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Abstract – Extensive geochemical analyses have been 
done on granitic rocks in southern California. Almost 
forty elements were measured for each of several 
hundred samples. In our previous work, we analyzed the 
geochemical components of these rocks using two 
methods, namely Principal Component Analysis (PCA) 
and Geographic Information Systems (GIS). In this 
paper, machine learning is used to validate the results 
previously obtained. We describe an evaluation in which 
it was found that the results obtained with machine 
learning are similar to the results obtained by means of 
PCA and GIS.  
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1    Introduction 

 
A combination of disciplines such as 

geochemistry and computer science can provide a 
powerful tool for conducting a thorough study of rocks 
of interest. Geochemistry helps one to determine the 
physical conditions under which the rocks formed and 
the chemical distribution or redistribution of elements 
over geologic time [1]. Here we are studying the 
Cretaceous batholithic rocks in southern California [2], 
which were emplaced in a plate tectonic subduction 
zone.  A batholith (or large granitic body) covers more 
than one hundred square kilometers in the crust [3, 4]. 

In previous work [5], we used two approaches to 
understand the statistical and spatial geochemistry 
variation of part of the aforementioned area: Principal 
Component Analysis (PCA) and Geographic Information 
Systems (GIS). In that data analysis, we used 287 
samples from a large systematically collected granitoid 
geochemical data set  [6].  

In this work, our contribution is to compare our 
previous geochemical interpretation of the Californian 
northern Peninsular Ranges Batholith based on PCA and 
GIS, and the results from machine learning based on a 
larger data set with almost 800 samples that comes from 
a larger area in southern California. This data set 
includes the 287 samples used for PCA and GIS [6]. We 

decided to use a larger data set for machine learning 
analysis to get results as accurate as possible according 
to our most exhaustive and updated data space.  

We believe that our results are of interest to 
geologists because they demonstrate that analysis of 
geochemical data with PCA and GIS, as well as machine 
learning, can elucidate plate tectonic environments. 
Specifically, in this study we used the Simple K-Means 
method of machine learning.  

This paper is organized as follows. Section II 
presents the basis of our approach. Section III presents 
the geochemical analysis by means of machine learning. 
Section IV presents related work. Finally, Section V 
presents conclusions and future work.  
 
2    Basis of our approach 
 

In order to understand our approach, it is 
important to describe the underlying concepts. First, on 
the one hand PCA is a statistical method based on the 
variance between variables where high-dimensional data 
is transformed into low dimensional data. This method 
can be used to detect coherent patterns [7]. On the other 
hand, GIS is a way to approximate the values of the 
discrete sample points over the whole study region, 
attempting to recreate the continuous geochemical 
variation that was discretely sampled in the field [8].  

In our previous work [5], multivariate outliers 
were identified using Mahalanobis distance [9], and 
excluded. Then four components identified by PCA were 
mapped with GIS to observe their spatial distribution. 
Bivariate plots relating the component variable to the 
distance from the transition zone between oceanic and 
continental crust were used to better understand the 
trends. 

Data were analyzed using PCA with IBM SPSS. 
Using this method, we were able to reduce 40 
geochemical variables to 4 components, which are 
approximately related to the compatible, High Field 
Strength (HFS), Heavy Rare Earth (HRE), and Large Ion 
Lithophile (LIL) elements. The 4 components were 
interpreted as follows: 1) compatible (and negatively 
correlated incompatible) elements indicate extent of 
differentiation as typified by SiO2; 2) HFS elements 
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indicate crustal contamination as typified by Sri; 3) HRE 
elements indicate source depth as typified by the Gd/Yb 
ratio; and 4) LIL elements indicate alkalinity as typified 
by the K2O/SiO2 ratio. Note that concentrations for major 
elements are usually expressed as percent major oxide. 
Also, Sri is a calculated 87Sr/86Sr ratio. 

Our goal in this paper is to analyze the 
geochemical data of the southern California granitic 
rocks using machine learning. Machine learning is a 
branch of Artificial Intelligence, which studies agents or 
programs that learn or evolve based on experience to 
perform a particular task better [10].  

There are many machine learning methods for 
data analysis. One of the most popular is Simple K-
Means [11]. Simple K-Means is a clustering technique 
with a relatively simple implementation. The goal of 
clustering is to partition a set of objects, which have 
associated multidimensional vectors of attributes in 
homogeneous groups (i.e., the “K”); such that patterns in 
each group are similar.  

There are four steps to describe the functionality 
of Simple K-Means [12, 13]: 1) a set of objects to be 
partitioned, the number of groups, and each group’s 
centroid are defined; 2) for each object in the data set, the 
nearest centroid is determined, and the object is added to 
the group related to that centroid; 3) for each generated 
group, the centroid is recalculated; and 4) multiple 
convergence conditions are used. The most common 
ones are the following: converge when a number of 
iterations has been reached, converge when there is no 
exchange of objects among the groups, or converge when 
the difference among centroids in two iterations is 
smaller than a given threshold. If the convergence 
condition is not satisfied, steps two, three, and four are 
repeated. 

