
Parallelization of the Rosen-Suzuki Fist Function and Himmelblau
Function Using a Two-Population Evolutionary Algorithm

Michael Scherger

Department of Computer Science
Texas Christian University

Fort Worth, TX, 76129, USA
Email: m.scherger@tcu.edu

Roja Ramani Molupoju
Department of Computing Science

Texas A&M University – Corpus Christi
Corpus Christi, TX, 78412, USA

Email: molupoju.roja@gmail.com

Abstract – (ICAI’15) The general nonlinear
programming (NLP) problem requires finding the
optimum point (minimum or maximum) of a function of n
real variables subjected to some given constraints. This
research presents the parallel implementation of the
Rosen-Suzuki Frst function and the Himmelblau function
using a two-population genetic algorithm. There are
numerous situations in science and engineering where the
optimum is bounded which adds complexity to the
optimization problem. The approach used in this
research by [32] uses evolves two populations (male and
female). One population is evolved inside the feasible
domain of the design space and the second population is
evolved outside this feasible domain. In this research a
version of this parallel, two-population algorithm was
implemented. The results of this research show that the
two-population parallel genetic algorithm is effective and
accurate for these functions.

Keywords: Evolutionary algorithms, constrained
optimization problems, parallel algorithms.

1 Introduction
A constrained optimization problem is usually

written as a nonlinear programming (NLP) problem of the
following type. The problem seeks to minimize:

F(x1, …, xi, …, xn) (1≤ i ≤ n)

subject to side constraints:

 xi min ≤ xi ≤ xi max (1≤ i ≤ n)

and inequality and equality constraints:
 gj (x1, …, xn) ≤ 0 where (1≤ j ≤ m)
hj (x1, …, xn) = 0 where (1≤ j ≤ p).

For these types of NLP problems, there are n

variables, m inequality constraints, and p equality
constraints. The function F(X) is called the objective
function, gj(X) is the jth inequality constraint, and hk(X) is

the kth equality constraint. The ith variable can varies in
range from [ximin .. ximax].

Searching the boundary between the feasible and
the infeasible regions is critical for any function to find
the global optimum.[30] The inability of evolutionary
systems to search precisely the boundary area is the main
reason for difficulty in locating the global optimum.
Some of the constraints are active at the global optimum.

For this reason, in may constrained optimization
problems, it is more difficult to locate the global optimum
[23]. A two-population evolutionary computation
approach was proposed in paper [31] where two
populations of individuals are evolved: one of feasible
and the other of infeasible by which the search pressure
upon the boundaries of the feasible space can be
increased. Feasible individuals (also called females) are
the ones that are evolved inside (including the boundaries
of the feasible space), while the infeasible individuals
(also called males) are evolved outside the feasible space.
These two populations are subject to mutation and asexual
crossover. Female-male crossover ensures the search
pressure on the boundaries of the feasible space. This
crossover can be performed between two or more feasible
and infeasible individuals, and with, or without, favoring
the better-fit females or the better-ranked males.

When two populations, one of feasible and one of
infeasible individuals, are distinctively evolved, these two
populations interact systematically (rather than
occasionally) for the purpose of exploring the boundaries
of the feasible space. Since the criterion based on which
individuals are assigned to the two populations does not
change during evolution, the behavior of the two
populations is easier to understand.

The two-population evolutionary algorithm
described in this paper, was proposed by [31] and was
also implemented with two other constrained optimization
problems in [30]. This algorithm was initially tested for
functions with two variables; this project works with the
algorithm for functions with multiple variables and is
tested. This algorithm is implemented using C++ and
MPI on a small parallel computing cluster. The program
was tested for two benchmark problems from literature:

76 Int'l Conf. Artificial Intelligence | ICAI'15 |

the Rosen-Suzuki function and the Himmelblau function.
Evaluation of the effectiveness of this technique is
provided in sections 5 and 6.

2 Related Research
 Genetic algorithms (GAs), developed by Holland

(1975), have traditionally used a more domain
independent representation, namely, bit-strings. However,
many recent applications of GAs have focused on other
representations, such as graphs (neural networks), Lisp
expressions, ordered lists, and real-valued vectors.

