
Definition and mining of quasi-cyclical patterns in agroclimatic data

Geise K. S. Santos, Tércio A. Santos Filho, Marcos A. Batista and Sérgio F. da Silva
geise.kss@gmail.com, tercioas@gmail.com, marcos.batista@pq.cnpq.br, sergio@ufg.br

IBiotec, Federal University of Goiás, Catalão, GO, Brasil

Av. Dr. Lamartine Pinto de Avelar, 1120, CEP 75704-020

Abstract— Mining patterns in the association rules form are
important to extract knowledge in multidimensional datasets.
Several patterns occur in an approximately cyclical (quasi-
cyclical) form in the nature and the variations of these cycles
hinders the application of the traditional pattern mining
techniques. The literature methods identify only common
cycles. In this work, we presents the formal definition of
quasi-cyclical pattern concept and we develop a method
for cyclical and quasi-cyclical patterns mining. We con-
ducted experiments using quantitative temporal databases
to demonstrate that our temporal rules mining technique
achieve satisfactory results.

Keywords: Cyclical patterns, quasi-cyclical patterns, association

rules

1. Introduction
Currently, there are several techniques that discover asso-

ciation rules among items set according to the past trans-

actions. Association rules describe important relationships

among items or variables in databases. For example, the

purchase history mining from a supermarket can extract a

rule that all people who buy meat also buy beer, and then

we have the rule “meat → beer”.

The extracted rules occur with a certain frequency, this is

a cyclic variation over time. About the example cited before,

the rule “meat → beer” can be observed, for example, on

Saturdays during the interval 2pm-4pm. Then the people

who buy meat on Saturday in the period of 2pm to 4pm

hours also buy beer. There are also rules of associations that

occur cyclically in nature, as the summer and winter seasons

in a tropical region. These rules having cyclical occurrence

are denominated cyclical patterns.

Nowadays, several methods of mining temporal data have

been proposed [1], [2], [3], [4], [5], [6], [7], [8], [11], [12],

[13], [14]. However, these methods are not applicable to

mine generalized cyclical rules from quantitative temporal

data. There are cyclic pattern definitions in the literature,

as related in [9], but the proposed methods identify only

exact cycles and they do not detect events that happen

approximately cyclically (quasi-cyclical), like: the dry sea-

son and the rainy season, planting and harvest cycles of

agricultural crops, and others. In these cases, the application

of the traditional pattern mining techniques is more difficult

because the variations (start, end, duration, and intensity) of

the quasi-cycles.

In this work, we present the formal definition of the quasi-

cyclical pattern concept and we develop an approach to

detect these patterns from quantitative temporal databases.

This mining process of quasi-cyclical patterns in the form

of rules can be summarized as following: we use a genetic

algorithm (GA) to extract rules from quantitative tempo-

ral databases; The rules encoded by GA chromosome are

checked in the database to build a binary sequence according

to their occurrence, and non-occurrence in each period; We

calculate the ability of a chromosome based on how well

these binary sequences fit in a cycle.

This work is divided into the following sections: in the

Section 2, we present the definitions of cyclical and quasi-

cyclical patterns. In the Section 3, we describe the used

method and the designed algorithm to detect the quasi-

cyclical and cyclical patterns. Then we present results ob-

tained from synthetic binary sequences and real data in the

Section 4. Finally, in the Section 5, we discuss about the

work, its contributions and future work.

2. Definitions
Let V = {v1,v2, ...,vm} the set of observed variables.

Episode is the value of a given variable vi, observed at

a given instant of time. Let E = {e1, e2, . . . , em} a set

of episodes recorded every time instant t, where ei is an

episode associated with the variable vi. The set E, at a given

instant of time t, is called super-episodesets because they are

recorded values of all m variables, at a given instant t.
A given interval condition is used to analyze if a variable

value occurs at a given interval. An episodic condition is a

condition for an interval variable at a given time interval.

