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Abstract— The present paper aims to control informa-
tion content in multi-layered neural networks to improve
generalization performance. Following Linsker’s maximum
information principle, information should be increased as
much as possible in multi-layered neural networks. However,
it is needed to control information increase appropriately
to improve the performance. Thus, the present paper pro-
poses a method to control information content so as to
increase generalization performance. Experimental results
on an artificial data and the spam data set showed that
improved generalization performance could be obtained by
appropriately controlling information content. In particular,
better performance could be observed for complex problems.
Compared with the results by the conventional methods such
as the support vector machine, better performance could be
obtained when the information was larger. Thus„ the present
results certainly show a possibility of SOM knowledge in
training multi-layered networks.
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1. Introduction
1.1 Maximum Information

Information-theoretic methods have received due attention
since Linsker [1], [2], [3], [4] tried to describe information
processing in living systems by the maximum information
principle. In this principle, information content in multi-
layered neural networks should be increased as mush as
possible for each processing stage. Linsker demonstrated
the generation of feature detecting neurons by maximizing
information content for simple and linear neural networks.
However, because difficulty have existed in training multi-
layered neural networks, few results on this performance of
fully multi-layered neural networks have been reported.

Recently, multi-layered neural networks has received
much attention because several methods to facilitate the
learning of multi-layered neural networks have been pro-
posed in the deep learning [5], [6], [7], [8]. Thus, the time
has come to examine the effectiveness of the maximum
information principle in training multi-layered neural net-
works. In the deep learning, unsupervised feature detection

is realized by the auto-encoder and the restricted Boltzmann
machines. However, they are not necessarily good at detect-
ing main features of input patterns, because they have not
been developed as feature detectors. Thus, it is needed to use
more efficient feature detecting methods for multi-layered
neural networks.

1.2 SOM Knowledge
In training multi-layered neural networks, it is important

to extract the main features of input patterns. In the present
paper, the self-organizing maps (SOM) is used to detect
the features for training multi-layered neural networks. As
is well known, the SOM has been developed to extract
important features and in addition to visualize those features.
If it is possible to use the features detected by the SOM
for training multi-layered neural networks, the training can
be more facilitated, and in addition, final results can be
visualized for easy interpretation.

Recently, the SOM was found to be effective in train-
ing multi-layered neural networks under the condition that
information content of each hidden layer is maximized
or increased as much as possible [9]. This means that
Linsker’s principle of maximum information preservation
is effective in training multi-layered neural networks with
the SOM. Meantime, it has been observed that information
should not be simply increased. The information increase
or maximization should be appropriately controlled to have
better performance, in particular, better generalization per-
formance. Thus, the objective of the paper is to control
appropriately the process of information maximization and
to explore to what extent generalization performance can be
improved.

1.3 Outline
In Section 2, the SOM knowledge induced learning is in-

troduced, which is composed of SOM and supervised multi-
layered neural networks. Then, the information content is de-
fined as decrease of uncertainty of neurons. This information
is controlled by using the number of layers multiplied by the
other parameter r. The parameter r is introduced to adjust
the information content for given problems. In Section 3, the
artificial and spam data are used to examine to what extent
information can be increased and generalization performance
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can be improved. Experimental results show that information
can be increased and correspondingly generalization errors
can be decreased by the present method.

2. Theory and Computational Methods
2.1 SOM Knowledge Induced Learning

The SOM knowledge induced learning is a method to use
the knowledge by the SOM to train multi-layered neural
networks. Figure 1 shows a network architecture for the
learning. As shown in the figure, the learning is composed
of two phases, namely, the information acquisition (a) and
use (b) phase. In the information acquisition phase in Figure
1(a), each competitive layer is trained with SOM to produce
weights. These weights are used to train multi-layered neural
networks in Figure 1(b). In the information use phase, the
ordinary back-propagation learning is applied with the early
stopping criteria. The problem is whether the weights by the
SOM are effective in improving generalization performance.

2.2 Information Content
The SOM knowledge is effective only with the maximum

information principle. Thus, this section deals with how
to increase information content. As shown in Figure 1,
a network is composed of the input layer, multiple com-
petitive layers and an output layer. Let us explain how
to compute output from competitive and output neurons.
Now, the sth input pattern can be represented by xs =
[xs

1, x
s
2, · · · , xs

L]
T , s = 1, 2, · · · , S. Connection weights

into the jth competitive neuron are denoted by wj =
[w1j , w2j , · · · , wLj ]

T , j = 1, 2, . . . ,M. The output from
an output neuron is computed by

vsj = exp

(
−‖ x

s −wj ‖2
σ2

)
, (1)

where σ denotes a spread parameter or Gaussian width. The
output from the jth neuron is defined by

vj =
1

S

M∑
j=1

vsj . (2)

