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Abstract— The present paper proposes an application of
potentiality learning to supervised learning. The potentiality
has been developed as a measure of the importance of
components in the self-organizing maps (SOM) to extract
important input neurons. The main characteristics lies in
its simplicity and thus it can be easily implemented. If it
is possible to use it for conventional supervised learning,
better performance can be expected with much simpler
computational method. The potentiality is defined by the
variance of input neurons and it is incorporated into super-
vised learning. Using the potentiality inside, two data sets
were used to evaluate the performance. The results show
that the potentiality method outperformed ones without it
and other conventional methods in terms of generalization
performance.
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1. Introduction
1.1 Potentiality and Its Actualization

Neural networks have been applied to many problems with
better performance than that by the conventional statistical
methods. Though the performance of neural networks has
been improved, it can be said that the potentiality of com-
ponents of neural networks cannot be fully explored [1] . The
potentiality is considered as the implicit capability of neural
networks. The potentiality can be actualized or realized in
terms of a number of different forms. For example, the
potentiality is realized as the properties of components which
can be used to interpret network behaviors or to improve
generalization performance. One of the main problems is
that little attempts have been made to determine the main
potentiality of components of neural networks.

In the present paper, the simple potential method is
proposed with two main characteristics, namely, variance
and separation. First, the potentiality is supposed to be rep-
resented in the form of variance of connection weights. The
potentiality is considered to be higher when the neurons re-
spond to input patterns as differently as possible. Second, the
potentiality determination and use phase are separated. There
have been many attempts to interpret network behaviors and

to improve generalization [2], [3], [4], [5], [6] [7], [8], [9].
One of the main difficulties inherent to those approaches
is that the errors between targets and actual outputs are
minimized and simultaneously generalization performance is
improved or interpretation is improved. Error minimization
and performance improvement are sometimes contradictory
to each other. For example, to have more interpretable
networks, internal representations should be simplified as
much as possible, which may degrade the performance of
neural networks. To overcome those problems, a new method
is proposed, where potentiality determination and actual-
ization phase are completely separated. For example, the
potentiality is determined roughly and then this potentiality
is incorporated into the process of error minimization. Then,
contradiction between error minimization and potentiality
determination is minimized.

1.2 Relations to the Input Neuron Selection
To demonstrate the potentiality method, the method is ap-

plied to the detection of important input neurons (variables)
[10], [11], [12], [13], [14] . The variable selection has played
important roles in improving the performance of neural
networks. In particular, in application, the interpretation of
input variables is necessary. However, in this interpretation,
neural networks are said to be weaker than the conventional
methods such as the regression analyses. The regression
analysis has been used in many practical problems, because
the coefficients obtained by the regression analysis can be
interpreted, though the actual generalization performance is
much weaker.

To have more interpretable input variables or input neu-
rons, the potentiality is introduced. The potentiality is
defined as the capability of neurons responding to input
patterns as differently as possible. Thus, the potentiality is
defined as a variance of connection weights. Because the
potentiality is an abstract concept, it can be actualized. In the
potentiality actualization phase, the potentiality is actualized
so as to represent the importance of input neurons.

1.3 Outline
Section 2 introduces the potentiality in the supervised

learning. The method is composed of two phase. First, the
potentiality determination phases is applied to detect the
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important input neurons with higher potentiality. Then, the
potentiality is normalized and the corresponding connection
weights are modified. Then, the final fine tuning phase is
performed. In Section 3, the method was applied to the
two data sets. In both sets, generalization performance was
improved by the potentiality.

2. Theory and Computational Methods
2.1 Potentiality Actualization Learning

The potential actualization learning aims to determine
the potentiality of neurons and actualize its potentiality
as much as possible. As mentioned, in the potentiality
method, the determination of the potentiality and its actual
use is separated to facilitate learning. The computational
procedure is composed of two phases, namely, potentiality
determination and actualization phase in Figure 1. In the
potentiality determination phase, the potentiality of neurons
is determined by using the variance of connection weights.
Then, connection weights are given into the potentiality
actualization phase as initial connection ones. In addition,
connection weights are weighted by the relative potentiality
to take into account the importance or potential importance
of input neurons as shown in Figure 1(b). Thus, in the
potential actualization phase, connection weights are actually
updated to take into account the potentiality and realize or
actualize potentiality.