An association rule is an implication of the form X ⇒ Y
(if X then Y), where X and Y are conjunctions of episodic

conditions associated to the observation variables.

A primary cycle or period lcb is a contiguous sequence

(adjacent) of observed super-episodesets. The base cycle

length (or duration) lcb is given by the number of super-
episodesets of the base cycle, which is predetermined. Math-

ematically, each base cycle or period corresponds to the

time interval specified by [ti·lcb , t(i+1)·lcb). The base cycles

number ncb is calculated as � |D|
lcb

�, where |D| is the super-
episodesets number in the database.

Int'l Conf. Artificial Intelligence | ICAI'15 | 585

According Ozden et al. [9], cyclical patterns are rules that

occur in regular intervals from a given offset, for example,

weekly, monthly, yearly, and others. Let c an occurrence

cycle of the rule R, then:

c = (l, o),

where l is the cycle length, obtained by the number of base

cycles or the period between an occurrence and another; and

o is the offset, which corresponds to the first instant that the

rule R occurs, such that 0 ≤ o ≤ l.
The pattern of an association rule occurrence in the base

cycles or periods can be represented by a binary sequence,

which each value caractherize a period. Thus a value 1 at a

given period means that the rule occurred at this period and

a value 0 represents no occurrence of the rule. For example,

given the rule cited in the section 1 “meat → beer” and

the binary sequence 010110011010 to represent this rule

occurrence, then the rule has the cycle c = (3, 1). It means

that this rule occurrence starts in the second period (p1) and

it occurs every 3 times.

A quasi-cyclic pattern is the occurrence of certain rule

R in periods not totally accurate. A quasi-cyclic has a

frequency component or occurrence probability, which deter-

mines rate repetition of the the rule R in the periods. Given

a quasi-cycle qc, then:

qc = {(l, o), freq}
where l is the cycle length (calculated by the number of base

cycles or periods), which the rule occurrence is checked and

the o is the offset, i.e., the first period that R occurs, given

o ≥ 0. We can have o > l, when the quasi-cycle does not

occur in the first period. If o < l, then the rule occurs in

the first period. The probability of occurrence of the rule R,

0 ≤ freq ≤ 1, is given by:

freq =
nPeriods

np
,

where nPeriods is the periods number that R occurs from

o, and np is the cycles number from o.

Using again the binary sequence 010110011010 as exam-

ple, it has, for instance, the quasi-cycle qc = {(4, 0), 0.667}
with a frequency of about 66.7%. That is, there are 3 periods

of length 4 and the quasi-cycle appears in 66.7% of these

periods. Remember that each bit of the binary sequence

corresponds to the occurrence or not of the rule in a base

cycle.

3. Methodology
To detect quasi-cyclical patterns of rules occurrence, first,

we developed a mining technique of quantitative temporal

association rules based on the proposition of a specific

genetic algorithm to this task. The technique is described

in terms of the steps and operators of the genetic algorithm

and it is given by Algorithm 1.

Algorithm 1: Genetic Algorithm (GA)

Input: Coding of chromosome, fitness function,

constraints (attributes of antecedent of rules and

attributes of consequent of rules), maximum

length of interval (piv.(maxvi −minvi)),
value minimum of time window (janT ime).

Output: Quantitative temporal association rules.

1 Generate, randomly, a population of chromosomes (C);

2 Evaluate each chromosome Ci of the population based

in the fitness function;

3 Apply the method of niching;

4 Select the chromosomes by the roulette method until

complete the set of parents (matting pool);
5 Apply the uniform crossover taking pairs of individuals

in the set of parents;

6 Apply the uniform mutation in the newly generated

chromosomes;

7 Select the best chromosomes among parents and

children to the next generation;

8 While the maximum number of generations is not

reached, return to step 2;

9 Return the set of association rules encoded by the

population of chromosomes;

Fig. 1: Gene representation.