The firing probabilities are computed by

p(j) =
vj∑M

m=1 vm
. (3)

The uncertainty or entropy of this neuron is

H = −
M∑
j=1

p(j) log p(j). (4)

The information content is defined by difference between
maximum and observed uncertainty

I = Hmax −H

= logM +

M∑
j=1

p(j) log p(j). (5)

2.3 Controlled Information Maximization
This information can be increased by decreasing the

Gaussian width σ. The width is here defined by

σ(t) =
1

tr
, (6)

where t denotes the layer number. When the number of
layers increases, the spread parameter σ decreases and the
corresponding information tends to increase. In addition, the
parameter r is needed to control the spread parameter. When
the parameter r increases, the spread parameter σ decreases
and correspondingly the information tends to increase.

Figure 2 shows the spread parameter σ as a function of
the number of layers t when the parameter r increases from
0.1 to 2.5. As shown in the figure, the spread parameter
decreases when the the number of layers increases. In
addition, the spread parameter decreases when the parameter
t increases. When the layer number is higher, the spread
parameter gradually decreases and information increases. In
this case, the number of strongly firing neurons in black
gradually diminishes as shown in Figure 1. This means
that the number of effective competitive neurons gradually
diminishes and features can be gradually compressed into a
smaller number of competitive neurons.

3. Results and Discussion
3.1 Application to Artificial Data
3.1.1 Experimental Outline

To show the effectiveness of the information maximiza-
tion, an artificial data set was made, which could be divided
into two classes as shown in Figure 3(a). The total number
of input patterns was 2000. Among them, only 100 patterns
were for training ones. Even if the number of training pattern
increased, the tendency here reported was observed. The
remaining 900 and 1000 patterns were for the validation and
testing ones, respectively. The number of input, competitive
and output neurons were 2, 25 (5 by 5) and 2, respectively.

Then, to make the problem more complex, the standard
deviation of the data increased gradually. When the standard
deviation increased from one in Figure 3(a) to five in Figure
3(b), the boundary between two classes became ambiguous
and the problem of classification became more difficult.

3.1.2 Weights by SOM
The SOM trys to imitate input patterns as much as

possible. This means that connection weights tend to be
expanded to include all input patterns. Figures 4(a) and (b)
show connection weights in blue and data in green by the
self-organizing maps. In Figure 4(a) and (b), weights in blue
were expanded to cover all data points in green. This means
that the SOM tried to acquire information over connection
weights on input patterns as much as possible. The problem
is whether these weights are effective in training multi-
layered neural networks.
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Fig. 1: Network architecture with two components of SOM knowledge induced learning where black neurons fire strongly.
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Fig. 2: Spread parameter σ as a function of the number of
layers t for different valued of the parameter r.

3.1.3 Results with Information Maximization

Figure 5 shows information and generalization errors
when the parameter r increased from 0.5 to 2.5. As shown
in Figure 5(a), when the standard deviation was one, infor-
mation increased when the parameter increased. However,
the generalization errors did not decrease and in the end,
they increased rapidly. Figure 5(b) shows the results when
the standard deviation was three. As shown in Figure 5(b1),

information increased gradually. Then, generalization errors
decreased gradually as shown in Figure 5(b2). Figure 5(c)
shows the results when the standard deviation was five.
As shown in Figure 5(c1), information increased and the
generalization errors decreased, though some fluctuations
could be seen in Figure 5(c2).

3.1.4 Summary of Results on Generalization

Table I shows the summary of generalization errors. The
best average errors in bold faces were obtained by the
information maximization. Only when the standard deviation
was one, the support vector machine (SVM) showed the
performance equivalent to that by the information maximiza-
tion. When the standard deviation was one, the best error of
0.017 by information maximization was obtained for r =
2.0. When the standard deviation was two, the best error
was obtained with r = 1.6. When the standard deviation
was three, the best error was obtained for r = 2.4. When the
standard deviation was four, the best error was with r = 2.0.
Finally, when the standard deviation was five, the best error
was obtained for r = 1.7. Thus, when the parameter r
was higher, and correspondingly information was higher, the
better performance could be obtained.
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(a) Standard deviation=1 (b) Standard deviation=5
Fig. 3: Data with five different values of standard deviation.
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Fig. 4: Weights with 100 epochs by SOM when the standard deviation was one and five.

Table 1: Summary of experimental results for the artificial
data, where "Conv", "With" and "Without" represent the
conventional multi-layered networks and networks with and
without information maximization, respectively. The values
of the parameter r denotes networks with the best general-
ization performance.

