
KNN based Word Categorization considering Feature Similarity

Taeho Jo
Department of Computer and Information Engineering, Inha University, Incheon, South Korea

Abstract— In this research, we propose that the K Nearest
Neighbor should be used for categorizing words semantically,
considering the feature similarities. In the reality, the depen-
dencies and relations among features are available; texts as
features for encoding words into numerical vectors tend to
have their similarities with others. In this research, we define
the similarity measure considering both feature values and
features and use it for modifying the K Nearest Neighbor
as the approach to the word categorization. As the benefits
from this research, we obtain the potential possibility of more
compact representations of words and the improvement of
their discriminations among even sparse vectors. Hence, the
goal of this research is to implement the word categorization
systems with the benefits.

Keywords: Word Categorization, Feature Similarity

1. Introduction
The word categorization refers to the process of classifying

the words into some or one of the predefined categories. As its
preliminary task, we must define a list of topics as the classes,
and allocates sample words to each topic. The sample words
are encoded into numerical vectors as the preprocessing step,
and the classification capacity is built by learning the labeled
words. Afterward, the novice words are also encoded so, and
they are classified into one or some of the predefined topics.
The scope of this research is restricted to the classification
of words by their topics; the POS tagging as a kind of word
classification is set out of this research.

Let us consider some challenges with which this research
tries to tackle. Previously, the dependencies among features
were discovered, but it requires very complicated analysis
for considering them [1]. The assumption of independencies
among features for the simplicity causes requirement of many
features for the robustness. Because each feature has very little
coverage, we cannot avoid the sparse distribution where zero
values are dominant with more than 95% in each numerical
vector[3]. Therefore, this research is intended to solve the
problems by considering the feature similarities as well as
the feature value similarities.

Let us mention what we propose in this research as its
idea. In this research, we consider the both feature similarity
and feature value similarity for computing the similarity
between numerical vectors. The KNN (K Nearest Neighbor)
is modified into the version which accommodates the both
similarity measures. We apply the modified version to im-
plementing the word categorization system. Therefore, the
goal of this research is to improve the word categorization

performance, using smaller number of features by solving the
above problems.

Let us mention what we expect from this research as
the benefits. In the proposed research, we consider semantic
similarity among features as well as feature values. By con-
sidering both, the discriminations among even sparse vectors
are improved. This research provides potentially the way of
reducing the dimension of numerical vectors by doing so.
Therefore, this research pursues the benefits for implementing
the text categorization systems.

This article is organized into the four sections. In Section
2, we survey the relevant previous works. In Section 3, we
describe in detail what we propose in this research. In Section
4, we mention the remaining tasks for doing the further
research.

2. Previous Works
Let us survey the previous cases of encoding texts into

structured forms for using the machine learning algorithms
to text mining tasks. The three main problems, huge di-
mensionality, sparse distribution, and poor transparency, have
existed inherently in encoding them into numerical vectors. In
previous works, various schemes of preprocessing texts have
been proposed, in order to solve the problems. In this survey,
we focus on the process of encoding texts into alternative
structured forms to numerical vectors. In other words, this
section is intended to explore previous works on solutions to
the problems.

Let us mention the popularity of encoding texts into
numerical vectors, and the proposal and the application of
string kernels as the solution to the above problems. In 2002,
Sebastiani presented the numerical vectors are the standard
representations of texts in applying the machine learning
algorithms to the text classifications [4]. In 2002, Lodhi et
al. proposed the string kernel as a kernel function of raw
texts in using the SVM (Support Vector Machine) to the
text classification [5]. In 2004, Lesile et al. used the version
of SVM which proposed by Lodhi et al. to the protein
classification [6]. In 2004, Kate and Mooney used also the
SVM version for classifying sentences by their meanings [7].

It was proposed that texts are encoded into tables instead of
numerical vectors, as the solutions to the above problems. In
2008, Jo and Cho proposed the table matching algorithm as
the approach to text classification [8]. In 2008, Jo applied also
his proposed approach to the text clustering, as well as the text
categorization [12]. In 2011, Jo described as the technique of
automatic text classification in his patent document [10]. In
2015, Jo improved the table matching algorithm into its more
stable version [11].

