusions and future work.

2 Traffic congestions in big cities
In this section we present a simulation of the

streets of a city that helps to understand the arising traffic
problem. This simulation consists of a vehicular crossing
of two unidirectional streets. In order to simplify the
simulation, only the change between green and red light
signals is simulated. Congestion becomes evident when
the amount of vehicles that can cross a traffic light in a
particular moment is lower than the amount of arriving
cars to the queue.

In the simulation, every traffic light has an assigned
time value “x” for red or green. Also, we specified the
average time that a car takes to cross an intersection (“y”).
Based on these data we calculated how many vehicles
could cross the traffic light when it is green. Also, a
random value was generated for the vehicles that come to
the queue in the traffic light “i”.

As seen in Figure 1, the number of vehicles tends to
increase linearly as time passes. In our simulation, this
trend was generated when “x” takes a value equal to 15
seconds, “i” has values between 0 and 9, and “y” equals
to 3 seconds.

 Figure 1. Results of the traffic simulation

3 Related work
Currently fixed-time and sensitive traffic strategies

have been implemented for managing traffic flow. These
strategies are presented below.

3.1 Fixed time strategies

 Fixed time strategies are adjusted for long periods of
time where parameters are assumed constant. This

604 Int'l Conf. Artificial Intelligence | ICAI'15 |

approach can be problematic in settings with high
variability demands or with usual presence of non-
standard conditions (e.g. accidents, riots, or unexpected
events).

For example, SIGSET is based on traffic flow patterns
at an intersection traffic light. This is a well-known
system for traffic engineers [5]. SIGSET works in
isolation at each intersection and assigns fixed times at
traffic lights.

3.2 Sensitive traffic strategies

Sensitive traffic control strategies execute their logic
based on traffic measurements performed in real time at
the entrances of the intersections. In order to perform
measurements, it is necessary to have some type of traffic
detectors.

Within traffic sensitive methods, there are two
reactive methods that solve problems when they are
already evident. On one hand, there are approaches that
detect the presence of heavy traffic at an intersection and
change traffic light timers to give preference to the
direction of greatest activity. On the other hand, there are
adaptive solutions with networks of traffic lights. Plans
are implemented together in these networks in order to
optimize traffic flow [6].

Another sensitive strategy is a proactive one. For
instance, RHODES [7] takes as input data of real-time
measurement of traffic flow. Then, it controls the flow
through a network. The system uses a control architecture
that decomposes the traffic control problem into several
sub-problems that are interconnected in a hierarchical
fashion and predicts traffic flows at appropriate resolution
levels (individual vehicles and platoons). This approach
has several optimization modules for solving hierarchical
sub-problems. Also, it uses a data structure and
communication approaches to reach fast solutions of sub-
problems. RHODES depends on a central control module.
We argue that a more decentralize approach could be used
to distribute calculations on site. In this way, the costs and
complexity related to infrastructure communication could
be reduced.

4 Underpinnings of our approach
The solution proposed in this paper is intelligent,

autonomous, and proactive. These underlying concepts
are described below.

4.1 Machine Learning

Machine Learning is a term used to encompass a wide
variety of techniques for discovering patterns and
relationships in sets of data. The primary goal of any
Machine Learning algorithm is to discover meaningful
relationships in a set of training data and produce a
generalization of these relationships that can be used to
interpret new, unseen data [8]. Among Machine Learning
methods, we can find forecasting. Forecasting is the
process of making statements about events whose actual
outcomes have not yet been observed [9].

4.2 Autonomic Computing

Inspired by biology, Autonomic Computing has
evolved as a discipline to create self-managing software
to overcome the complexities to maintain systems
effectively. Autonomic Computing covers the broad
spectrum of computing in domains as diverse as mobile
devices and home-automation, thereby demonstrating its
feasibility and value by automating tasks such as
installation, healing, and updating. Since doing manual
adaptations is a difficult (and sometimes impossible) task,
our approach is based on IBM’s reference model for
autonomic control loops (which is sometimes called the
MAPE-K loop) [10].