GAs are highly abstract computational models
inspired by natural selection [14]. Standard GAs apply an
a priori defined fitness function (e.g. the function one
wants to optimize) to an individual. They typically use an
all-at-once calculation where individuals are evaluated
immediately after their creation (i.e. birth). Fitness
calculation in nature is substantially different [1]. It
consists of a continuous series of tests during an
individual's life originating from a complex environment.
This environment is not only influenced by the animal's
own actions but also by the other individuals as well as
other processes occurring in the world (e.g.
climatologically or geophysical changes). Summarizing
one can say that - in contrast with GAs - nature uses a far
more partial but continuous fitness evaluation in order to
adapt to a complex world.

One of the key problems for using GAs in practical
applications is to design the fitness function, particularly
when we do not know where the global optimum is
located [19] [22] [33]. A comparative estimate of how
good as a solution turns out to be enough in most cases.
However, for constrained problems, determining a way to
estimate how close in an infeasible solution from the
feasible region is difficult since most real-world problems
have complex linear and non-linear constraints, and
several approaches have been proposed in the past to
handle them [14][33]. From those, the penalty function
seems to be yet the most popular technique for
engineering problems, but the intrinsic difficulties to
define good penalty values makes harder the optimization
process using a GA [6] [7] [19].

3 Two Population Parallelization
Technique
Evolutionary algorithms are characterized by their

repeated fitness evaluation of the individuals in the
population. Therefore, it is natural to view them as
parallel algorithms. In generational evolutionary
algorithms, substantial savings in elapsed time can often
be obtained by performing fitness evaluations in parallel.
In the simplest form of parallelism, a manager process
performs all the function of the evolutionary algorithm
except evaluation of individuals, which are performed in

parallel by worker processes operating on separate
processors. The master process waits for all workers to
return the evaluated individuals before varying on with
the next generation.

The algorithm in this research is implemented using
MPI in which there are n processes that work
simultaneously using inter-process communication. This
performs well when a complex function is being used and
there is more number of iterations that are to be
performed.

A “Manager-Worker” paradigm is used to
implement the algorithm. In this paradigm, there is one
Manager process and several workers processes and is
depicted in Figure 1. The Manager generates uniform
random points and sends these points to the workers; the
workers process these points (check the feasibility and
compute the value of the function at that point if it is a
feasible point) and send back the processed results. The
manager would then differentiate them into female and
male based on their feasibility value (female if it is zero
and male if not). Then the manager ranks the female
individuals based on their fitness and the male individuals
based on the number of constraints they violate.
Generations of new individuals and mutating female and
male individuals would also happen. The female-male
pairs are formed with the females choosing their males in
the rank decreasing order. Then the crossover is
performed and all the steps are until the best female is
constant for a given number of individuals.

Figure 1: Manager-Worker paradigm for this
research.

4 Test Functions
In this project, a technique based on the concept of

co-evolution is used to create two populations that interact
with each other in such a way that the objective function
is minimized. The approach has been tested with two
single-objective optimization problems with linear and
non-linear inequality constraints and its results are

Int'l Conf. Artificial Intelligence | ICAI'15 | 77

compared with those produced by other GA-based and
mathematical programming approaches.

This research is tested using two benchmark
problems from literature: the Rosen-Suzuki function and
the Himmelblau function. This section provides the
description of these two constrained optimization
problems.

4.1 Rosen –Suzuki Fist Function (in four

variables)
The Rosen-Suzuki Fist problem is a function in four

variables with three non-linear constraints on the
variables. Hock and Schittkowski introduced it in 1981.
The object function is

The nonlinear constraints are:

The theoretical value for the optimum minimum for

this function is -44 and is located at the point (0, 1, 2, -1).
The best value that is obtained using this research is -
43.9756 at the point (-0.00021, 0.99821, 2.00281, -
0.98912). The best value reported in literature is (-
0.0005463221, 1.000618, 2.000213, -0.9996195) at which
the optimum value for the function is -44 using the
GaNOP system[REF].