Int'l Conf. Artificial Intelligence | ICAI'15 | 343

Previously, it was proposed that texts should be encoded
into string vectors as other structured forms. In 2008, Jo mod-
ified the k means algorithm into the version which processes
string vectors as the approach to the text clustering[12]. In
2010, Jo modified the two supervised learning algorithms,
the KNN and the SVM, into the version as the improved
approaches to the text classification [13]. In 2010, Jo proposed
the unsupervised neural networks, called Neural Text Self
Organizer, which receives the string vector as its input data
[14]. In 2010, Jo applied the supervised neural networks,
called Neural Text Categorizer, which gets a string vector as
its input, as the approach to the text classification [15].

The above previous works proposed the string kernel as
the kernel function of raw texts in the SVM, and tables and
string vectors as representations of texts, in order to solve
the problems. Because the string kernel takes very much
computation time for computing their values, it was used
for processing short strings or sentences rather than texts.
In the previous works on encoding texts into tables, only
table matching algorithm was proposed; there is no attempt to
modify the machine algorithms into their table based version.
In the previous works on encoding texts into string vectors,
only frequency was considered for defining features of string
vectors. Texts which are used as features of numerical vectors
which represent words have their semantic similarities among
them, so the similarities will be used for processing sparse
numerical vectors, in this research.

3. Proposed Approach
This section is concerned with modifying the KNN (K

Nearest Neighbor) algorithm into the version which considers
the similarities among features as well as feature values, and it
consists of the three sections. In Section 3.1, we describe the
process of encoding words into numerical vectors. In Section
III-B, we do formally the proposed scheme of computing
the similarity between two numerical vectors. In Section 3.3,
we mention the proposed version of KNN algorithm which
considers the similarity among features as the approach to
word categorization. Therefore, this article is intended to
describe in detail the modified version of KNN algorithm and
its application to the word categorization.

3.1 Word Encoding
This subsection is concerned with the process of encoding

words into numerical vectors. Previously, texts each of which
is consists of paragraphs were encoded into numerical vectors
whose attributes are words. In this research, we attempt to
encode words into numerical vectors whose attributes are text
identifiers which include them. Encoding of words and texts
into numerical vectors looks reverse to each other. In this
Section, we describe in detail the process of mapping words
into numerical vectors, instead of texts.

In the first step of word encoding, a word-document matrix
is constructed automatically from a text collection called
corpus. In the corpus, each text is indexed into a list of
words. For each word, we compute and assign its weight

which is called TF-IDF (Term Frequency-Inverse Document
Frequency) weight [2], by equation (1),

wi = TFi(log2 N − log2 DFi + 1) (1)

where TFi is the total frequency in the given text, DFi is the
total number of documents including the word, and N is the
total number of documents in the corpus. The word-document
matrix consists of TF-IDF weights as relations between a
word and a document computed by equation (1). Note that the
matrix is a very huge one which consists at least of several
thousands of words and documents.

Let us consider the criterion of selecting text identifiers as
features, given labeled sampled words and a text collection.
We may set a portion of each text in the given sample words
as a criteria for selecting features. We may use the total
frequency of the sample words in each text as a selection
criterion. However, in this research, we decided the total
TF-IDF (Term Frequency and Inverse Document Frequency)
which is computed by equation (1) as the criterion. We may
combine more than two criteria with each other for selecting
features.

Once some texts are selected as attributes, we need to
consider the schemes of defining a value to each attribute.
To each attribute, we may assign a binary value indicating
whether the word present in the text which is given as the
attribute, or not. We may use the relative frequency of the
word in each text which is an attribute as a feature value.
The weight of word to each attribute which is computed by
equation (1) may be used as a feature value. Therefore, the
attributes values of a numerical vector which represent a word
are relationships between the word and the texts which are
selected as features.

The feature selection and the feature value assignment for
encoding words into numerical vectors depend strongly on
the given corpus. When changing the corpus, different texts
are selected by different values of the selection criterion
as features. Even if same features are selected, different
feature values are assigned. Only addition or deletion of texts
in the given corpus may influence on the feature selection
and the assignment of feature values. In order to avoid the
dependency, we may consider the word net or the dictionary
as alternatives to the corpus.