 
3    Geochemical analysis by means of 
machine learning 
 

In this study, WEKA was used to carry out the 
geochemical analysis of the southern California granitic 
rocks [14]. WEKA is a free tool written in Java that has a 
large number of data analysis techniques, such as 
preprocessing and clustering. It also facilitates data 
visualization.  

In this section we present the comparison 
between our previous results with PCA and GIS, and our 
present results with Simple K-Means for the following 
geochemical factors: SiO2, Sri, Gd/Yb, and K2O/SiO2.  
 
3.1    SiO2 analysis 
 

Through PCA and GIS, we found that the extent 
of differentiation is more uniformly high or low in the 
East and more intermediate in the West.  

A trend surface analysis interpolation map of 
SiO2 shows the spatial distribution to be high in the far 

West, low in the West Central, and moderately high in 
the East. Figure 1 shows the distribution of this oxide. 
Red areas represent a high concentration of SiO2 and 
blue areas show a low concentration. The other colors 
indicate intermediate concentrations.  

 

 
Figure 1. Spatial distribution of SiO2. The zones in red have a 

concentration above 70%. The zones in blue have a 
concentration below 60% 

 
For the same SiO2 oxide from the larger data 

set, the results with Simple K-Means can be seen in 
Table 1. In our experiments, on the one hand we found 
that within a cluster the sum of squared errors decreases 
as the number of clusters increases. On the other hand, 
we found that if a very large number of clusters is 
generated, then some of them will have a very small 
number of samples. This fact can produce inconsistent 
results. We argue that it is important to have a balance 
between the error and the average number of clusters. In 
our case, we realized that four clusters gave us the best 
balance when analyzing SiO2 and the other geochemical 
variables. 

 
Table 1. WEKA results for percent SiO2 

 

Cluster # Number of 
samples 

Oxide 
concentration 

0 104 54.4% 
1 294 63.4% 
2 181 73.4% 

3 192 68.0% 
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With the data in Table 1, it was possible to 
generate Figure 2. The horizontal axis indicates longitude 
and the vertical axis latitude. Cluster 0 is in blue, Cluster 
1 is in yellow, Cluster 2 is in red, and Cluster 3 is in 
green. 

 
 

Figure 2. Cluster assignment visualization for SiO2. Cluster 0 is 
in blue, Cluster 1 is in yellow, Cluster 2 is in red, and Cluster 3 

is in green 
 

A similarity can be observed between the 
concentration of elements in Figure 1 and the lower half 
of Figure 2. For instance, Cluster 2 (which is in red) has 
a high concentration of SiO2 (73.4%); whereas, cluster 0 
(which is in blue) has a low concentration of this oxide 
(54.4%). These results reflect a similarity with the results 
in the map of Figure 1.  
 
3.2 Sri analysis
 

The analysis using PCA and GIS on the one 
hand shows a low Sri in the West and an increasing Sri to 
the East. Higher values indicate greater crustal 
contamination. Figure 3 was generated using kriging 
interpolation. The blue color represents a low value of 
Sri, whereas the red color shows a high value. Table 2 
shows the results with Simple K-Means for this element. 

Table 2. WEKA results for Sri 
 

Cluster  # Number of 
samples Isotope ratio 

0 135 0.7091 
1 358 0.7068 
2 31 0.7126 

3 243 0.7042 
 
 

 
 

Figure 3. Spatial distribution of Sri. The zones in red have a 
value greater than 0.707 for this variable. The zones in blue 

have a value less than 0.705 
  

The visual description of the concentration and 
distribution of Sri is presented in Figure 4. Cluster 0 is in 
yellow, Cluster 1 is in green, Cluster 2 is in red, and 
Cluster 3 is in blue.  

 

 
 

Figure 4. Cluster assignment visualization for Sri. Cluster 0 is in 
yellow, Cluster 1 is in green, Cluster 2 is in red, and Cluster 3 

is in blue 
 
Cluster 3 has very low values similar to what is 

found in Figure 3. Likewise, Cluster 1 has higher values, 
also similar to what is found in Figure 3. The results 
reflect a similarity with the results in the map of Figure 
3.  
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3.3    Gd/Yb analysis 
 

According to the experiments with PCA and 
GIS, Gd/Yb ratios are related to magma source depth 
(see Figure 5). In this map, the West is uniformly low 
indicating a shallow magma source depth. 
 

 
 

Figure 5. Spatial distribution of Gd/Yb. The zones in red have a 
high concentration above 2 for this ratio. The zones in blue 

have a low concentration below 2 for this ratio 
 

The results with Simple K-Means for Gd/Yb are 
shown in Table 3. 
 