4.3 Proactive Adaptations

On one hand, reactive adaptations are performed in
response to an event. On the other hand, proactive
adaptations take an action in advance (i.e., before an
incident negatively impacts the system) [11]. Reactive
adaptation mechanisms may cause increases in the
execution time and financial loss, which can lead to user
and business dissatisfaction [12]. Proactive approaches try
to solve these problems by detecting the need for an
adaptation before the problem is evident.

5 Our approach
In this section we present our solution to carry out

proactive adaptation of traffic lights. The structural blocks
of our approach are based on the components of the
MAPE-K loop, i.e., Monitor, Analyze, Plan, Execute, and
Knowledge (see Figure 2).

Figure 2. MAPE-K cycle of our approach

In our approach, sensors collect traffic data in the

Analysis component. This data is used for training our
Machine Learning approach. The task of observing the
traffic is in charge of the Traffic Observer, which detects
violations of any Service Level Agreement (SLA) at
specific times. A violation of the SLA becomes evident
when the number of cars in queue is greater than the
desired SLA. After completing training, the Weka
Forecasting plugin analyzes the data collected and
predicts potential traffic problems. Then, the Adaptation
Planner plans the necessary changes to the traffic light
timers in order to prevent traffic problems proactively.

Int'l Conf. Artificial Intelligence | ICAI'15 | 605

Finally, the Temporizer Changer makes the necessary
changes in the traffic light timers trough actuators.

Our solution is described in the following subsections
based on the MAPE-K components. Our approach is
exemplified based on the traffic simulation described in
Section II.

5.1 Monitor

Monitoring involves capturing properties of the
context that are meaningful to the self-properties of the
system. In our case, we are interested in observing the
traffic. To this end, we propose the Traffic Observer,
which is a tool that observes the traffic through sensors.
In our case, the Traffic Observer periodically checks the
activity in the traffic simulation described in Section II
with simulated sensors.

At the start of the simulation, we create two traffic
lights. A status, either green or red, was assigned to each
one of them. Also, a random number of vehicles that
come into the queue was generated. In order to simplify
the simulation, the preventive stage of a traffic light,
which is usually yellow, was included within the green
phase.

The Traffic Observer detects if the number of vehicles
queued at a certain moment at the traffic light is greater
than the SLA (i.e., a violation of the SLA). If so, this
event is saved in a log with .arff extension. Files with this
extension have the required format to carry out
forecasting in Weka. Specifically, the .arff file format
requires that the data has a special header, such as the one
in the following example:

@relation A @attribute seconds numeric
@attribute cars numeric @data 60, 7

First of all, there is a relationship of data (@relation

A), and this relationship has two attributes, both of type
numeric: seconds (@attribute seconds) and cars
(@attribute cars). After this, the problematic event (i.e., a
violation of the SLA) data is recorded (@data 60, 7). In
the example above there is a violation of the SLA after 60
second of execution. At this time, there are 7 vehicles in
queue, when the SLA indicates that the maximum number
of cars in queue should be 3 cars.

5.2 Analysis

The objective of this phase is to detect, in a proactive
manner, the traffic problems that may occur according to
the results captured in the log generated by the Traffic
Observer. In order to accomplish the prediction of traffic
problems, we use the Weka Forecasting plugin. This
plugin can load or import a time series forecasting
model and use it to generate a forecast for future time
steps beyond the end of incoming historical data [13].
Among the forecasting methods available in Weka, we
chose the Multilayer Perceptron due to its lowest
percentage of error after completing tests with different
methods (Gaussian Process, Kernel Regression, Linear
Regression, Multilayer Perceptron, and SMOreg).

In order to run the forecaster, the following parameters
are required: type of data to predict, measure of time for
training data, and the number of times to predict (e.g. the

epochs). In our case, the forecaster predicts the number of
vehicles that will arrive at the traffic light after training.
The data generated by the forecaster is stored in a text
file.