3.1 Coding of chromosome

In the chromosome coding, each database variable is

associated with a gene. If we consider m variables of

observation, then we will have m genes: G1, G2, G3,

. . ., Gm. Each chromosome gene Gi represents a episode

associated to a variable vi, i = 1 . . .m, and it is encoded as

shown in the Figure 1.

In the Figure 1, w is a weight that is compared to a

threshold to indicate if the episodic condition represented

by the gene will be part or not of the rule. AC is a flag to

indicate whether the episodic condition represented by gene

will be part of the antecedent (AC=0) or consequent (AC=1)

of the rule. v0 and v1 are the lower and upper limits of

the variable range, respectively. t0 and t1 are the lower and

upper limits of the time interval, respectively.

3.2 Fitness measure

The chromosome fitness measure is obtained by the rule

occurrence frequency of this chromosome. If the rules oc-

currence corresponds to an exact cycle, then the frequency is

1 and consequently the chromosome fitness is also 1. But, if

586 Int'l Conf. Artificial Intelligence | ICAI'15 |

the rule occurrence pattern is only quasi-cyclic, so the fitness

is the quasi-cycle frequency, calculated as:

freq =
nPeriods

np
,

where nPeriods is the number of periods that R occurs from

o, and np is the cycles number from o, given that freq ∈ R

and 0 ≤ freq ≤ 1. If we identified more than one quasi-

cycle, the fitness value is given as the frequency of the most

frequent quasi-cycle.

3.3 Genetic operators
We did the selection for reproduction using the roulette

method. The pairs of individuals selected for reproduction

are crossed by uniform crossover: select by random, a mask

with the chromosome length, which indicates what parent

chromosome will provide each gene to the first child; the

second child is generated by the mask complement.

Each chromosome selected for mutation will have one

mutated gene. The mutation can occurs in the weight w, in

AC (when restrictions were not applied on the variables that

composes the antecedent and consequent), or in the lower

limits (v0 and t0) and higher (v1 and T1) of the variables

intervals and of time.

3.4 Niching
We use a niching method , called clearing, described

in Petrowski [10]. We propose a distance measure for

quantitative temporal association rules in this method. The

following, we describe the clearing niching method and the

proposal distance measure.

The clearing method corresponds to the niching concept

enunciated by JH Holland in 1975: the resources sharing

by individuals population characterized by some similarity.

However, instead of sharing the available resources, the

clearing method provides a niche features only for the

best individual of each subpopulation. This allows that the

genetic algorithm performs a multimodal optimization (find

the optimal and optimum at the same time). Furthermore, the

clearing method of the enables that GA reduces the genetic

drift problem, when it is used together with an appropriate

selection operator.

The clearing is applied between the chromosomes fitness

evaluation and the selection operator application for the

crossing. The method uses a distance measure (dissimilar-

ity) among the chromosomes (the phenotype, in our case,

means association rules) to determine if they belong to the

same subpopulation or not. Each subpopulation will have a

dominant chromosome: witch has the highest fitness value

in the subpopulation. If a chromosome belongs to a subset,

then their dissimilarity related to the dominant chromosome

is smaller than a given threshold σ, called clearing radius.

The clearing method preserves the the dominant chromo-

some ability while decreases to zero the other chromosomes

ability. Thus, the clearing assigns all the resources of a

niche for a single chromosome: the winner. This method

corresponds to remove of the population, in an imaginary

way, all dominated individuals.

The clearing method also is generalizable to accept mul-

tiple winners chosen from the best individuals of the niche

[10]. The niche ability is defined as the maximum number of

chromosomes that a niche can have. If the capacity is greater

than 1, then the population has more than one winner. If the

niche capacity is equal to the population size, the clearing

effect disappears and the search method becomes a standard

GA. Thus, the choice of the niche capacity between 1 and

the population size provides intermediate situations between

the maximum clearing effect and a standard GA search.

