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Abstract – Wavelet decomposition is a widely used method to 
preprocess temporal signals before they could be analyzed by 
Artificial Spiking Neural Networks (ASNN). This study 
proposes a biological plausible way to encode the temporal 
signals into spike trains with wavelet amplitude spectrum 
represented by the delay phases during each encoding 
period. The encoding method is presented in the form of a 
spiking neuron model for easy implementation in ASNN. The 
proposed neuron model is tested on encoding of human voice 
records for speech recognition purpose, and compared with 
results from continuous wavelet transform. The nonlinearity 
properties and choices of biological plausible wavelet kernels 
for the proposed encoding method is discussed for the 
generality of its application. 
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1 Introduction 
The most significant difference between Artificial 

Spiking Neural Networks (ASNN) and traditional neural 
networks is that information in ASNN is represented by spike 
trains which are a series of pulses with timings of interests. 
There are mainly two kinds of interpretations developed in 
signal processing applications about how information is 
related to spike trains: (1) the rate encoding, which assumes 
that the information is encoded by the counts of spikes in a 
short time window; and (2) the spike time encoding which 
considers information carried at the exact time of each pulse 
in the spike train. Although the mechanisms for data 
representation and analysis using biologically-inspired neural 
networks is still under development, empirical evidence has 
shown that spike time encoding might be more reliable in 
explaining experiments on the biology of nervous systems[1], 
[2]. 

Both rate encoding and spike time encoding essential in 
ASNN applications. The easiest way to rate encode an analog 
signal is to feed it to a Poisson neuron, which fires output 
spikes at probability proportional to its membrane potential, 
thus making its firing rate within a short time window 
proportional to the amplitude of the input signal. Such an 
encoding method has been adopted by Sprekeler et al. [3]. 
and Keer et al. [4] in order to analyze the recurrent ASNN 

behaviors. Although Poisson neuron model is simple and 
suitable for theoretical analysis, it was rarely implemented in 
real-world applications due to its inaccuracy in mapping 
analog signals to spike trains. De Garis et al. [5] introduced 
another rate encoding method which deconvolves the input 
signal into its individual spike responses, so that the post-
synaptic potential of the encoded spike train could be quite 
similar to the original signal. Schrauwen and Van 
Campenhout [6] improved algorithm proposed by De Garis et 
al. by optimizing the deconvolution threshold yielding the so-
called Bens Spiker Algorithm (BSA). BSA has been used 
widely as a rate encoding method for ASNN applications [7]–
[9]. The major problem of this type of rate encoding is that an 
averaging time window is required for each sampling of the 
input signal, which as a consequence limits the temporal 
resolution of the encoded signals. 

Synchronized spike time encoding, dubbed as Phase 
Encoding (PE), was also widely used in ASNN application. A 
simple implementation of PE could be realized by linearly 
mapping the input signal to the delay of spikes within each 
synchronizing period [10]. This implementation of PE 
requires the input signal either to be static or vary at 
frequencies much lower than the synchronizing frequency. 
Temporal receptive fields could also be utilized for PE to 
improve the encoding resolution [11], [12]. To be more 
biologically plausible, Rumbell et al. [13] introduced a 
synchronizing method which considered spiking neurons as 
PE units instead of performing linear mapping between analog 
values and spike delays. Receptive fields in this study were 
applied to the amplitude dimension instead of the temporal 
dimension, which yielded good performance for static input 
data. However, PE method which could accurately encode 
temporal signals is still under development. 

In this paper, we propose a preprocessing unit for the 
Leaky Integrate-and-Fire (LIF) spiking neurons. The 
assumption is that a neuron model combining the 
preprocessing unit with a LIF neuron could be used to encode 
analog signals with wide frequency range. We will 
demonstrate that our preprocessing unit could decompose the 
input signal into wavelet spectrum, and further encode the 
spectrum amplitude into the delay amount between output 
spikes and the clock signals. Empirical results of PE encoding 
of speech records are provided, with linearity, temporal 
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resolution issues and possible extension of the encoding 
method discussed. 

2 Encoding Neuron Model 
In this section, we will demonstrate that an array of 

specially designed LIF neurons could perform wavelet 
decomposition of temporal signals. This special design of a 
LIF neuron differs from traditional LIF neurons by 
incorporating a two-stage spike triggered modulate-and-
integrate module to pre-process the input signal. Such design 
was inspired by the multiplication relationship found among 
afferent synaptic currents in biological neurons [14]. Delay 
synchronized spikes sent to the two synapses integrated in the 
special designed LIF neuron could trigger the wavelet 
transform of the input signal at certain time scales, and encode 
the spectrum amplitudes into delays between the output fire 
times and the control spike arriving times. Simulations in this 
research were conducted using NEural Simulation Tool [15] 
(NEST) with custom made neuron models. 

2.1 Wavelet Encoding Spiking Neuron Model 

Although linear summation of synaptic currents and 
external current has been widely accepted as a simplified 
relationship among the afferent stimulations in large scale 
ASNN, the interaction between post-synaptic currents was 
found to be more complicated in biological nervous system. 
Koch and Segev [14] found that biological neurons might 
approximate sum of products among different groups of 
synaptic currents. Inspired by this finding, we designed a two-
stage modulate-and-integrate module, where the 
multiplication is performed instead of summation between the 
input signal and synaptic currents. The first stage of the 
module incorporates the integration of the multiplication of 
external current and a wavelet shape synaptic current, while 
the second stage modulate the output from first stage with an 
exponential decay synaptic current. We will prove that using 
our preprocessing module together with a LIF neuron, input 
signal could be decomposed into wavelet spectrum and such 
spectrum amplitude could be encoded into synchronized spike 
trains. 

