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Abstract - The excessive growth of modern cities 
generates major problems in public administration. One 
problem is the control of traffic flow during peak hours. 
In this paper we propose a solution to the problem of 
vehicular control through a proactive approach based on 
Machine Learning. Through our solution, a traffic 
control system learns about the traffic flow in order to 
prevent future problems of long queues waiting at traffic 
lights. The traffic system architecture is based on the 
principles of Autonomic Computing to change the timers 
of the lights automatically. A simulation of the streets on 
a smart city and a tool based on Weka were created in 
order to validate our approach. 
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1    Introduction 

In recent years, the world has experienced mass 
migration from the countryside to the city. For example, 
in Mexico today over 70% of the population lives in the 
city [1]. There is an exponential growth in the population 
of cities turning them into mega cities. This phenomenon 
leads to many problems. One of these problems is traffic 
congestions [2]. Traffic congestions negatively affect the 
quality of life of citizens by increasing travel time, 
generating stress and economic losses, and increasing 
environmental pollution. 

The current solutions to control traffic in smart cities 
wait for an event to happen (i.e., a long queue at a traffic 
light) to generate an action to try to solve this event. 
These solutions may be referred to as “reactive”. 
However, we believe that for cities to become truly 
intelligent, they need “proactive” solutions that anticipate 
traffic problems and prevent these problems from 
becoming evident. 

In this paper, we present a proactive solution for 
controlling vehicular traffic in smart cities. Our solution is 
based on Machine Learning and Autonomic Computing. 
First, our approach analyzes data traffic levels with 
Machine Learning. Using this technique of artificial 
intelligence, the system takes proactive decisions based 
on historical traffic data. In order to perform autonomous 
adjustments at traffic lights, the system self-adjusts 
according to the principles of Autonomic Computing of 
IBM [3]. A simulation of traffic in a smart city 
demonstrates the efficiency of our solution. In order to 
predict the problems that can occur in the future, our 
solution is based on Weka API [4].  

The remainder of this paper is organized as follows. 
Section II presents a simulation that demonstrates the 
problem of traffic congestions in big cities. Section III 
presents related work. Section IV presents the 

underpinnings of our approach. Section V describes our 
solution to carry out proactive adaptations of traffic lights. 
Section VI presents our running prototype and evaluation 
results. Section VII presents conclusions and future work.  

2    Traffic congestions in big cities 
In this section we present a simulation of the 

streets of a city that helps to understand the arising traffic 
problem. This simulation consists of a vehicular crossing 
of two unidirectional streets. In order to simplify the 
simulation, only the change between green and red light 
signals is simulated. Congestion becomes evident when 
the amount of vehicles that can cross a traffic light in a 
particular moment is lower than the amount of arriving 
cars to the queue. 

In the simulation, every traffic light has an assigned 
time value “x” for red or green. Also, we specified the 
average time that a car takes to cross an intersection (“y”). 
Based on these data we calculated how many vehicles 
could cross the traffic light when it is green. Also, a 
random value was generated for the vehicles that come to 
the queue in the traffic light “i”. 

As seen in Figure 1, the number of vehicles tends to 
increase linearly as time passes. In our simulation, this 
trend was generated when “x” takes a value equal to 15 
seconds, “i” has values between 0 and 9, and “y” equals 
to 3 seconds.

 
 Figure 1. Results of the traffic simulation 

3   Related work  
Currently fixed-time and sensitive traffic strategies 

have been implemented for managing traffic flow. These 
strategies are presented below. 

3.1    Fixed time strategies 

 Fixed time strategies are adjusted for long periods of 
time where parameters are assumed constant. This 
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approach can be problematic in settings with high 
variability demands or with usual presence of non-
standard conditions (e.g. accidents, riots, or unexpected 
events). 

For example, SIGSET is based on traffic flow patterns 
at an intersection traffic light. This is a well-known 
system for traffic engineers [5]. SIGSET works in 
isolation at each intersection and assigns fixed times at 
traffic lights. 