The algorithm 2 presents a clearing method as in

Petrowski [10]. Consider C (the chromosomes population)

and nC (chromosomes number in the population) as the

global variables. Adding, σ (the clearing radius) and κ
(capacity of each niche) are the input parameters. The

variable nbWinner counts the number of population winners

associated to the current niche. The chromosomes population

C is represented by a vector of nC chromosomes.

Algorithm 2: Clearing niching

Input: σ (clearing radius), κ (capacity of each niche).

Output: Clearing – allocation of the niche resources

for the the fittest individual.

1 SortFitness(C);

2 for i ← 0 to nC − 1 do
3 if Fitness(C[i]) > 0 then
4 nbWinners ← 1;

5 for j ← i+ 1 to nC − 1 do
6 if Fitness(C[j]) > 0 and

Distance(f(C[i]), f(C[j])) < σ then
7 if nbWinners < κ then
8 nbWinners ← nbWinners+ 1;

9 else
10 Fitness(C[j]) ← 0;

11 end
12 end
13 end
14 end
15 end

The clearing algorithm (Algorithm 2) uses three functions:

• SortFitness(C): ordering the chromosomes population

in the fitness order.

• Fitness(C[i]): returns the i-th chromosome ability of the

population C.

• Distance(f(C[i]), f(C[j])): returns the distance between

the phenotypes of population chromosomes;

Int'l Conf. Artificial Intelligence | ICAI'15 | 587

• f(C[i]): returns the chromosome C[i] phenotype. In our

case the phenotype is a quantitative temporal associa-

tion rule.

3.5 Calculating the distance between associa-
tion rules

To take two association rules:

R = (CAR(vj1) AND . . . AND CAR(vjn))

⇒ (CCR(vj1) AND . . . AND CCR(vjm))

and

S = (CAS(vj1) AND . . . AND CAS(vjo))

⇒ (CCS(vj1) AND . . . AND CSS(vjp))

where CAR(vji), CCR(vji), CAS(vji), CCS(vji) are

episodic conditions related to some variable vji of the

database. Each episodic condition has the form:

vi ∈ [v0i, v1i] in the time interval [t0i, t1i]

where vi is any database variable. For a given rule R,

the intersection of variables associated to the precedent

(VAR) episodic conditions with the variables associated to

consequent (VCR) episodic conditions must be empty, ie,

VAR ∩ VCR = ∅.

The distance between R and S, denoted by

Distance(R,S) is given by the algorithm 3. For each

episodic condition in the antecedent rule R, CAR, we

check if there is any episodic condition in the antecedent

rule S, CAS , which is comparable to CAR. Two episodic

conditions are comparable if they refer to the same variable.

If we have two episodic conditions that are comparable,

we calculate the distance between them. Otherwise, we

increment the distance counter by one. Then the distance

counter is divided by the number of episodic conditions

nCAR
. The same calculation is done to the subsequent

episodic conditions. Finally, the distance among the rules

is given by (distA + distC)/2, and the distance among

episodic conditions, DistanceEp(C1, C2), is given by

algorithm 4.

The cyclical patterns mining and quasi-cyclical patterns

mining is given by the Algorithm 5. The quasi-cycles are

identified by the occurrence mapping or not of each detected

rule for each cycle and period. Since each chromosome

encode a rule, if the rule occurrence has a exactly cyclic

pattern, then the chromosome fitness is one, corresponding

to a rule frequency of 100% in the period. If the rule occur-

rence corresponds to a quasi-cyclic pattern, the chromosome

fitness is the occurrence frequency of the rule.

4. Results
In order to evaluate the developed algorithm to detect

cycles and quasi-cycles, we did an experiment using a

synthetic binary sequence. We used in this experiment, the

Algorithm 3: Distance(R,S) – Distance between two

quantitative temporal association rules.

Input: R and S, two quantitative temporal association

rules.

Output: dist, distance between R and S.