3.2 Feature Similarity
This subsection is concerned with the scheme of computing

the similarity between numerical vectors as illustrated in
Figure 1. In this research, we call the traditional similarity
measures such as cosine similarity and Euclidean distance
feature value similarities where consider only feature values
for computing it. In this research, we consider the feature
similarity as well as the feature value similarity for computing
it as the similarity measure which is specialized for text
mining tasks. The numerical vectors which represent texts
or words tend to be strongly sparse; only feature value
similarity becomes easily fragile to the tendency. Therefore,

344 Int'l Conf. Artificial Intelligence | ICAI'15 |

in this subsection, as the solution to the problem, we describe
the proposed scheme of computing the similarity between
numerical vectors.

Fig. 1
THE COMBINATION OF FEATURE AND FEATURE VALUE SIMILARITY

Text identifiers are given as features for encoding words
into numerical vectors. Texts are dependent on others rather
than independent ones which are assumed in the traditional
classifiers, especially in Naive Bayes [1]. Previously, various
schemes of computing the semantic similarity between texts
were developed [2]. We need to assign nonzero similarity
between two numerical vectors where non-zero elements are
given to different features with their high similarity. It is
expected to improve the discriminations among sparse vectors
by considering the similarity among features.

We may build the similarity matrix among features auto-
matically from a corpus. From the corpus, we extract easily
a list of text identifiers. We compute the similarity between
two texts by equation (2),

sij = sim(di, dj) =
2 × tf(di, dj)

tf(di) + tf(dj)
(2)

where tf(di, dj) is the number of words which are shared by
both texts, di and dj , and tf(di) is the number of words which
are included in the text, di. We build the similarity matrix
which is consists of similarities between text identifiers given
as features as follows:

S =

⎛
⎜⎜⎜⎝

s11 s12 . . . s1d

s21 s22 . . . s2d

...
...

. . .
...

sd1 sd2 . . . sdd

⎞
⎟⎟⎟⎠ .

The rows and columns in the above matrix,S, correspond to
the d text identifiers which are selected as the features.

The texts, d1, d2, ..., dd are given as the features, and the
two words, t1 and t2 are encoded into the two numerical
vectors as follows:

t1 = [w11, w12, ..., w1d]

t2 = [w21, w22, ..., w2d].

The features,d1, d2, ..., dd are defined through the process
which was described in Section 3.1. We construct the d by
d matrix as the similarity matrix of features by the process
mentioned above. The similarity between the two vectors are

computed with the assumption of availability of the feature
similarities, by equation (3),

sim(t1, t2) =

∑d
i=1

∑d
j=1 sijw1iw2j

d · ‖t1‖ · ‖t2‖ (3)

where ‖t1‖ =
√∑d

i=1 w2
1i and ‖t2‖ =

√∑d
i=1 w2

2i. We get
the value of sij by equation (2).

The proposed scheme of computing the similarity by equa-
tion (3) has the higher complexity as payment for obtaining
the more discrimination among sparse vectors. Let us assume
that two d dimensional numerical vectors are given as the
input for computing the similarity between them. It takes only
linear complexity, O(d), to compute the cosine similarity as
the traditional one. However, in the proposed scheme takes the
quadratic complexity, O(d2). We may reduce the complexity
by computing similarities of some pairs of features, instead
of all.

3.3 Proposed Version of KNN
This subsection is concerned with the version of K Nearest

Neighbor which considers both the feature similarity and
the feature value one. The sample words are encoded into
numerical vectors whose features are texts by the scheme
which was described in Section 3.1. The novice word is
given as the classification target, and it is also encoded into
a numerical vector. Its similarities with the sample words are
computed by equation (3) for selecting nearest neighbors, in
the proposed version. Therefore, in order to provide the detail
algorithm, we describe the proposed KNN version, together
with the traditional one.

The traditional KNN version is illustrated in Figure 2. The
sample words which are labeled with the positive class or
the negative class are encoded into numerical vectors. The
similarities of the numerical vector which represents a novice
word with those representing sample words are computed
using the Euclidean distance or the cosine similarity. The
k most similar sample words are selected as the k nearest
neighbors and the label of the novice entity is decided by
voting their labels. However, note that the traditional KNN
version is very fragile in computing the similarity between
very sparse numerical vectors.