3.2    Sensitive traffic strategies 

Sensitive traffic control strategies execute their logic 
based on traffic measurements performed in real time at 
the entrances of the intersections. In order to perform 
measurements, it is necessary to have some type of traffic 
detectors. 

Within traffic sensitive methods, there are two 
reactive methods that solve problems when they are 
already evident. On one hand, there are approaches that 
detect the presence of heavy traffic at an intersection and 
change traffic light timers to give preference to the 
direction of greatest activity. On the other hand, there are 
adaptive solutions with networks of traffic lights. Plans 
are implemented together in these networks in order to 
optimize traffic flow [6]. 

Another sensitive strategy is a proactive one. For 
instance, RHODES [7] takes as input data of real-time 
measurement of traffic flow. Then, it controls the flow 
through a network. The system uses a control architecture 
that decomposes the traffic control problem into several 
sub-problems that are interconnected in a hierarchical 
fashion and predicts traffic flows at appropriate resolution 
levels (individual vehicles and platoons). This approach 
has several optimization modules for solving hierarchical 
sub-problems. Also, it uses a data structure and 
communication approaches to reach fast solutions of sub-
problems. RHODES depends on a central control module. 
We argue that a more decentralize approach could be used 
to distribute calculations on site. In this way, the costs and 
complexity related to infrastructure communication could 
be reduced.  

4   Underpinnings of our approach   
The solution proposed in this paper is intelligent, 

autonomous, and proactive. These underlying concepts 
are described below. 

4.1    Machine Learning 

Machine Learning is a term used to encompass a wide 
variety of techniques for discovering patterns and 
relationships in sets of data. The primary goal of any 
Machine Learning algorithm is to discover meaningful 
relationships in a set of training data and produce a 
generalization of these relationships that can be used to 
interpret new, unseen data [8]. Among Machine Learning 
methods, we can find forecasting. Forecasting is the 
process of making statements about events whose actual 
outcomes have not yet been observed [9].    

4.2    Autonomic Computing 

Inspired by biology, Autonomic Computing has 
evolved as a discipline to create self-managing software 
to overcome the complexities to maintain systems 
effectively. Autonomic Computing covers the broad 
spectrum of computing in domains as diverse as mobile 
devices and home-automation, thereby demonstrating its 
feasibility and value by automating tasks such as 
installation, healing, and updating. Since doing manual 
adaptations is a difficult (and sometimes impossible) task, 
our approach is based on IBM’s reference model for 
autonomic control loops (which is sometimes called the 
MAPE-K loop) [10]. 

4.3    Proactive Adaptations 

On one hand, reactive adaptations are performed in 
response to an event. On the other hand, proactive 
adaptations take an action in advance (i.e., before an 
incident negatively impacts the system) [11]. Reactive 
adaptation mechanisms may cause increases in the 
execution time and financial loss, which can lead to user 
and business dissatisfaction [12]. Proactive approaches try 
to solve these problems by detecting the need for an 
adaptation before the problem is evident.  

5    Our approach 
In this section we present our solution to carry out 

proactive adaptation of traffic lights. The structural blocks 
of our approach are based on the components of the 
MAPE-K loop, i.e., Monitor, Analyze, Plan, Execute, and 
Knowledge (see Figure 2).  

 

 
Figure 2. MAPE-K cycle of our approach 

 
In our approach, sensors collect traffic data in the 

Analysis component. This data is used for training our 
Machine Learning approach. The task of observing the 
traffic is in charge of the Traffic Observer, which detects 
violations of any Service Level Agreement (SLA) at 
specific times. A violation of the SLA becomes evident 
when the number of cars in queue is greater than the 
desired SLA. After completing training, the Weka 
Forecasting plugin analyzes the data collected and 
predicts potential traffic problems. Then, the Adaptation 
Planner plans the necessary changes to the traffic light 
timers in order to prevent traffic problems proactively. 
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Finally, the Temporizer Changer makes the necessary 
changes in the traffic light timers trough actuators. 