1 nCAR
← numCond(CAR);

2 distA ← 0;

3 for i← 0 to nCAR
− 1 do

4 if ∃CAS(vjk)|vjk = vji , vji ∈ VAR then
5 distA ←

distA +DistanceEp(CAR(vji),CAS(vjk));
6 else
7 distA ← distA + 1;
8 end
9 end

10 distA ← distA/nCAR
;

11 nCCR
← numCond(CCR);

12 distC ← 0;

13 for i ← 0 to nCCR
− 1 do

14 if ∃CCS(vjk)|vjk = vji , vji ∈ VCR then
15 distC ←

distC +DistanceEp(CCR(vji),CCS(vjk));
16 else
17 distC ← distC + 1;
18 end
19 end
20 distC ← distC/nCCR

;

21 dist ← (distA + distC)/2;

Algorithm 4: DistanceEp(C1, C2) – Distance between

two temporal episodes associated to the same variable.

Input: C1, C2, v (two episodic conditions associated

with the same variable v).

Output: distEp, distance between C1 and C2.

1 calculate the minimum value that v assume in the

database and store into variable min v ;

2 calculate the maximun value that v assume in the

database and store into variable max v ;

3 calculate the minimum value that t assume in the

database and store into variable min t ;

4 calculate the maximun value that t assume in the

database and store into variable max t ;

5 dv ← min{(v(C1)
1 − v

(C1)
0), v

(C2)
1 − v

(C2)
0)} −

(min{v(C1)
1 , v

(C2)
1 } −max{v(C1)

0 , v
(C2)
0 }) ;

6 distV ← dv/(max v −min v) ;

7 dt ← min{(t(C1)
1 − t

(C1)
0), t

(C2)
1 − t

(C2)
0)} −

(min{t(C1)
1 , t

(C2)
1 } −max{t(C1)

0 , t
(C1)
0 }) ;

8 distT ← dt/(max t−min t) ;

9 distEp ← (distV + distT)/2 ;

588 Int'l Conf. Artificial Intelligence | ICAI'15 |

Algorithm 5: Cycle_QuasiCycle_Detection(BoolV et,
nV ars) – Detecting cyclical patterns and quasi-cyclical

patterns that express the rules detected occurrence.

Input: boolV ector (vector of boolean values that

express the occurrence of each rule), nV ars
(number of observed variables).

Output: list of detected cycles (cyclesList) and list of

quasi-cycles detected (quasiCyclesList).
1 for j ← 0 to length(boolV ector) do
2 if boolV ector[j] = 1 then
3 positions.add(j) ;

4 end
5 end
6 for i ← 1 to (length(boolV ector)/2) do
7 for k ← 0 to (length(positions)− 1) do
8 quasiCycle[0] ← cycle[0] ← currentQuasi ←

currentCycle ← positions[k];
9 for j ← (k + 1) to (length(positions)− 1) do

10 if positions[j] = (currentCycle+ i) then
11 currentCycle ← cycle[length(cycle)−

1] ← positions[k];
12 end
13 if (positions[j]− currentQuasi)%i = 0

then
14 quasiCycle.add(positions[k]);
15 end
16 end
17 nPeriods ←

length(boolV ector)− positions[k];
18 if length(cycle) = (length(boolV ector)/i)

then
19 cyclesList.add((i, positions[k]));
20 end
21 if length(quasiCycle) > 1 then
22 if length(quasiCycle) = nPeriods then
23 cyclesList.add((i, positions[k]));
24 else
25 if length(quasiCiclo) <

lenght(boolV et)/i and quasiCiclo is
not subset of any cycle ∈ listaCiclos
then

26 frequency ←
length(quasiCycle)/nPeriods;

27 quasiCyclesList.add(
28 ((i, positions[k]), frequency));
29 end
30 end
31 end
32 end
33 end

:
(1, 9)
(1, 10)
(3, 0)
(4, 2)
(4, 3)
(5, 2)
(5, 6)

Quasi- :
((1, 0), 0.67)
((1, 2), 0.7)
((1, 3), 0.67)
((1, 6), 0.83)
((1, 7), 0.8)
((2, 0), 0.33)
((2, 2), 0.3)
((2, 3), 0.44)
((2, 6), 0.33)
((2, 7), 0.6)
((3, 2), 0.2)
((3, 7), 0.4)
((5, 0), 0.17)

Fig. 2: Cycles and quasi-cycles mined.

binary sequence “101100110111". The quasi-cycles and the

cycles extracted from the sequence are shown in Figure 2.