For example, a possible training (i.e., the observation
of the traffic for a period of time) concluded in the second
1,800 of the simulation execution. During this time, 25
violations of the SLA were found. With this data,
predictions are performed. Specifically, the forecaster
predicts that if the traffic lights keep operating with the
current value of their timers, then there will be a greater
number of vehicles than those specified in the SLA in the
second 1,860. Through forecasting, it is possible to
predict problems ahead based on historical data.

5.3 Planning

The objective of this phase is to plan how to
automatically solve the traffic problems predicted in the
analysis phase. Specifically, in this stage the traffic light
timers are recalculated in order to avoid traffic problems.

During planning, the file created at the analysis phase
is read. Each entry in this file is a problem to solve (i.e., a
violation of the SLA). In this phase, we propose the
Adaptation Planner. This tool performs the following
steps to plan a change in traffic light timers:

1. The Adaptation Planner keeps in a variable the

text recovered from the file generated in the
previous phase. For example, the Adaptation
Planner takes the data of 35 vehicles in queue
that will violate the SLA at some future time
(after training) according to forecasting.

2. The Adaptation Planner
performs the following operation:

newTimer = (int) (d * tCross);

The “d” variable is the number of cars that could
violate the SLA according to forecasting. The
“tCross” variable indicates the average time that
a vehicle takes to pass the intersection. The
“newTimer” variable is the new traffic light
timer. The result of the operation is transformed
to integer.

3. The value of the “newTimer” variable, which
corresponds to the solution to a problem (i.e., a
possible violation of the SLA), is saved. For
example, a vehicle takes around 3 seconds to
cross the intersection (tCross) and there are 35
expected vehicles that will arrive at the traffic
light (d). Therefore, the result of newTimer is
105. It means that 35 vehicles take 105 seconds
to cross the intersection.

 Each of the values calculated in this phase corresponds
to the solution of the problems referred to in the analysis
phase.

606 Int'l Conf. Artificial Intelligence | ICAI'15 |

5.4 Execution

The objective of this phase consists of making
changes in the timers of the traffic lights according to the
results of the planning phase. The idea in this phase is to
prevent the materialization of predicted problems.
Actuators are in charge of making changes in traffic light
temporizers. In our case, actuators are simulated. These
actuators take the new time for a traffic light
(“newTimer” in the previous phase), and modify the
traffic light timer with that time.

For example, the Adaptation Planner in the planning
phase discovered that it takes 105 seconds for 35 vehicles
to pass through the intersection. Therefore, at this stage
our Temporizer Changer assigns 105 seconds to the timer
of the traffic light. As a result, the 35 cars will have
enough time to cross.

6 Running prototype
This section describes the prototype that has been

created to demonstrate our approach. The prototype was
created in Java and Weka, which can be accessed through
Java [14].

The prototype GUI is divided into three areas (see
Figure 3). The parameters under which the traffic control
is performed are displayed in Area #1. Specifically, the
following parameters are determined in this area: traffic
light timer, execution time of the traffic simulation,
crossing time, and expected SLA.

The text fields in Area #2 show the SLA violations in
each traffic light (Traffic Light A and Traffic Light B).
The first column indicates the time in seconds in which
the violation of the SLA happened. The second column
indicates the amount of cars with which the SLA was
violated. Area #3 shows how many times the SLA at
every traffic light is violated before and after the
implementation of Machine Learning.

The prototype is trained according to the parameters in
Area #1 of Figure 3. During training, the number of times
that the SLA was violated is pretty high at each traffic
light (e.g. 59 violations at the traffic light A and 57
violations at the traffic light B). Then, by using
forecasting the number of SLA violations descends
dramatically (17 violations at the traffic light A and 26
violations in traffic light B). Incidents of violation of the
SLA are not fully eliminated but decrease greatly.