4.2 Himmelblau Function (in five variables)
Himmelblau originally proposed the Himmelblau

nonlinear optimization problem in five variables in 1972.
This function was selected since it was used as a
benchmark for several other GA-based techniques. The
Himmelblau function has five design variables (x1, x2,
x3, x4, x5), six nonlinear inequality constraints, and ten
boundary conditions. The problem is mathematically
stated as follows:

Minimize:

Subject to:

with:

5 Summary of Results
The testing and analysis of the results for the Rosen-

Suzuki Fist and HimmelBlau functions is presented in this
section. The parallel program for each of these functions
was run in several configurations varying the number of
processes and varying the female and male population
sizes.

5.1 Rosen-Suzuki Fist Function
 The theoretical value for the optimum minimum
for this function is -44 and is located at the point (0, 1, 2, -
1). The best value that is obtained using this research is -
43.9756 at the point (-0.00021, 0.99821, 2.00281, -
0.98912).
 Following is a table (table 1) in which the
average value for 50 runs with a particular number of
processes is performed. The table shows the number of
processes (in other words, no. of workers), the female and
male population, the number of iterations (for which the
best female would be constant), the total time for the run
(algorithm time plus function value computation time),
the number of function calls and the optimum point for
the function. The table shows it only for up to 8
processes, the experiment is performed for up to 20
processes, however, the graph below is the one that is
drawn using the number of processes and the total
required for the completion of the algorithm.

78 Int'l Conf. Artificial Intelligence | ICAI'15 |

Table 1: Rosen-Suzuki Fist function results.

 Figure 2 shows the graph of time vs. number of
processes for algorithm computed at the manager process.
Figure 2 shows the graph for the number of processes vs.
the total time (time for algorithm plus the function value
computation time at the worker processes). From the
graph, it can be seen that as the number of processes
increases, the time decreases. The graph is not a
decreasing linearly, since the total time is dependent on
the function computation time calculated at the worker
processes (also depends on the number of function calls).
Figure 3 clearly shows all the computation times in a
single graph that shows that the time for algorithm is
increased whenever there is an increase in the function
value computation time (which depends on the number of
function calls).

Figure 2: Time vs. number of processes for the Rosen-
Suzuki Fist function.

Figure 3: Algorithm, function, and total time vs.
number of processes for the Rosen-Suzuki Fist
function.

5.2 Himmelblau Function
 This problem was originally proposed by
Himmelblau and solved using the Generalized Reduced
Gradient method (GRG). Gen and Cheng solved this
problem using a genetic algorithm based on both local
and global reference. The result shown in Table 4 is the
best found with their approach.
 The mean for the 100 runs performed is f(X) = -
30786.5. The worst solution found is f(X) = -30692.9,
which is better than the best solution previously reported.
The best solution found with this algorithm is f(X) = -
30868.9 (corresponding to x1= 78.7032, x2 = 33.7124, x3
= 27.83889, x4 = 44.2504 and x5 = 43.1159).
 There are 20 female and 15 male points
generated every iteration. This was run using 8
processing units in which the best solution remained
constant for 1000 iterations. The duration for the run is
0.419021 sec. The number of function calls is 59585.
Table 2 summarizes the results of the two-population
algorithm used in this research with other algorithms.

Table 2: Comparison of current algorithm with
previous techniques for the Himmelblau function.

6 Conclusions and Future Work
Solving a constrained nonlinear programming

problems using a co-evolutionary algorithm was

Int'l Conf. Artificial Intelligence | ICAI'15 | 79

implemented. The two-population evolutionary algorithm
proposed by [31] was used in which two distinct
populations are evolved; feasible (females) and infeasible
(males). The interaction between these populations
concentrate on he boundaries of the feasible space.
Mutating the female and male populations induced search
capabilities inside the feasible space and parallel to the
feasible-infeasible boundary. Figure 4 and Table 2
presents a table of a summary of the results in this
research.

Figure 4: Summary of results for this research.