We also performed two case studies in real quantitative

temporal databases related to agrometeorological data, which

are reported in the following. We used fixed values to

the chromosomes population size (nC=50), the generations

number (nGen=250), the clearing radius (σ=0.5) and the

maximum allowable variable range. The maximum allowable

variable range is defined by piv · (max v − min v), where

piv in these experiments has a value of 10%. We also kept

the cross rate of 80% and the mutation rate of 3% for

chromosome. In order to present the detected rules, we used

a threshold of 0.4 for the fitness measure. Rules with lower

fitness measure were not considered important because they

have low occurrence frequency. The presentation of quasi-

cycles were done in the same way.

4.1 Case study 1: Araraquara
In this case study, we used the database named

Araraquara, collected by the Brazilian Agro-

meteorological Monitoring System – Agritempo

(http://www.agritempo.gov.br/). This database contains

monthly agro-meteorological data of Araraquara,

corresponding to the average minimum temperature

values (Tmin), average maximun temperature values

(Tmax), accumulated rainfall (Prec), average of Normalized

Difference Vegetation Index (NDVI) and average of

Water Requirement Satisfaction Index (WRSI). The data

Int'l Conf. Artificial Intelligence | ICAI'15 | 589

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

T
im

e (m
onths)

Measures

abr/01
mai/01
jun/01
jul/01

ago/01
set/01
out/01
nov/01
dez/01
jan/02
fev/02

mar/02
abr/02
mai/02
jun/02
jul/02

ago/02
set/02
out/02
nov/02
dez/02
jan/03
fev/03

mar/03
abr/03
mai/03
jun/03
jul/03

ago/03
set/03
out/03
nov/03
dez/03
jan/04
fev/04

mar/04
abr/04
mai/04
jun/04
jul/04

ago/04
set/04
out/04
nov/04
dez/04
jan/05
fev/05

mar/05
abr/05
mai/05
jun/05
jul/05

ago/05
set/05
out/05
nov/05
dez/05
jan/06
fev/06

mar/06
abr/06
mai/06
jun/06
jul/06

ago/06
set/06
out/06
nov/06
dez/06
jan/07
fev/07

mar/07
abr/06
mai/07
jun/07
jul/07

ago/07
set/07
out/07
nov/07
dez/07
jan/08

P
rec.

T
m

ax
T

m
in

N
D

V
I

ISN
A

Fig. 3: Agrometeorological monthly measures of

Araraquara’s brazilian city.

corresponds to the period from April 2001 to January

2008. We plotted the variable values collected during these

months in the Figure 3. Due to the large scale difference

among the variables values, they were scaled in the range

[0, 1], so that we observe better the trends.

In this study, we had imposed the restriction that the it

NDVI will be part of the rule consequent. The Figure 4

presents the mined rules together with the quasi-cycles and

the cycles detected in the technical implementation using the

parameters described in the section 4.