Our solution is described in the following subsections 
based on the MAPE-K components. Our approach is 
exemplified based on the traffic simulation described in 
Section II.  

5.1    Monitor 

Monitoring involves capturing properties of the 
context that are meaningful to the self-properties of the 
system. In our case, we are interested in observing the 
traffic. To this end, we propose the Traffic Observer, 
which is a tool that observes the traffic through sensors. 
In our case, the Traffic Observer periodically checks the 
activity in the traffic simulation described in Section II 
with simulated sensors.  

At the start of the simulation, we create two traffic 
lights. A status, either green or red, was assigned to each 
one of them. Also, a random number of vehicles that 
come into the queue was generated. In order to simplify 
the simulation, the preventive stage of a traffic light, 
which is usually yellow, was included within the green 
phase.  

The Traffic Observer detects if the number of vehicles 
queued at a certain moment at the traffic light is greater 
than the SLA (i.e., a violation of the SLA). If so, this 
event is saved in a log with .arff extension. Files with this 
extension have the required format to carry out 
forecasting in Weka. Specifically, the .arff file format 
requires that the data has a special header, such as the one 
in the following example: 
 

@relation A @attribute seconds numeric 
@attribute cars numeric @data 60, 7 

 
First of all, there is a relationship of data (@relation 

A), and this relationship has two attributes, both of type 
numeric: seconds (@attribute seconds) and cars 
(@attribute cars). After this, the problematic event (i.e., a 
violation of the SLA) data is recorded (@data 60, 7). In 
the example above there is a violation of the SLA after 60 
second of execution. At this time, there are 7 vehicles in 
queue, when the SLA indicates that the maximum number 
of cars in queue should be 3 cars.  

5.2    Analysis 

The objective of this phase is to detect, in a proactive 
manner, the traffic problems that may occur according to 
the results captured in the log generated by the Traffic 
Observer. In order to accomplish the prediction of traffic 
problems, we use the Weka Forecasting plugin. This 
plugin can load or import a time series forecasting 
model and use it to generate a forecast for future time 
steps beyond the end of incoming historical data [13]. 
Among the forecasting methods available in Weka, we 
chose the Multilayer Perceptron due to its lowest 
percentage of error after completing tests with different 
methods (Gaussian Process, Kernel Regression, Linear 
Regression, Multilayer Perceptron, and SMOreg).  

In order to run the forecaster, the following parameters 
are required: type of data to predict, measure of time for 
training data, and the number of times to predict (e.g. the 

epochs). In our case, the forecaster predicts the number of 
vehicles that will arrive at the traffic light after training. 
The data generated by the forecaster is stored in a text 
file. 

For example, a possible training (i.e., the observation 
of the traffic for a period of time) concluded in the second 
1,800 of the simulation execution. During this time, 25 
violations of the SLA were found. With this data, 
predictions are performed. Specifically, the forecaster 
predicts that if the traffic lights keep operating with the 
current value of their timers, then there will be a greater 
number of vehicles than those specified in the SLA in the 
second 1,860. Through forecasting, it is possible to 
predict problems ahead based on historical data. 

5.3    Planning 

The objective of this phase is to plan how to 
automatically solve the traffic problems predicted in the 
analysis phase. Specifically, in this stage the traffic light 
timers are recalculated in order to avoid traffic problems. 

During planning, the file created at the analysis phase 
is read. Each entry in this file is a problem to solve (i.e., a 
violation of the SLA). In this phase, we propose the 
Adaptation Planner. This tool performs the following 
steps to plan a change in traffic light timers: 

 
1. The Adaptation Planner keeps in a variable the 

text recovered from the file generated in the 
previous phase. For example, the Adaptation 
Planner takes the data of 35 vehicles in queue 
that will violate the SLA at some future time 
(after training) according to forecasting. 
 

