
PathFinder: An autonomous mobile robot guided by Computer
Vision

Andre R. de Geus1,2, Marcelo H. Stoppa1, Sergio F. da Silva1,2
1Modeling and Optimization Program, Federal University of Goias, Catalao, Goias, Brazil

2Biotechnology Institute, Federal University of Goias, Catalao, Goias, Brazil

Email: geus.andre@ufg.br, mhstoppa@gmail.com, sergio@ufg.br

Abstract— Localization is a key research topic in mobile
robotics, responsible to assist robotic systems equipped with
sensors, to navigate with certain autonomy. Unfortunately,
the sensors shows frequently reading errors that disturb its
location. In this paper, we describe the development of a
computer vision system for autonomous navigation of a robot
in a simulated environment. The system uses a unattached
camera to detect the robot, concentrating the localization
problem in the feature extraction of the images. Also, it
uses Artificial Intelligence algorithms to determine the path
in order to find the best solution. Our results show that
the robot was able to follow the path and reach the goal,
validating the proposed method.

Keywords: Autonomous Navigation, Path Planning, Artificial

Intelligence, Computer Vision

1. Introduction
According to [10], mobile robots are automatic transport

devices, indeed, mechanical platforms equipped with a lo-

comotion system able to navigate through a given environ-

ment, endowed with a certain level of autonomy to their

locomotion. Autonomy is not just about energy sufficiency

issues, but also the processing capability to plan and execute

some tasks. Navigation in unknown environments is one

of the areas with great interest to mobile systems, offering

wide range of applications, from systems that assist in-house

cleaning [5] to dangerous operations of search and rescue

[6].

Navigation is an intrinsic feature of robots, allowing them

to move freely into its environment until reach its goal.

According to [7], dead-reckoning is a classic method of navi-

gation, whose accuracy depends directly on the quality of the

sensors used. Given that its location is based in previously

locations, is inevitable the accumulation of position errors.

The compensation of position errors demands integration

of multiple sensors. Combining their data, improves signif-

icantly the estimation of robots location in its environment.

The technique proposed by [3] uses sensors that capture the

direction, acceleration and engine revs. The authors demon-

strate various improvements considering that heterogeneous

sensors have different perceptions and can cooperate with

each other.

Looking to increase the accuracy, adding information

extracted from images provided by a webcam, shows to

be an potential alternative to assist the path planning and

execution. This is the motivation for the proposed work, that

uses a webcam with panoramic view, to guide a robot to a

goal, without human intervention and use of sensors.

2. Problem Description
The evaluated system consists of a robot with colourful

parts that assist in determining its position, which is built

under the Mindstorms NXT® platform. Big boxes are used

to simulate obstacles that blocks the robots way. The goal is

represented by a small sheet on the floor. A low-resolution

webcam positioned on the environment’s ceiling. The pro-

cessing is performed by a laptop connected to the webcam,

which sends the movement commands to the NXT®. Fig. 1

illustrates the environment layout and its components, where

the target is a green rectangle, and the obstacle is a white

rectangle.

Fig. 1: Side view PathFinder’s environment layout

The environment layout has restrictions on the objects

colours, due to the filters used to localize them. The robot

has blue colour on its head and red in its tail (Fig. 2). The

obstacles are white boxes of the NXT® kit and the goal is

a small green sheet.

Int'l Conf. Artificial Intelligence |  ICAI'15  | 55



Fig. 2: PathFinder’s design

The system uses Computer Vision [2], [8], [12] and Arti-

ficial Intelligence [13], [9] techniques. The system modules

are illustrated in Fig. 3 and are responsible for:

1) Image acquisition using a webcam;

2) Feature extraction that determines the position of

robot, obstacles and target;

3) Path planning to find the best solution avoiding obsta-

cles;

4) Communication between the computer and robot;

5) Mapping update that also checks if the objects stay at

the same place in the map;

6) Goal test to check if the robot reached the goal

Fig. 3: System Modules Flowchart

3. System Development
The autonomous control system is implemented in the

programming language Python, which although slower than

other languages has become very popular in a short time, due

to its simplicity and clean syntax. Furthermore, it’s easily

integrated with C/C++ codes, allowing to involve them in

Python wrappers. This provides two advantages: have a fast

code as the original C/C++ code and easy syntax coding.