4.2 Case study 2: Piracicaba
In this case study, we use the cane sugar productiv-

ity database in Piracicaba, provided by Cepagri (Centre

for Research in Agrometeorology and Climate Applied to

Agriculture) maintained by State University of Campinas

(UNICAMP). The database consists of four variables taken

monthly in Piracicaba: the average minimum temperature

(Tmin), the average maximum temperature (Tmax), average

rainfall (Prec) and productivity of cane sugar (Prod) in

Rule:
 Tmax (celsius) in [27.23, 28.33] on dez-jan
 ==>
 NDVI (taxa) in [0.58, 0.62] on dez-jan

 Fitness = 1.000

 Cycles:
 (1, 0)

Rule:
 WRSI
 (taxa) in [0.98, 1.00] on jan-fev
 ==>
 NDVI (taxa) in [0.58, 0.62] on jan-fev

 Fitness = 1.000

 Cycles:
 (1, 0)

Rule:
 Prec (mm) in [10.16, 61.17] on abr-mai
 ==>
 NDVI (taxa) in [0.26, 0.30] on abr-mai

 Fitness = 0.667

 Quasi-cycles:
 ((1, 0), 0.666667)
 ((1, 2), 0.666667)
 ((1, 3), 0.500000)

Fig. 4: The rules mined in the Araraquara’s database.

tonnes per hectare (ton/hec). The database corresponds to the

period from January 2003 to December 2009. We plotted the

variable values collected during these months in the Figure

5.

In this study, we had imposed the restriction that produc-

tivity (Prod) will be part of the consequent of the rule. We

fixed the used parameters, as described before in the Section

4. The mined rules, cycles and quasi-cycles detected for an

algorithm execution are shown in Figure 6.

4.3 Considerations
Overall, we can see that the technique can mine several

association rules and can detect cyclical patterns and quasi-
cyclical occurrences of these rules. The chromosome fitness

value is calculated using the highest detected pattern fre-

quency, which have a maximum value of one, when a cycle is

found. We fixed the parameters for the two case studies, but

they can be different and change some results. For example,

using a larger population size (nC) and a larger generations

number (nGen), we expect to mine a larger rules number.

Likewise, how smaller the clearing radius, theoretically, the

environment capacity to accommodate niches and, therefore,

the amount of mined rules increase.

5. Conclusion
Given the quasi-cyclical patterns definition and the rules

mining with quasi-cyclical temporal occurrence, we showed

that is possible to detect relevant rules for the analyzed

databases. These rules, in this format used, not can mined

by any literature algorithm for cycles mining. Additionally,

the quasi-cycle definition allows the relevant patterns iden-

tification, which could not be found using the exact cycle

detection.

Therefore, in this work, we presented a methodology

for quasi-cyclic patterns detection, which can be used to

detect patterns that occur approximately cyclically from

quantitative temporal data, as in the case studies 4.1 and 4.2.

590 Int'l Conf. Artificial Intelligence | ICAI'15 |

0 20 40 60 80

100

120

T
im

e (m
onths)

Measures

jan/03
fev/03

mar/03
abr/03
mai/03
jun/03
jul/03

ago/03
set/03
out/03
nov/03
dez/03
jan/04
fev/04

mar/04
abr/04
mai/04
jun/04
jul/04

ago/04
set/04
out/04
nov/04
dez/04
jan/05
fev/05

mar/05
abr/05
mai/05
jun/05
jul/05

ago/05
set/05
out/05
nov/05
dez/05
jan/06
fev/06

mar/06
abr/06
mai/06
jun/06
jul/06

ago/06
set/06
out/06
nov/06
dez/06
jan/07
fev/07

mar/07
abr/07
mai/07
jun/07
jul/07

ago/07
set/07
out/07
nov/07
dez/07
jan/08
fev/08

mar/08
abr/08
mai/08
jun/08
jul/08

ago/08
set/08
out/08
nov/08
dez/08
jan/09
fev/09

mar/09
abr/09
mai/09
jun/09
jul/09

ago/09
set/09
out/09
nov/09
dez/09

T
m

in (C
elsius)

T
m

ax (C
elsius)

P
rec. M

edia (m
m

)

P
rod. (ton/hec)

Fig. 5: Agrometeorological measures related to productivity

of cane sugar in Piracicaba’s brazilian city.