There is no penalty factor that is involved in

constraint handling; hence there is a clear distinction can
be made between the feasible and infeasible individuals.
Parallel Implementation of the Co-evolutionary Genetic
Algorithm has been a long awaited development for the
evolutionary algorithms as mentioned in [7] [19] [31]. In
this project, the algorithm has been implemented using
MPI, which uses multiple processes that run in parallel,
by which the computation time is reduced. This
implementation worked well with several test problems
that were previously solved using GA-based and
mathematical programming techniques, producing in most
of the cases results better than those previously reported.
The technique is able to achieve such good results with
relatively small populations and using a relatively low
number of generations.

Functions of multiple variables used in various
disciplines of Engineering can be solved for the global
optimum using this research. This research provides
sound results in terms of the computation time and the
number of generations that need to be evolved for a more
accurate value. The project is tested using the two
benchmark problems from the literature. A detailed
comparison of the results obtained from the project with
that of those from the literature is presented.

7 Bibliography
[1] Adenike A. Adewuya, “New Methods in Genetic

Search with Real-Values Chromosomes”, Thesis,
Mississippi State University, 1993.

[2] T. Back, D. Fogel and Z. Michalewicz, Handbook of
Evolutionary Computation, The Institute of Physics
Publishing, 2000.

[3] Benacer R and Pham Dinh Tao, “Global
Maximization of a Non-definite Quadratic Function
over a Convex Polyhedron”, Fermat Days 85:
Mathematics for Optimization, Amsterdam, Holland,
1986, pp. 65-76.

[4] Carlos R. Garcia-Alonso, Leonor M. Pérez-Naranjo,
Juan C. Fernandez-Caballero, “Multiobjective
evolutionary algorithms to identify highly auto
correlated areas: the case of spatial distribution in
financially compromised farms” Annals of
Operations Research, Jan 2011.

[5] Carlos A. Coello Coello, “Theoretical and Numerical
Constraint-Handling Techniques used with
Evolutionary Algorithms: A Survey of the State of
the Art,” Computer Methods in Applied Mechanics
and Engineering, Vol. 191, No. 11-12, pp. 1245-
1287, 2002.

[6] Carlos A. Coello Coello, “Constraint-handling using
an evolutionary multiobjective optimization
technique”, Civil Engineering and Environmental
Systems, 17:319-346, 2000.

[7] Carlos A. Coello Coello, “Use of a Self-Adaptive
Penalty Approach for Engineering Optimization
Problems”, May 1999.

[8] Carlos A. Coello Coello, “An Empirical Study of
Evolutionary Techniques for Multiobjective
Optimization in Engineering Design”, PhD thesis,
Department of Computer Science, Tulane University,
New Orleans, LA, Apr 1996.

[9] Pei-Chann Chang and Shih-Hshin Chen. The
development of a sub-population genetic algorithm II
(SPGA II) for multiobjective combinatorial
problems, Applied Soft Computing, Vol. 9, No. 1, pp.
173-181, January 2009.

[10] C. Y. Cheong, K. C. Tan and B. Veeravalli. A multi-
objective evolutionary algorithm for examination
timetabling, Journal of Scheduling, Vol. 12, No. 3,
pp. 121--145, April 2009 .

[11] David W. Coit, Alice E. Smith, David M. Tate,
“Adaptive Penalty Methods for Genetic Optimization
of Constrained Combinatorial Problems”, Informs
Journal On Computing, Vol. 8, No. 2, Spring 1996,
pp. 173-182, DOI: 10.1287/ijoc.8.2.173.

[12] A.E. Eiben, “Multiparent Recombination in
Evolutionary Computing,” in A.Ghosh and S.
Tsutsui, editors, Advances in Evolutionary

80 Int'l Conf. Artificial Intelligence | ICAI'15 |

Computing, Natural Computing Series, Springer, pp.
175-192, 2002.

[13] Eshelman Larry J & Schaffer David J, “Real-coded
Genetic Algorithms and Interval-Schemata”, In
Whitley, D. L. (Ed.), Foundations of Genetic
Algorithms 2 (pp. 187-202). California: Morgan
Kaufmann, 1993.

[14] Mistuo Gen and Runwei Cheng, “Genetic Algorithms
and Engineering Design”, John Weily & Sons, Inc,
New York, 1997.