Two libraries are used: OpenCV (Open Source Computer

Vision), coded in C and C++ with interface to Python, which

has a wide range of Image Processing and Computer Vision

techniques; and nxt-python, an interface designed to send

commands interpreted by the NXT® brick, unlike NXC and

NXT-G, compilable languages that runs on the brick.

The next subsections will describe the approaches for each

module of the system shown in Fig. 3.

3.1 Image Aquisition
The system initializes sampling an image from the web-

cam through the OpenCV library, however this first image

should be discarded because it’s completely out of focus due

to insufficient time to focus adjustment implemented in most

webcams. To get around this problem, the system initializes

the webcam and waits 30 seconds, enough time to adjust the

focus.

The acquisition of image doesn’t takes into consideration

the quality of webcam resolution, so any low-cost webcam

can be used in the system. It happens due to the reduction

in the resolution of the image after the feature extraction

module described below. The new resolution is calculated

based on the minimum space that the robot can move in

a safe way. Therefore, any higher resolution provide for a

better hardware would be wasted. The next step will detail

the techniques used to define the objects positions.

3.2 Feature Extraction
This step has a big importance to the system, since the

navigation of the robot is based on the feature extraction of

the image obtained in the previous step, without intervention

of any other sensor. This step is subdivided in two groups of

interest, one used for navigation and the other to construct

the occupancy grid map:

1) Robot’s Position and Direction;

2) Obstacles and Target.

3.2.1 Robot’s Position and Direction
As described before, the robot has details in red and blue

on its edges, then to determine the robot’s position comes

down to locate the region that contains the greatest intensity

of one of these colours. Our approach uses the thresholding

technique described in [4], to determine the region in the

image that has a given colour. To detect the blue colour,

for example, he technique on channel zero index of image,

representing only the intensity of blue in each one pixel. It is

normal that images with regions in blue colour show greater

intensity on this channel as compared to regions of other

colours, which are also composed of blue. The result is a

56 Int'l Conf. Artificial Intelligence |  ICAI'15  |



binary image, indicating regions that present values higher

than the threshold determined.

Fig. 4: a) Segmented image of the robot. b) Binary image

applying threshold 70 on the blue channel.

Once the blue region of the robot is identified, the robot’s

position on the map is determined by the central pixel of

this area. The Python function that returns the median pixel

in shown in Fig. 5

Fig. 5: Python function that returns the median pixel of a

colour region

Likewise the previous step, the median pixel of the red

region is found, and assists in determining the direction of

the robot. In order to select the best technique to be used in

the system, two approaches were implemented and analysed.

The first approach uses SVM (Support Vector Machine),

a machine learning method presented by [14], to classify

which class a given image belongs. To implement this pro-

cedure, is used the scikit-learn library, that is able to classify

multiple classes. Five classes were criated: Up, Down, Left,

Right, and Null, corresponding to valid directions (multiple

of 90 degrees) for navigation and Null for any other invalid

direction (see Fig. 6).

Fig. 6: Class examples (Down(a), Null(b), Left(c))

To train the SVM, a set of several images was provided,

and the training parameter was calculated by the versor

[vx, vy] of the median pixel of the blue region (x2, y2),

with origin the median pixel of the blue region (x1, y1).

The versor is computed as follows:

vx =
(x2− x1)√

(x2− x1) + (y2− y1)

vy =
(y2− y1)√

(x2− x1) + (y2− y1)

(1)

The second approach uses only geometric equations

to determine the direction, using Python numpy library.

The arctan2 function receives as argument two values that

indicate the direction of the vector in a Cartesian plane

and returns the corresponding value of the angle formed by

these points in radians, in the range [−π, π]. With the vector

direction with the coordinates to the edges of the robot, is

used the rad2deg function to transform the result in degrees.

Fig. 7: Python function that returns the angle relative to the

Y axis.

With a preliminary simple comparison, it was observed

that both produce equivalent results for this problem, being

indifferent to to choose of one over the other. However, we

opted for the second approach to avoid the SVM training

step and storage of large data set required to the training

step. In trivial cases like this, is not obvious improvements

on the use of Machine Learning techniques, but in facial

expressions recognition applications, as in [1], the use of

SVM becomes indispensable.