Rule:
 AvgPrec (mm/dia) in [2.50, 3.58] on out-nov
 ==>
 Prod
 (ton/hec) in [119.97, 128.20] on out-nov

 Fitness = 0.833

 Quasi-cycles:
 ((1, 0), 0.833333)
 ((1, 2), 0.666667)
 ((1, 3), 0.500000)

Rule:
 Tmin (celsius) in [17.93, 19.10] on abr-mai
 ==>
 Prod
 (ton/hec) in [119.97, 128.20] on abr-mai

 Fitness = 0.429

 Quasi-cycles:
 ((1, 5), 0.428571)

Rule:
 Tmax (celsius) in [28.35, 29.23] on nov-dez
 ==>
 Prod
 (ton/hec) in [119.97, 128.20] on nov-dez

 Fitness = 0.429

 Quasi-cycles:
 ((1, 0), 0.428571)
 ((1, 1), 0.428571)

Fig. 6: The rules mined in the Piracicaba’s database.

This pattern type is extremely common in nature, according

to we discussed in the introduction of this article.

As future work, we intend to set the genetic algorithm pa-

rameters, which were kept fixed in all experiments described

in this work. We expect that this adjustment will allow to

find a larger number of relevant rules. Other future work is

to develop and to test other fitness measures, or improve the

adopted fitness measure.

Acknowledgments
The authors would like to thank the Brazilian Na-

tional Council for Scientific and Technological Development

(CNPq) and Research Support Foundation of Goiás State

(FAPEG).

References
[1] S. Amo, N. A. Silva, R. P. Silva, and F. S. Pereira. Tree pattern

mining with tree automata constraints. Information Systems, 35:570–
591, 2010.

[2] B. Catania and A. Maddalena. A unified framework for heterogeneous
patterns. Information Systems, 37:460–483, 2012.

[3] D.-A. Chiang, C.-T. Wang, S.-P. Chen, and C.-C. Chen. The Cyclic
Model Analysis on Sequential Patterns. IEEE Transactions on
Knowledge and Data Engineering, 21(11):1617–1628, 2009.

[4] J. K. Febrer-Hernández and J. Hernández-Palancar. Sequential pattern
mining algorithms review. Intelligent Data Analysis, 16(3):451–466,
2012.

[5] T. Fu. A review on time series data mining. Engineering Applications
of Artificial Intelligence, 24(1):164–181, 2011.

[6] Y. Hai and X. Li. A general temporal association rule frequent
itemsets mining algorithm. International Journal of Advancements
in Computing Technology, 3(11):63–71, 2011.

[7] Yong Joon Lee, Jun Wook Lee, Duck Jin Chai, Bu Hyun Hwang, and
Keun Ho Ryu. Mining temporal interval relational rules from temporal
data. Journal of Systems and Software, 82(1):155–167, 2009.

[8] N. R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern
mining algorithms. ACM Computing Surveys, 43(1), 2010.

[9] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic Association
Rules. In Proceedings of the Fourteenth International Conference on
Data Engineering, pages 412–421, Washington, DC, USA, 1998.

[10] A. Pétrowski. A clearing procedure as a niching method for genetic
algorithms. In Proceedings of 3rd IEEE International Conference on
Evolutionary Computation, pages 798–803, New York, USA, 1996.

[11] M. Plantevit, A. Laurent, D. Laurent, M. Teisseire, and Y. W. Choong.
Mining multidimensional and multilevel sequential patterns. ACM
Transactions on Knowledge Discovery from Data, 4(1):1–37, 2010.

[12] N. Tatti and B. Cule. Mining closed strict episodes. Data Mining and
Knowledge Discovery, 25(1):34–66, 2011.

[13] X. Yan, C. Zhang, and S Zhang. Genetic algorithm-based strategy
for identifying association rules without specifying actual minimum
support. Expert Systems with Applications, 36:3066–3076, 2009.

[14] M. Zhang and C. He. Survey on association rules mining algorithms.
Advancing Computing, Communication, Control and Management,
56:111–118, 2010.

Int'l Conf. Artificial Intelligence | ICAI'15 | 591

