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Abstract – (ICAI’15) The general nonlinear 
programming (NLP) problem requires finding the 
optimum point (minimum or maximum) of a function of n 
real variables subjected to some given constraints. This 
research presents the parallel implementation of the 
Rosen-Suzuki Frst function and the Himmelblau function 
using a two-population genetic algorithm. There are 
numerous situations in science and engineering where the 
optimum is bounded which adds complexity to the 
optimization problem.  The approach used in this 
research by [32] uses evolves two populations (male and 
female).  One population is evolved inside the feasible 
domain of the design space and the second population is 
evolved outside this feasible domain.  In this research a 
version of this parallel, two-population algorithm was 
implemented.  The results of this research show that the 
two-population parallel genetic algorithm is effective and 
accurate for these functions. 
 
Keywords: Evolutionary algorithms, constrained 
optimization problems, parallel algorithms.  
 
 

1 Introduction 
A constrained optimization problem is usually 

written as a nonlinear programming (NLP) problem of the 
following type.  The problem seeks to minimize: 

  
F(x1, …, xi, …, xn) (1≤ i ≤ n)  
 
subject to side constraints: 
 
 xi min ≤ xi ≤ xi max (1≤ i ≤ n)  
 
and inequality and equality constraints: 
 gj (x1, …, xn) ≤ 0 where (1≤ j ≤ m)  
hj (x1, …, xn) = 0 where (1≤ j ≤ p).   
 
For these types of NLP problems, there are n 

variables, m inequality constraints, and p equality 
constraints.  The function F(X) is called the objective 
function,  gj(X) is the jth inequality constraint, and hk(X) is 

the kth equality constraint.  The ith variable can varies in 
range from [ximin .. ximax].   

Searching the boundary between the feasible and 
the infeasible regions is critical for any function to find 
the global optimum.[30]  The inability of evolutionary 
systems to search precisely the boundary area is the main 
reason for difficulty in locating the global optimum.  
Some of the constraints are active at the global optimum.   

For this reason, in may constrained optimization 
problems, it is more difficult to locate the global optimum 
[23].  A two-population evolutionary computation 
approach was proposed in paper [31] where two 
populations of individuals are evolved: one of feasible 
and the other of infeasible by which the search pressure 
upon the boundaries of the feasible space can be 
increased.  Feasible individuals (also called females) are 
the ones that are evolved inside (including the boundaries 
of the feasible space), while the infeasible individuals 
(also called males) are evolved outside the feasible space. 
These two populations are subject to mutation and asexual 
crossover.  Female-male crossover ensures the search 
pressure on the boundaries of the feasible space. This 
crossover can be performed between two or more feasible 
and infeasible individuals, and with, or without, favoring 
the better-fit females or the better-ranked males. 

When two populations, one of feasible and one of 
infeasible individuals, are distinctively evolved, these two 
populations interact systematically (rather than 
occasionally) for the purpose of exploring the boundaries 
of the feasible space.  Since the criterion based on which 
individuals are assigned to the two populations does not 
change during evolution, the behavior of the two 
populations is easier to understand. 

The two-population evolutionary algorithm 
described in this paper, was proposed by [31] and was 
also implemented with two other constrained optimization 
problems in [30].  This algorithm was initially tested for 
functions with two variables; this project works with the 
algorithm for functions with multiple variables and is 
tested.  This algorithm is implemented using C++ and 
MPI on a small parallel computing cluster.  The program 
was tested for two benchmark problems from literature: 
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the Rosen-Suzuki function and the Himmelblau function.  
Evaluation of the effectiveness of this technique is 
provided in sections 5 and 6. 

 

2 Related Research 
 Genetic algorithms (GAs), developed by Holland 

(1975), have traditionally used a more domain 
independent representation, namely, bit-strings. However, 
many recent applications of GAs have focused on other 
representations, such as graphs (neural networks), Lisp 
expressions, ordered lists, and real-valued vectors. 

GAs are highly abstract computational models 
inspired by natural selection [14]. Standard GAs apply an 
a priori defined fitness function (e.g. the function one 
wants to optimize) to an individual.  They typically use an 
all-at-once calculation where individuals are evaluated 
immediately after their creation (i.e. birth).  Fitness 
calculation in nature is substantially different [1].  It 
consists of a continuous series of tests during an 
individual's life originating from a complex environment.  
This environment is not only influenced by the animal's 
own actions but also by the other individuals as well as 
other processes occurring in the world (e.g. 
climatologically or geophysical changes).  Summarizing 
one can say that - in contrast with GAs - nature uses a far 
more partial but continuous fitness evaluation in order to 
adapt to a complex world. 