Figure 4 shows how Machine Learning dramatically
decreased the SLA violations in our running prototype.
The execution of Machine Learning occurs in the second
1,800. From this moment it is possible to see how the
incidences of violations of SLAs are kept at a very low
level.

Figure 3. Implementation of the prototype

Int'l Conf. Artificial Intelligence | ICAI'15 | 607

Figure 4. Application of Machine Learning in the second 1,800 of our traffic simulation

7 Conclusions and future work
This paper proposed a proactive solution to traffic control

by means of Machine Learning and the principles of
Autonomic Computing. Our solution could offer several
benefits for the development of mega cities: 1) economic losses
can be avoided by allowing that a cargo or a worker arrive in
the shortest possible time to their destination; 2) pollution can
be reduced; and 3) the number of vehicle accidents in rush
hours can be reduced. These accidents may be caused by the
stress produced in traffic jams [15].

As future work, we will implement a computer vision
module for live traffic control through cameras. The Traffic
Observer will collect this data. We will also develop a mobile
application to help users make queries about the status of the
traffic and find the most optimal path between the starting
point and the destination point by getting data in real time from
our autonomic solution.

8 References
[1] United Nations. (2015). UNFPA – Country

programmes and related matters [Online]. Available:
https://data.unfpa.org/docs/mex

[2] SIEMENS. (2015). Siemens traffic solutions.
Available:
https://www.swe.siemens.com/spain/web/es/industry/
mobility/Documents/traffic.pdf

[3] IBM. (2006). "An architectural blueprint for
autonomic computing," IBM White Paper.

[4] Pentaho. (2015). Time Series Analysis and
Forecasting with Weka. Available:

http://wiki.pentaho.com/display/DATAMINING/Tim
e+Series+Analysis+and+Forecasting+with+Weka

[5] R. E. Allsop. (1981). "Computer program SIGSET
for calculating delay-minimissing traffic signal
timings description and manual for users". University
College London, Transport Studies Group.

[6] D. Robles, P. Ñañez, and N. Quijano. (2009).
"Control y simulación de tráfico urbano en
Colombia: Estado del arte," Revista de ingeniería, pp.
59-69.

[7] P. Mirchandani and L. Head. (2001). "A real-time
traffic signal control system: architecture, algorithms,
and analysis," Transportation Research Part C:
Emerging Technologies, vol. 9, pp. 415-432.

[8] S. Mitchell. (1995). "The application of machine
learning techniques to time-series data"

[9] J. S. Armstrong. (2001). Principles of forecasting: a
handbook for researchers and practitioners vol. 30:
Springer Science & Business Media.

[10] C. Ayora, V. Torres, V. Pelechano, and G. H.
Alférez. (2012). "Applying CVL to business process
variability management," in Proceedings of the
VARiability for You Workshop: Variability Modeling
Made Useful for Everyone, pp. 26-31.

[11] A. Metzger. (2011) "Towards accurate failure
prediction for the proactive adaptation of service-
oriented systems," in Proceedings of the 8th
workshop on Assurances for self-adaptive systems.

[12] R. R. Aschoff and A. Zisman. (2012). "Proactive
adaptation of service composition," presented at the
Proceedings of the 7th International Symposium on

608 Int'l Conf. Artificial Intelligence | ICAI'15 |

Software Engineering for Adaptive and Self-
Managing Systems, Zurich, Switzerland.

[13] Pentaho. (2013). Using the Weka Forecasting Plugin.
Available:
http://wiki.pentaho.com/display/DATAMINING/Usi
ng+the+Weka+Forecasting+Plugin

[14] Pentaho. (2013). Weka 3: Data Mining Software in
Java. Available:
http://www.cs.waikato.ac.nz/ml/weka/

[15] Urbeconomica. (2015). "Accidentes vehiculares,"
vol. 2015, ed. Puebla: Redacción Urbeconómica.

Int'l Conf. Artificial Intelligence | ICAI'15 | 609