SOM induced learning

Std dev Conv Without With r SVM

1 Avg 0.022 0.145 0.017 2.0 0.017

Std dev 0.007 0.166 0.004 0.005

2 Avg 0.172 0.338 0.153 1.6 0.160

Std dev 0.021 0.112 0.010 0.012

3 Avg 0.272 0.432 0.250 2.4 0.266

Std dev 0.025 0.098 0.022 0.017

4 Avg 0.329 0.483 0.312 2.0 0.326

Std dev 0.024 0.090 0.021 0.015

5 Avg 0.365 0.466 0.348 1.7 0.370

Std dev 0.027 0.061 0.017 0.016

3.1.5 Results without Information Maximization

Figure 6 shows information as a function of the number
of layers by the method without information maximiza-
tion. As can be seen in the figure, information tended to
increase gradually when the number of layers increased,
though the amount of information was smaller than that
by the information maximization. The present method is
successfully used to increase the information, because this
natural tendency of information increase can be accentuated
by the present method. However, when the layer number was
three, the information decreased in Figure 6. In Figure 5(b),
the information increased when the standard deviation was
three. Thus, the present method can increase the information
in spite of the absence of natural tendency of information
increase. In addition, in Figure 5, information increase
seems to be correlated with improved generalization when
the standard deviation is larger. This means that when the
problem becomes more complex, the present method will be
more effective in increasing generalization performance.
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Fig. 5: Information and generalization errors with the information maximization component when the standard deviation
increased from one to five.
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Fig. 6: Information and generalization errors by the method
without the information maximization component.

3.2 Application to Spam Data Set
3.2.1 Experimental Outline

The spam data set from the machine learning database
[10] was used to examine the performance of the present
method. The number of patterns was 4601 with 57 variables
and 1000 of them were for training data. The number of
validation data set was 1000 and the remaining ones were
for testing. The number of input, competitive and output
neurons were 57, 25 (5 by 5) and 2, respectively.

3.2.2 Information and Generalization
Figure 7 shows information and generalization errors by

the present method. Information content increased gradually
when the parameter r increased from 0.5 to 2.0 in Figure
7(a), though in the fourth layer information decreased.
Figure 7(b) shows generalization when the parameter r
increased from 0.5 to 2.0. The generalization errors de-
creased gradually and the lowest error was obtained when
the parameter r was 1.5. Those results show that when in-
formation increased, generalization errors tended to decrease
accordingly.

As mentioned, for the fourth layer, the information in-
creased when the parameter r increased from 0.5 to 1.4 in
Figure 7(a). However, the information then decreased when
the parameter r increased from 1.5 to 2.0 in Figure 7(a). As
shown in Figure 7(b), the generalization errors fluctuated
when the parameter r increased from 1.5 to 2.0. This
fluctuation may be explained by the decrease in information
for the fourth layer.

3.2.3 Summary of Generalization Performance
Table II shows the summary of generalization errors. The

lowest error of 0.142 was obtained by the present method.
The second best error of 0.150 was by the support vector
machine. Then, the conventional multi-layered networks
shows the third best error of 0.183. The worst error of

Table 2: Summary of experimental results for the spam data,
where "Conv", "With" and "Without" represent the conven-
tional multi-layered networks and networks with and without
information maximization, respectively. The values of the
parameter r denotes networks with the best generalization
performance.

SOM induced learning

Conv Without With r SVM

Avg 0.183 0.363 0.142 1.5 0.150

Std dev 0.019 0.089 0.035 0.010

0.363 was by the method without the maximum information
component.

As shown in the table, the largest standard deviation
of 0.089 was obtained by the method without the maxi-
mum information component. By the maximum information
component, the standard deviation decreased from 0.089 to
0.035, which was however the second largest value. Thus,
the present method produced results with larger standard
deviation and these large values can be decreased by the in-
formation maximization component. However, by the present
method, the standard deviation was still larger. Thus, it is
necessary to examine why such large standard deviation is
produced and to develop a method to stabilize the learning
by multi-layered neural networks with SOM knowledge.

3.2.4 Comparison of Information Increase
Figure 8 shows the information increase by the method

without the maximum information component. The infor-
mation content increased when the layer number increased
from one to three, and then it decreased when the layer
number increased from four and five. The information max-
imization component could increase information in spite of
the tendency of information decrease for the higher layers.

3.3 Conclusion
The present paper has shown that it is important to

control information content in training multi-layered neural
networks. Linsker stated that information content should
be maximized for each processing stage. However, simple
information maximization does not necessarily imply better
performance in multi-layered neural networks. Information
content is increased appropriately for each processing stage.
Experimental results on the artificial data and spam data
set showed that the appropriate control of information
increase was essential in increasing better generalization
performance. One of the main problems is that the present
method sometimes tended to produce the larger variances
of results. Thus, it is needed to develop a method to
stabilize learning. Though there are some problems to be
solved, the present results certainly show that the appropriate
control of information content is one of the most important
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factors in training multi-layered neural networks with SOM
knowledge.
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