2.2 Individual Potentiality
For this, it is needed to define the potentiality of individual

input neurons. The potentiality of an input neuron is defined
by

vk = exp

⎛
⎝R

M∑
j=1

(wjk − wk)
2

⎞⎠ , (1)

where wjk denote connection weights from the kth input
neuron to the jth hidden neuron and

wk =
1

M

M∑
j=1

wjk. (2)

The coefficient R determines the intensity of the variation
of connection weights and should be experimentally deter-
mined. The potentiality is based on the variance of input
neurons toward output neurons. It is natural to suppose that
when input neurons respond to output neurons with large
variation, the input neurons surely play important roles.
This means that the neurons with large variation have high
potentiality to represent input patterns. In addition, by the
exponential function, when the variation of neurons becomes
larger, the expected potentiality increases exponentially or
excessively. This property is needed to intensify a few
number of important neurons.
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Fig. 1: Network architecture with the potentiality determi-
nation (a) and actualization (b) phase.

2.3 Selective Potentiality

The selective potentiality is defined by using the concept
of information in the information-theoretic methods [15],
[16], [17], [18], [19]. When the information increases in
competitive learning, only one neuron finally fires, while
all the other neurons cease to do so. This concept of
information-theoretic competitive learning is directly trans-
lated into the potentiality. When the selective potentiality
increases, finally only one neuron tend to have the maximum
potentiality.

For using the information theoretic concepts, it is needed
to normalize the individual potentiality

p(k) =
vk∑L
l=1 vl

. (3)

The selective potentiality is defined by the decrease from
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maximum uncertainty to observed uncertainty

I = 1 +

∑L
k=1 p(k) log p(k)

logL
. (4)

When this potentiality increases, a smaller number of input
neurons tend to have larger individual potentiality.

2.4 Potentiality Determination and Actualiza-
tion Phase

The method is composed of the potentiality determination
and actualization phase. In the determination phase, after
finishing the learning, the potentiality is computed with the
parameter

R =
r

L− 1
, (5)

where L and r denote the number of input neurons and the
learning parameter.

Then, the relative potentiality is computed and with this
potentiality, the potentiality actualization is initialized

newwjk = oldwjkp(k). (6)

With these connection weights, the errors between targets
and outputs are minimized

E =
1

2S

S∑
s=1

N∑
i=1

(ysi − osi )
2, (7)

where S and N denote the number of input patterns and
output neurons, and ysi are the targets for the outputs osi

1.
This means that the potentiality is incorporated into the
leaning processes as initial weights. The experiments results
show that the graduate decent learning is much affected by
the initial conditions and this method is simple and effective
to take into account the potentiality.

3. Results and Discussion
3.1 German Credit Approval Data Set

The first data set is the German credit data set from the
machine learning database. The number of input patterns
was 1000 with 24 input variables [20].

3.1.1 Selective Potentiality Increase
Figure 2 shows the selective potentiality as a function of

the parameter r. As shown in the figure, the selective poten-
tiality increased gradually when the parameter r increased.

Figure 3 show the relative potentiality when the parameter
r increased from 1.0(a) to 5.0(h). When the parameter r
is 1.0 in Figure 3(a), the relative potentiality distributed
almost uniformly. Then, when the parameter r increased
from 1.2 (b) to 1.6 (d), the potentiality became gradually
differentiated. Then, the parameter increased further from
2.5 (e) to 5.0 (h), several input neurons tended to have much
higher relative potentialities.

1The hidden and output activation function were the the hyperbolic
tangent sigmoid and linear one and the early stopping method was used.

1 2 3 4 5
0

1

2

3

4

5

6

7
x 10

-3

r

S
e
le

c
ti

v
e
 p

o
te

n
ti

a
li

ty

Fig. 2: Selective potentiality as a function of the parameter
r for the German credit data set.

Table 1: Summary of experimental results of generalization
for the German data set with ten different runs.

Methods R Average Std dev Min Max

Potential 4.4 0.2187 0.0340 0.1600 0.2600

Early stopping 0.2367 0.0273 0.1867 0.2667

SVM 0.2613 0.0344 0.2067 0.3133

Logistic 0.2313 0.0308 0.1733 0.2733

3.1.2 Generalization Performance

Figure 4(a) shows generalization errors as a function of the
parameter r. When the parameter r increased or the selective
potentiality increased, the generalization errors tended to
decrease and seem to reach the stable states. Figure 4(b)
shows the standard deviation of the generalization errors.
One of the main characteristics is that the standard deviation
increased when the parameter increased. This means that
the generalization errors fluctuated when the parameter R
increased.

3.1.3 Summary of Results

Table 1 shows the summary of experimental results related
to the generalization performance. In the table, the values in
bold faces show the minimum values. As can be seen in the
table, except the standard deviation, the potential method
shows the best performance with the minimum values in
the average, minimum and maximum values. On the other
hand, the standard deviation was the largest by the potential
method. As pointed out in the previous section, the standard
deviation tended to be larger by the potentiality method.