One of the key problems for using GAs in practical 
applications is to design the fitness function, particularly 
when we do not know where the global optimum is 
located [19] [22] [33].  A comparative estimate of how 
good as a solution turns out to be enough in most cases.  
However, for constrained problems, determining a way to 
estimate how close in an infeasible solution from the 
feasible region is difficult since most real-world problems 
have complex linear and non-linear constraints, and 
several approaches have been proposed in the past to 
handle them [14][33].  From those, the penalty function 
seems to be yet the most popular technique for 
engineering problems, but the intrinsic difficulties to 
define good penalty values makes harder the optimization 
process using a GA [6] [7] [19].   
 

3 Two Population Parallelization 
Technique 
Evolutionary algorithms are characterized by their 

repeated fitness evaluation of the individuals in the 
population.  Therefore, it is natural to view them as 
parallel algorithms.  In generational evolutionary 
algorithms, substantial savings in elapsed time can often 
be obtained by performing fitness evaluations in parallel.  
In the simplest form of parallelism, a manager process 
performs all the function of the evolutionary algorithm 
except evaluation of individuals, which are performed in 

parallel by worker processes operating on separate 
processors.  The master process waits for all workers to 
return the evaluated individuals before varying on with 
the next generation. 

The algorithm in this research is implemented using 
MPI in which there are n processes that work 
simultaneously using inter-process communication.  This 
performs well when a complex function is being used and 
there is more number of iterations that are to be 
performed. 

A “Manager-Worker” paradigm is used to 
implement the algorithm. In this paradigm, there is one 
Manager process and several workers processes and is 
depicted in Figure 1.  The Manager generates uniform 
random points and sends these points to the workers; the 
workers process these points (check the feasibility and 
compute the value of the function at that point if it is a 
feasible point) and send back the processed results.  The 
manager would then differentiate them into female and 
male based on their feasibility value (female if it is zero 
and male if not).  Then the manager ranks the female 
individuals based on their fitness and the male individuals 
based on the number of constraints they violate.  
Generations of new individuals and mutating female and 
male individuals would also happen.  The female-male 
pairs are formed with the females choosing their males in 
the rank decreasing order.  Then the crossover is 
performed and all the steps are until the best female is 
constant for a given number of individuals. 

 

 
Figure 1: Manager-Worker paradigm for this 
research. 

 

4 Test Functions 
In this project, a technique based on the concept of 

co-evolution is used to create two populations that interact 
with each other in such a way that the objective function 
is minimized.  The approach has been tested with two 
single-objective optimization problems with linear and 
non-linear inequality constraints and its results are 
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compared with those produced by other GA-based and 
mathematical programming approaches. 

This research is tested using two benchmark 
problems from literature: the Rosen-Suzuki function and 
the Himmelblau function.  This section provides the 
description of these two constrained optimization 
problems. 

  
4.1 Rosen –Suzuki Fist Function (in four 

variables) 
The Rosen-Suzuki Fist problem is a function in four 

variables with three non-linear constraints on the 
variables.  Hock and Schittkowski introduced it in 1981.  
The object function is 

 
 

 
The nonlinear constraints are: 

 
 

 
 

 
 

 
The theoretical value for the optimum minimum for 

this function is -44 and is located at the point (0, 1, 2, -1).  
The best value that is obtained using this research is -
43.9756 at the point (-0.00021, 0.99821, 2.00281, -
0.98912).  The best value reported in literature is (-
0.0005463221, 1.000618, 2.000213, -0.9996195) at which 
the optimum value for the function is -44 using the 
GaNOP system[REF]. 

 
 

4.2 Himmelblau Function (in five variables) 
Himmelblau originally proposed the Himmelblau 

nonlinear optimization problem in five variables in 1972.  
This function was selected since it was used as a 
benchmark for several other GA-based techniques.  The 
Himmelblau function has five design variables (x1, x2, 
x3, x4, x5), six nonlinear inequality constraints, and ten 
boundary conditions.  The problem is mathematically 
stated as follows: 
 
Minimize: 
 

 
 

Subject to: 
 

 
 

 
 

 
 

with: 
 

 
 

 
 
 
 
 

 

5 Summary of Results 
The testing and analysis of the results for the Rosen-

Suzuki Fist and HimmelBlau functions is presented in this 
section.  The parallel program for each of these functions 
was run in several configurations varying the number of 
processes and varying the female and male population 
sizes.   
 