2. The Adaptation Planner 
performs the following operation: 

 
newTimer = (int) (d * tCross); 
 

The “d” variable is the number of cars that could 
violate the SLA according to forecasting. The 
“tCross” variable indicates the average time that 
a vehicle takes to pass the intersection. The 
“newTimer” variable is the new traffic light 
timer. The result of the operation is transformed 
to integer.  
 

3. The value of the “newTimer” variable, which 
corresponds to the solution to a problem (i.e., a 
possible violation of the SLA), is saved. For 
example, a vehicle takes around 3 seconds to 
cross the intersection (tCross) and there are 35 
expected vehicles that will arrive at the traffic 
light (d). Therefore, the result of newTimer is 
105. It means that 35 vehicles take 105 seconds 
to cross the intersection.  
 

     Each of the values calculated in this phase corresponds 
to the solution of the problems referred to in the analysis 
phase.  
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5.4    Execution   

The objective of this phase consists of making 
changes in the timers of the traffic lights according to the 
results of the planning phase. The idea in this phase is to 
prevent the materialization of predicted problems. 
Actuators are in charge of making changes in traffic light 
temporizers. In our case, actuators are simulated. These 
actuators take the new time for a traffic light 
(“newTimer” in the previous phase), and modify the 
traffic light timer with that time. 

For example, the Adaptation Planner in the planning 
phase discovered that it takes 105 seconds for 35 vehicles 
to pass through the intersection. Therefore, at this stage 
our Temporizer Changer assigns 105 seconds to the timer 
of the traffic light. As a result, the 35 cars will have 
enough time to cross.  

6     Running prototype 
This section describes the prototype that has been 

created to demonstrate our approach. The prototype was 
created in Java and Weka, which can be accessed through 
Java [14]. 

The prototype GUI is divided into three areas (see 
Figure 3). The parameters under which the traffic control 
is performed are displayed in Area #1. Specifically, the 
following parameters are determined in this area: traffic 
light timer, execution time of the traffic simulation, 
crossing time, and expected SLA. 

The text fields in Area #2 show the SLA violations in 
each traffic light (Traffic Light A and Traffic Light B). 
The first column indicates the time in seconds in which 
the violation of the SLA happened. The second column 
indicates the amount of cars with which the SLA was 
violated. Area #3 shows how many times the SLA at 
every traffic light is violated before and after the 
implementation of Machine Learning. 

The prototype is trained according to the parameters in 
Area #1 of Figure 3. During training, the number of times 
that the SLA was violated is pretty high at each traffic 
light (e.g. 59 violations at the traffic light A and 57 
violations at the traffic light B). Then, by using 
forecasting the number of SLA violations descends 
dramatically (17 violations at the traffic light A and 26 
violations in traffic light B). Incidents of violation of the 
SLA are not fully eliminated but decrease greatly.  

Figure 4 shows how Machine Learning dramatically 
decreased the SLA violations in our running prototype. 
The execution of Machine Learning occurs in the second 
1,800. From this moment it is possible to see how the 
incidences of violations of SLAs are kept at a very low 
level.  

 

 

 

 

 
Figure 3. Implementation of the prototype
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Figure 4. Application of Machine Learning in the second 1,800 of our traffic simulation

7    Conclusions and future work 
This paper proposed a proactive solution to traffic control 

by means of Machine Learning and the principles of 
Autonomic Computing. Our solution could offer several 
benefits for the development of mega cities: 1) economic losses 
can be avoided by allowing that a cargo or a worker arrive in 
the shortest possible time to their destination; 2) pollution can 
be reduced; and 3) the number of vehicle accidents in rush 
hours can be reduced. These accidents may be caused by the 
stress produced in traffic jams [15]. 

As future work, we will implement a computer vision 
module for live traffic control through cameras. The Traffic 
Observer will collect this data. We will also develop a mobile 
application to help users make queries about the status of the 
traffic and find the most optimal path between the starting 
point and the destination point by getting data in real time from 
our autonomic solution.  
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