3.2.2 Obstacles and Target
The obstacles placed in the environment block the robot’s

way, so it has to be identified and indicated as unavailable

Int'l Conf. Artificial Intelligence |  ICAI'15  | 57



places in the path planning step. The first approach tested

used edge detection algorithm to find the obstacles, but

ended up being discarded because it left the inside of the

obstacles as free points for navigation.

The obstacles, the Mindstorms NXT® kit white boxes,

such as for the robot, are localized by thresholding technique

in the blue channel of the image, using a blue threshold just

below the value we use to find the robot. The resulting binary

image contains the area of the boxes and also, undesirable

parts of the robot. This is corrected after removing a rect-

angle that represents the total area occupied by the robot,

around its blue dot calculated previously.

Use the same process of thresholding to determine the

goal’s central pixel, represented by the green sheet.

Once all the obstacles and goal are detected, the map

represented as an occupancy grid is constructed, as described

by [11]. All the available and unavailable indexes to navigate

and the goal are represent by 0, 1 and 99, respectively.

In this step, with obstacles and targets detected, the map is

constructed represented by occupation grid [11], assigning 1

to spaces occupied and 99 for the target in a two-dimensional

array.

3.3 Map Update
This step is important for saving a considerable amount

of processing time in the system, avoiding unnecessary path

planning calculations every time a new image is acquired.

This analysis process compares the current positions of the

objects with their positions when the path is previously

planned, determining if the path needs to be recalculated.

Therefore, in case the objects move for some reason, or any

intervention in the environment occurs, the robot is able to

recalculate the path and reach the goal.

Fig. 8: Python function that indicates a map change and

updates it

3.4 Path Planning
Once the map is constructed, indicating the position of the

robot, obstacles and target, we used the A-Star algorithm

to find the best path to be executed by the robot. As

demonstrated by [9], it is necessary to estimate a consistent

heuristic function to have a optimal results. The cost function

F is calculated by G + H, where G is the exact cost of the

starting point to the current point and approximate heuristic

function H is calculated by the number of movements

required to reach the goal, excluding the obstacles, moving

only horizontally and vertically.

Fig. 9: Python function to calculate the A* cost function F

In order to facilitate the execution of the path, the function

returns a new two-dimensional array with same size of the

constructed map. It contains only the path, indicating the

goal by the number 99, decreasing 1 each movement toward

the starting point. The Fig. 10 shows an example of the path

returned.

Fig. 10: Path planned by A* algorithm, with starting point

[2,3] e goal [15,15]

3.5 Robot’s communication
Using nxt-python interface, control commands to move

the servo motor are given through USB or Bluetooth con-

nections. The use of wires is not feasible in this context,

since it influence the feature extraction step and obstruct

the movement of the robot in its environment. Therefore,

even with the delay in wireless connections, we opted to

use Bluetooth.

As proposed by the model, the entire path execution is

based on visual information obtained by a webcam. There-

fore, every new image acquired, compares the neighbours

values of the robots current, considering only horizontal

and vertical movements. The highest value determines the

direction that the robot must follow, Fig. 11 (a) illustrates

an example where the robot is at position [x,y], 78 value,

and determines that the highest neighbour value is in the

position below, [x + 1, y] highlighted in red, readjusting his

new direction to 180 degrees relative to the Y axis.

58 Int'l Conf. Artificial Intelligence |  ICAI'15  |



Fig. 11: a) Robot’s direction adjustment, considering the

robot is at the position with value 78. b) Angle correction

based on the highest nighbour

Our developed approach is able to reach the goal even

with uncertainty and variability of servo motors described

by [13], which causes deviations even in simple commands

like move forward.

3.6 Goal test
To determine if the goal is reached, we compare the

coordinates of the robot and the goal, acquired in the feature

extraction step. If they have the same value, the system

finished. Otherwise, the system keeps sending commands

to move the robot towards the goal. The function is shown

below:

Fig. 12: Python goal test function

4. Conclusions
The present work showed that, through a computer vision

system, a mobile robot in a restricted environment layout can

be guided from one point to another without needing human

intervention. To perform this task, studies were carried out in

search algorithms, machine learning, computer vision, image

processing and robotic navigation to ensure the robot is able

to plan and execute the path satisfactorily.