[15] Grefenstette J. J., “Predictive models using fitness
distributions of genetic operators”, In Foundations of
Genetic Algorithms 3, D. Whitley (Ed.), San Mateo,
CA: Morgan Kaufmann.

[16] David M Himmelblau, “Applied Nonlinear
Programming”, McGraw Hill, New York, 1972.

[17] Homaifar A, Lai S H Y and Qi X, “Constrained
Optimization via Genetic Algorithms, Simulation”,
62(4):242-254, 1994.

[18] Antony Iorio, Xiaodong Li, “Parameter Control
within a Co-operative Co-evolutionary Genetic
Algorithm”, May 2002.

[19] Kenneth De Jong, William Spears, “On the State of
Evolutionary Computation”, September, 1993.

[20] [Kenneth Dee Jong A., “Are genetic algorithms
function optimizers?” Proceedings of the Second
International Conference on Parallel Problem
Solving from Nature, 1992.

[21] Kenneth De Jong, William Spears, Thomas Back,
David Fogel, Hugo de Garis, “An Overview of
Evolutionary Computation”, April, 1993.

[22] Kim J. H and Myung H, “Evolutionary programming
techniques for constrained optimization problems,”
IEEE Trans. Evolutionary Computation, vol. 1, no. 2,
pp. 129–140, 1997.

[23] Michalewicz Z and Attia N, “Evolutionary
Optimization of Constrained Problems”, In
Proceedings of the 3rd Annual Conference on
Evolutionary Programming, pages 98-108, World
Scientific, 1994.

[24] Michalewicz Z and Schoenauer M, “Evolutionary
Algorithms for Constrained Parameter Optimization
Problems,” Evolutionary Computation, Vol. 4, No. 1,
pp. 1-32, 1996.

[25] Papalambros P and Li H L, “Notes on the
Operational utility of Monotonicity in Optimization”,
ASME Journal of Mechanisms, Transmissions and
Automation in Design, Vol.105, 1983, pp. 174-180.

[26] Papalambros P and Wilde D J, “Principles of Optimal

Design – Modeling and Computation”, Cambridge
Univ. Press, New York, 2000.

[27] Paredis Jan, “Coevolutionary Algorithms”,

Proceedings of the Seventh International Conference
on Genetic Algorithms ed TBaeck (San Mateo, CA:
Morgan Kaufmann) pp 393-399, 1997.

[28] Ragsdell K M and Phillips D T, “Optimal Design of a
class of Welded Structures Using Geometric
Programming”, ASME Journal of Engineering for
Industry, Vol. 98, pp. 1021-1025, 1997.

[29] Rosenbrock, H. H., "An automatic method for
finding the greatest or least value of a function", The
Computer Journal 3: 175–184,
doi:10.1093/comjnl/3.3.175, ISSN 0010-4620,
MR0136042.

[30] Scherger M.C., Molupoju R. R., “The Parallelization
of Two Constrianed Optimization Problems Using
Evolutionary Algorithms”, Genetic and Evolutionary
Methods, WorldComp, July, 2014.

[31] Simionescu P.A., Dozier G.V. and Wainwright R.L.

“A Two-Population Evolutionary Algorithm for
Constrained Optimization Problems," IEEE World
Congress on Computational Intelligence, Vancouver,
Canada, July 16-21, 2006.

[32] Simionescu P.A., Beale D.G. and Dozier G.V.
"Constrained Optimization Problem Solving Using
Estimation of Distribution Algorithms," IEEE World
Congress on Evolutionary Computation, Portland,
OR, June 20-23, 2004.

[33] Min-Jea Tahk and Byung-Chan Sun, “Co
evolutionary Augmented Lagrangian Methods for
Constrained Optimization”, IEEE Transactions On
Evolutionary Computation, Vol. 4, No. 2, July 2000.

[34] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao,
Ponnuthurai Nagaratnam Suganthan, Qingfu Zhang, “
Multiobjective evolutionary algorithms: A survey of
the state-of-the-art,” Swarm and and Evolutionary
Computation”, March 2011.

Int'l Conf. Artificial Intelligence | ICAI'15 | 81