The proposed KNN version is illustrated in Figure 3. Like
the traditional version, a word is given as an input and it
is encoded into a numerical vector. The similarities of the
novice word with the sample ones are computed by equation
(3) which was presented in Section 3.2. Like the traditional
version, k most similar samples are selected as the nearest
neighbors, and the label of the novice is decided by voting
their labels. The scheme of computing the similarity between
numerical vectors is the essential difference between the two
versions.

We may derive some variants from the proposed KNN
version. We may assign different weights to selected neigh-
bors instead of identical ones: the highest weights to the
first nearest neighbor and the lowest weight to the last

Int'l Conf. Artificial Intelligence | ICAI'15 | 345

Fig. 2
THE TRADITIONAL VERSION OF KNN

Fig. 3
THE PROPOSED VERSION OF KNN

one. Instead of a fixed number of nearest neighbors, we
select any number of training examples within a hyper-sphere
whose center is the given novice example as neighbors. The
categorical scores are computed proportionally to similarities
with training examples, instead of selecting nearest neighbors.
We may also consider the variants where more than two
variants are combined with each other.

Let us compare the both KNN versions with each other.
In computing the similarity between two numerical vectors,
the traditional version uses the Euclidean distance or cosine
similarity mainly, whereas the proposed one uses the equa-
tion (3). Both versions are common in selecting k nearest
neighbors and classifying a novice item by voting the labels
of them. However, the proposed version is more tolerant to
sparse numerical vectors in computing the similarities among
them than the traditional version.

4. Conclusion
Let us mention the remaining tasks for doing the further

research. We need to validate the proposed approach in spe-
cific domains such as medicine, engineering, and economics,
as well as in generic domains such as ones of news articles.
We may consider the computation of similarities among some

main features rather than among all features for reducing the
computation time. We try to modify other machine learning
algorithms such as Naive Bayes, Perceptrons, and SVM
(Support Vector Machine) based on both kinds of similarities.
By adopting the proposed approach, we may implement the
word categorization system as a real program.

References
[1] T. Mitchell, Machine Learning, McGraw-Hill, 1997.
[2] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval: The

Concepts and Technology behind Search, Addison-Wesley, 2011.
[3] T. Jo, “The Implementation of Dynamic Document Organization using

Text Categorization and Text Clustering" PhD Dissertation, University
of Ottawa, Ottawa, Canada, 2006.

[4] F. Sebastiani, “Machine Learning in Automated Text Categorization",
ACM Computing Survey, Vol. 34, pp. 1-47, 2002.

[5] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins,
“Text Classification with String Kernels", Journal of Machine Learning
Research, Vol. 2, pp. 419-444, 2002.

[6] C. S. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble, “Mismatch
String Kernels for Discriminative Protein Classification", Bioinformatics,
Vol. 20, pp. 467-476, 2004.

[7] R. J. Kate and R. J. Mooney, “Using String Kernels for Learning
Semantic Parsers", in Proc. ICCL ’06, 2006, pp. 913-920.

[8] T. Jo and D. Cho, “Index based Approach for Text Categorization",
International Journal of Mathematics and Computers in Simulation, Vol.
2, 2008, pp. 127-132.

[9] T. Jo, “Single Pass Algorithm for Text Clustering by Encoding Docu-
ments into Tables", Journal of Korea Multimedia Society, Vol. 11, 2008,
pp. 1749-1757.

[10] T. Jo, “Device and Method for Categorizing Electronic Document
Automatically", South Korean Patent 10-1071495, 2011.

[11] T. Jo, “Normalized Table Matching Algorithm as Approach to Text
Categorization", Soft Computing, Vol. 19, 2015, pp. 849-849.

[12] T. Jo, “Inverted Index based Modified Version of K-Means Algorithm
for Text Clustering", Journal of Information Processing Systems, Vol. 4,
2008, pp. 67-76.

[13] T. Jo, “Representationof Texts into String Vectors for Text Categoriza-
tion", Journal of Computing Science and Engineering, Vol. 4, 2010, pp.
110-127.

[14] T. Jo, “NTSO (Neural Text Self Organizer): A New Neural Network
for Text Clustering", Journal of Network Technology, Vol. 1, 2010, pp.
31-43.

[15] T. Jo, “NTC (Neural Text Categorizer): Neural Network for Text
Categorization", International Journal of Information Studies, Vol 2,
2010, pp. 83-96.

346 Int'l Conf. Artificial Intelligence | ICAI'15 |