Experimental results confirm that generalization perfor-
mance was improved by increasing the potentiality but the
errors tended to fluctuate for the larger parameter values.
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(a) r=1.0 (b) 1.2 (c) 1.4 (d) 1.6

(e) 2.5 (f) 3.3 (g) 4.2 (h) 5.0

Fig. 3: Potentiality p(k) of input neurons for four input neurons for the German credit data set.
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Fig. 4: Generalization errors (a) and the standard deviation of the errors (b) by the potentiality method for the German
credit data set.

3.2 Biodegradation Data Set
The second data set is also from the machine learning data

set where 41 attributes and 1055 patterns, which must be
classified into 2 classes (ready and not ready biodegradable)
[20].

3.2.1 Selective Potentiality
Figure 5 shows the selective potentiality as a function

of the parameter r. The selective potentiality increased
gradually when the parameter r increased.

Figure 6 shows the relative potentiality when the parame-
ter r increased from 1.0(a) to 5.0(h). When the parameter r
was 1.0 in Figure 6(a), the potentiality was almost uniform.
Then, when the parameter r increased gradually, several
potentialities became larger. Finally, when the parameter
r was 5.0 in Figure 6(h), some potentialities were clearly

differentiated.

3.2.2 Generalization Performance

Figure 7(a) shows generalization errors as a function of
the parameter r. The generalization errors decreased for the
smaller values of the parameter and then fluctuated. Figure
7(b) shows the standard deviation of the generalization
errors. As can be seen in the figure, the standard devia-
tion decreased gradually for the smaller parameter values.
Then, the standard deviation became larger when the values
became larger.

These results seem to suggest that the potentiality is not
related to the improved generalization performance as shown
in Figure 7(a) and 5. This can be explained by seeing
the standard deviation of generalization errors. When the
parameter R increased, the generalization errors fluctuated
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Fig. 5: Selective potentiality as a function of the parameter
r for the bio-degeneration data set.

when the parameter R was larger in Figure 5(a). However,
the standard deviation in Figure 7(b) greatly fluctuated when
the parameter r became larger. This large standard deviation
surely affected the overall generalization performance.

3.2.3 Summary of Results
Table 2 shows the summary of experimental results. The

potentiality method showed the best performance in terms
of the average and maximum errors. On the other hand, for
the minimum errors, the logistic regression method showed
the best performance and the potentiality method showed the
second best performance. The potentiality method had the
second largest standard deviation.

The experimental results also show that the present
method of potentiality is good at improving generalization
performance. The good performance is explained by two
points, namely, the effectiveness of potentiality and separa-
tion of two phases. First, the potentiality as the variance of
input neurons is effective in improving the generalization
performance. When neurons respond to input patterns as
differently as possible, the neurons play very important roles
in learning. For example, naturally, neurons, responding only
uniformly to input patterns, are considered to be unimpor-
tant. Second, in the method, the potentiality determination
and use phase were separated. Only when the potentiality is
determined, it is used in learning. This separation contributes
to the improved performance.

4. Conclusion
The present paper proposes a new type of learning called

"potentiality actualization learning". The potentiality implies
the potentiality of input neurons, which is supposed to
be realized in many different forms. In this paper, the
potentiality is represented in terms of the variance of input
neurons. The learning is conducted to realize this potentiality

Table 2: Summary of experimental results of generalization
for the bio-degeneration data set with ten different runs. The
logistic function was used to normalize the data.

Methods R Average Std dev Min Max

Potential 3.7 0.1184 0.0221 0.0696 0.1456

Early stopping 0.1215 0.0206 0.0823 0.1456

SVM 0.1234 0.0192 0.0886 0.1519

Logistic 0.1316 0.0303 0.0633 0.1646

of input neurons. The potentiality actualization learning is
composed of two phases. In the first phase of potentiality
determination, the potentiality is determined. In the second
phase of the potentiality actualization, the learning is con-
ducted, incorporating the information on the potentiality.

The method was applied to two data sets, namely, German
credit approval data set and bio-degradation data set. In
both cases, the potentiality could be increased by changing
the parameter. In addition, generalization performance was
improved. Comparing with those by the other conventional
methods like the SVM, performance was better. However,
the standard deviation of the generalization errors tended to
be larger than that by the other methods. If it is possible to
reduce this large standard deviation by some methods, the
generalization by the present method can be more improved.
Thus, it is needed to develop a method to stabilize learning
processes for the potentiality actualization learning.
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Fig. 6: Potentiality p(k) of input neurons for four input neurons for the bio-degeneration data set.
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