5.1 Rosen-Suzuki Fist Function 
 The theoretical value for the optimum minimum 
for this function is -44 and is located at the point (0, 1, 2, -
1).  The best value that is obtained using this research is -
43.9756 at the point (-0.00021, 0.99821, 2.00281, -
0.98912). 
 Following is a table (table 1) in which the 
average value for 50 runs with a particular number of 
processes is performed.  The table shows the number of 
processes (in other words, no. of workers), the female and 
male population, the number of iterations (for which the 
best female would be constant), the total time for the run 
(algorithm time plus function value computation time), 
the number of function calls and the optimum point for 
the function. The table shows it only for up to 8 
processes, the experiment is performed for up to 20 
processes, however, the graph below is the one that is 
drawn using the number of processes and the total 
required for the completion of the algorithm. 
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Table 1: Rosen-Suzuki Fist function results. 
 
 Figure 2 shows the graph of time vs. number of 
processes for algorithm computed at the manager process. 
Figure 2 shows the graph for the number of processes vs. 
the total time (time for algorithm plus the function value 
computation time at the worker processes). From the 
graph, it can be seen that as the number of processes 
increases, the time decreases. The graph is not a 
decreasing linearly, since the total time is dependent on 
the function computation time calculated at the worker 
processes (also depends on the number of function calls). 
Figure 3 clearly shows all the computation times in a 
single graph that shows that the time for algorithm is 
increased whenever there is an increase in the function 
value computation time (which depends on the number of 
function calls). 
 
  
 

 
Figure 2: Time vs. number of processes for the Rosen-
Suzuki Fist function. 
 

 
Figure 3: Algorithm, function, and total time vs. 
number of processes for the Rosen-Suzuki Fist 
function. 
  
5.2 Himmelblau Function 
 This problem was originally proposed by 
Himmelblau and solved using the Generalized Reduced 
Gradient method (GRG). Gen and Cheng solved this 
problem using a genetic algorithm based on both local 
and global reference. The result shown in Table 4 is the 
best found with their approach. 
 The mean for the 100 runs performed is f(X) = -
30786.5. The worst solution found is f(X) = -30692.9, 
which is better than the best solution previously reported. 
The best solution found with this algorithm is f(X) = -
30868.9 (corresponding to x1= 78.7032, x2 = 33.7124, x3 
= 27.83889, x4 = 44.2504 and x5 = 43.1159). 
 There are 20 female and 15 male points 
generated every iteration.  This was run using 8 
processing units in which the best solution remained 
constant for 1000 iterations. The duration for the run is 
0.419021 sec. The number of function calls is 59585.  
Table 2 summarizes the results of the two-population 
algorithm used in this research with other algorithms. 

 
Table 2: Comparison of current algorithm with 
previous techniques for the Himmelblau function. 
 

6 Conclusions and Future Work 
Solving a constrained nonlinear programming 

problems using a co-evolutionary algorithm was 
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implemented.  The two-population evolutionary algorithm 
proposed by [31] was used in which two distinct 
populations are evolved; feasible (females) and infeasible 
(males). The interaction between these populations 
concentrate on he boundaries of the feasible space.  
Mutating the female and male populations induced search 
capabilities inside the feasible space and parallel to the 
feasible-infeasible boundary.  Figure 4 and Table 2 
presents a table of a summary of the results in this 
research. 

 

 
Figure 4: Summary of results for this research. 

 
There is no penalty factor that is involved in 

constraint handling; hence there is a clear distinction can 
be made between the feasible and infeasible individuals. 
Parallel Implementation of the Co-evolutionary Genetic 
Algorithm has been a long awaited development for the 
evolutionary algorithms as mentioned in [7] [19] [31].  In 
this project, the algorithm has been implemented using 
MPI, which uses multiple processes that run in parallel, 
by which the computation time is reduced. This 
implementation worked well with several test problems 
that were previously solved using GA-based and 
mathematical programming techniques, producing in most 
of the cases results better than those previously reported. 
The technique is able to achieve such good results with 
relatively small populations and using a relatively low 
number of generations. 

Functions of multiple variables used in various 
disciplines of Engineering can be solved for the global 
optimum using this research. This research provides 
sound results in terms of the computation time and the 
number of generations that need to be evolved for a more 
accurate value.  The project is tested using the two 
benchmark problems from the literature.  A detailed 
comparison of the results obtained from the project with 
that of those from the literature is presented. 
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