Using thresholding techniques to object detection and A*

search algorithm to path planning, it was possible the sys-

tem, validating the proposed autonomous navigation method.

However, some aspects should be carefully analysed, such

as the computational cost of image processing and the

processing capacity of the hardware involved, since they are

determining factors to the system execution.

During the experiments, where the feature was evaluated

to determine if the robot had reached the target or not,

undesirable characteristics were observed in the system,

which can be improved in a future work. As an example,

one can cite that, in some cases the system drew trajectories

very close to obstacles. Even having enough space to keep

distance, providing possible collisions when doing bends

near the edges of obstacles, or even in cases which the robot

had totally unexpected behaviour, caused by different light

conditions in the environment forcing the recalculation of

the thresholds for the correct identification of the objects

position.

As possible improvements for future work, we would like

to:

• Use HSI colour system instead of RGB, aiming to get

better results in different light conditions.

• Use a safety margin around the obstacles to avoid

collisions.

• Change the path planning algorithm to select the best

path with the minimum possible number of turns, in

order to save time on the robot’s readjustment direction.

• Create a graphical user interface to simulate objects

position identified by the system.

5. Acknowlegment
The authors would like to thank the financial support of

the Brazilian National Council for Scientific and Techno-

logical Development (CNPq), the Foundation for Research

Support of the State of Goias (FAPEG) and the Brazilian

Coordination for the Improvement of Higher Education

Personnel (CAPES).

References
[1] ARI, I., UYAR, A., AND AKARUN, L. Facial feature tracking

and expression recognition for sign language. In Computer and
Information Sciences, 2008. ISCIS’08. 23rd International Symposium
on (2008), IEEE, pp. 1–6.

[2] FORSYTH, D. A., AND PONCE, J. Computer Vision: A Modern
Approach, 2nd ed. Pearson, 2012.

[3] FUKE, Y., AND KROTKOV, E. Dead reckoning for a lunar rover on
uneven terrain. In Robotics and Automation, 1996. Proceedings., 1996
IEEE International Conference on (1996), vol. 1, IEEE, pp. 411–416.

[4] GONZALEZ, R. C., AND WOODS, R. E. Digital Image Processing,
3rd ed. Pearson/Prentice Hall, 2007.

[5] IROBOT. irobot roomba: Vacuum cleaning robot.
Online : http://www.irobot.com/For-the-Home/Vacuum-
Cleaning/Roomba.aspx, 2015.

[6] KADOUS, M. W., SHEH, R. K.-M., AND SAMMUT, C. Caster: A
robot for urban search and rescue. In Proceedings of the 2005
Australasian Conference on Robotics and Automation (2005), pp. 1–
10.

[7] NELSON, W. L., AND COX, I. J. Local path control for an au-
tonomous vehicle. In Autonomous robot vehicles. Springer, 1990,
pp. 38–44.

[8] PRINCE, S. J. D. Computer vision : models, learning, and inference.
Cambridge University Press, 2012.

[9] RUSSELL, S. J., AND NORVIG, P. Artificial Intelligence: A Modern
Approach, third edition ed. Prentice Hall, 2010.

[10] SECCI, H. A. Uma Introdução a Robôs Móveis, 2008.
[11] SOUZA, A., MAIA, R., AROCA, R., AND GONCALVES, L. Prob-

abilistic robotic grid mapping based on occupancy and elevation
information. In Advanced Robotics (ICAR), 2013 16th International
Conference on (Montevideo, 2013), pp. 1–6.

Int'l Conf. Artificial Intelligence |  ICAI'15  | 59



[12] SZELISKI, R. Computer Vision: Algorithms and Applications.
Springer, 2011.

[13] THRUN, S., BURGARD, W., FOX, D., ET AL. Probabilistic robotics,
vol. 1. MIT press Cambridge, 2005.

[14] WESTON, J., MUKHERJEE, S., CHAPELLE, O., PONTIL, M., POG-
GIO, T., AND VAPNIK, V. Feature selection for svms. In NIPS (2000),
vol. 12, pp. 668–674.

60 Int'l Conf. Artificial Intelligence |  ICAI'15  |