Table 3. WEKA results for Gd/Yb 
 

Cluster  # Number of 
samples Element ratios 

0 461 2.4 
1 96 3.6 
2 119 1.8 
3 95 1.3 

 
Figure 6 was generated according to the data in 

Table 3. Cluster 0 is in yellow, Cluster 1 is in red, 
Cluster 2 is in blue, and Cluster 3 is in green. The bottom 
half of this map is similar to the one shown in Figure 5. 
Specifically, Cluster 1 (which is in red) has the highest 
ratio. In contrast, Cluster 3 (which is in blue) has the 
lowest ratio. 

 
 

 
 
Figure 6. Cluster assignment visualization for Gd/Yb. Cluster 0 
is in yellow, Cluster 1 is in red, Cluster 2 is in blue, and Cluster 

3 is in green 
 
3.4    K2O/SiO2 analysis 
 

According to our study based on PCA and GIS, 
the map in Figure 7 shows the distribution of K2O/SiO2, 
which indicates alkalinity. The red color represents a 
larger ratio and the blue color represents a lower ratio. 
The yellow and orange colors represent intermediate 
ratios.  

 
Figure 7. Spatial distribution of K2O/SiO2. The zones in red 

have a high ratio above 0.3. The zones in blue have a low ratio 
below 0.3 

 
The results with Simple K-Means for K2O/SiO2 

are shown in Table 4. 
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Table 4. WEKA results for K2O/SiO2 
 

Cluster # Number of 
samples Ratio values 

0 277 0.045 
1 81 0.007 
2 164 0.066 
3 249 0.029 

 
 The spatial distribution of K2O/SiO2 is 
presented in Figure 8. Cluster 0 is in yellow, Cluster 1 is 
in blue, Cluster 2 is in red, and Cluster 3 is in orange. 
High ratios, which are represented in red, are in Cluster 
2. In contrast, low ratios in Cluster 1 are in blue. Figure 7 
and 8 show similar results. 
 

 
Figure 8. Cluster assignment visualization for K2O/SiO2. 

Cluster 0 is in yellow, Cluster 1 is in blue, Cluster 2 is in red, 
and Cluster 3 is in orange 

 
4    Related work 
 

Increasingly larger geochemical data sets are 
becoming available from the geology literature. The 
purpose for the current research project is to determine 
what new information can be gleaned from these data 
sets using statistical analysis, geospatial analysis, and 
machine learning techniques.  
            Early geochemical clustering done by Pearce et 
al. [15] was able to discriminate between granitic-type 
rocks from different plate tectonic environments just by 
using pairs of trace elements displayed on bivariate plots. 
Sri values have been used to discriminate between 
granitic magma sources from the Earth’s mantle and the 
Earth’s crust [16, 17]. The ratio between light and heavy 
rare earth elements has been used to discriminate 
between granitic magma from shallow and deep sources 
[18]. Instead of using only two or three elements to 
group the data into clusters, this research is asking 
whether it is possible to use PCA, GIS, and machine 
learning to group large geochemical data sets more 
effectively and to find new patterns.  

            Grunsky et al. [19] has been able to classify 
volcanic rocks into three types using their major element 
geochemistry. Grunsky and Smee [20] have used PCA 
and digital topography to visualize, classify, and interpret 
the geochemistry of 1665 soil samples based on 27 
elements. Grunsky [21] used thousands of observations 
with as many as fifty elements for process identification 
and pattern discovery using multivariate data analysis 
and geospatial analysis. Templ et al. [22] used cluster 
analysis on geochemical data to group samples from 
northern Europe. Classic books on geostatistical analysis 
of compositional data include Aitchison [23] and 
Pawlowsky-Glahn and Olea [24].             

Machine learning approaches have shown 
promising results when applied to complex geological 
problems involving big data sets. For example, Lüdtke et 
al. [25] used a supervised machine learning technique to 
automatically analyze large quantities of spatially 
referenced seafloor video mosaics of mud volcanoes. 
Classification accuracy and speed varied between four 
commonly applied machine leaning classifiers, namely 
support vector machines, K-nearest-neighbors classifier, 
C4.5 decision trees, and the naïve Bayes classifier. 
Classification rates of up to 98.86% were achieved on the 
full data set with support vector machines when cross-
validated with the training data. An average error rate of 
1.52% was found when testing the system over a 
reference data set covering 60% of the investigation area.  

Some of the most recent machine learning 
techniques have been used in discriminating tsunami 
deposits in Japan [26], predicting acid mine drainage 
[27], and prospecting for minerals [28, 29].  
 
5    Conclusions and future work 

 
In this paper, we presented an approach to carry 

out geochemical analysis by means of machine leaning. 
Specifically, we have focused our analysis on Simple K-
Means. We demonstrated that the results with PCA and 
GIS are similar to the results found with Simple K-
Means. This is an important finding because geologists 
will be able to: 1) use machine learning to validate what 
they find with statistical tools; or 2) use machine learning 
to obtain fast results with easily available tools, such as 
WEKA.  

In the future we would like to explore other 
ways to use machine learning to analyze geochemical 
data and geological events. For instance, Could we 
predict possible earthquakes by means of generating 
forecasts based on historical data?  
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