In reference to Fig. 1, Cint and Cenc are delay 
synchronized clock spikes satisfying: 

 enc int
ei it t T    (1) 

where Te is the delay phase, ti
int and ti

enc are time of spikes in 
Cint and Cenc respectively, with 1,2,...,i n  being the index of 
each spike. The interval of spikes in both Cint and Cenc is Tclk. 
Cint and Cenc are converted into post-synaptic current Ienc and 
Iint by synapse Sint and Senc respectively. Input signal Ie is 
multiplied with Iint, and integrated by neuron Nint into its state 
variable v. Nenc is a normal LIF neuron, stimulated by the 
absolute amplitude of  modulated with Ienc. 

The overall dynamics of this encoding unit could be 
specified by the following equations: 

 enc
m

( ) ( ) ( ) ( )du t u t v t I t
dt C

   (2) 

 e int
( ) ( ) ( )dv ta I t I t
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  (3) 

where u is the state variable of Nenc, Ienc and Iint are 
summations of the post-synaptic currents of spikes in Cenc, and 
Cint respectively, and are defined as follows: 
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enc
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i
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where Ψ is a wavelet mother function used as the PSC for Sint, 
with a representing the scale of the wavelet, σ = a fs indicating 
the time scale of the wavelet related to the sampling frequency 
fs, d serving as an offset parameter, and Θ being a Heaviside 
step function. We selected a shifted Mexican-hat wavelet 
mother function for Ψ as a demonstration here: 
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Assuming that the length of integration period Ti 
satisfies i clkT T , we could define d = Ti / 2 in (5), so that the 
wavelet function is centered within each integration window. 
Note that both Ienc and Iint are constructed in a unitless manner 
for the model simplification. 

Suppose that each spike in Cint could reset the state 
variable v of neuron Nint to zero, and that σ is significantly 
smaller than Tclk, then (2) could be solved for int int

1i it t t  as: 
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int
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Fig. 1: Structure of the Two-Stage Modulate-and-Integrate 
Module  
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Suppose further that σ is significantly smaller than Ti, 
and consider that ( , ) 0t  when it T  or if 0t , then 
(7) could be approximated by: 
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for int int
i 1i it T t t , where Xw is the wavelet transform of 

input Ie at translation int
i / 2it T  and time scale . 

Assuming that: 

 i e clkT T T    (9) 

and suppose each input spike from Cenc could reset the state 
variable from u to uc for neuron Nenc, (2) could be solved for 

enc enc
1i it t t  as: 

 c( ) exp / ( )u t u t V t    (10) 

 int
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m
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where Δt is the elapsed time since last input spike from Cenc 
arrives at the neuron. Note that the absolute value operation 
applied to v makes V(Δt) a function of the absolute spectrum 
of the wavelet transform Xw. The absolute spectrum is 
preferable to power spectrum of the wavelet transform, in the 
sense that it ensures that the units in equation (10) are 
balanced without need for extra constants. 

We considered two different combinations of reset 
potential uc and output firing threshold uth for Nenc: 

i) Negative threshold: c th 0u u . 
ii) Positive threshold: c 0u and th 0u . 

 
In the first combination, as long as 

 clk e th cln /T T u u   (12) 

V(Δt) is a non-negative function. The membrane potential will 
exceed the threshold and an output spike will be generated 
during each time segment enc enc

1,i it t . The fire delay T in the i-
th segment could be solved from: 

 m
w th cexp /

CX u T u
T

  (13) 

where T is guaranteed to be a monotonic decreasing function 
of wX . 

For the second combination, consider that V( t) is a bell 
shape function which reaches its maximum when t , the 
membrane potential could exceed the threshold only if the 
wavelet spectrum amplitude satisfies: 

 th m
w th 2e

u C
X X    (14) 

in which case the firing delay T could be solved from: 

 th m
w exp /

u C
X

T T
   (15) 

Note that T is always less than τ in (15), which ensures 
that T is a monotonic decreasing function of wX  when the 

amplitude spectrum wX  is larger than the threshold Xth. If 
the wavelet spectrum amplitude is smaller than Xth, the LIF 
neuron Nenc will not fire during enc enc

1,i it t . 

In both combinations discussed above, the wavelet 
spectrum of input signal Ie is encoded into delay phase T 
which is the difference between the time of each output fire 
and the arrival time of the most recent input spike in Cenc. 
Thus, larger wavelet spectrum amplitude corresponds to faster 
firing after each clock spike. 

2.2 Encoding Implementation 
Synapses and neurons as described in (2) through (6) are 

implemented in NEST with a single customized neuron model 
referred to as the Wavelet Sensor Neuron (WSN). In order to 
balance the accuracy and efficiency while solving ODEs for 
WSN, exponential integration method has been adopted to 
solve the state variable u, and Simpson’s rule was applied to 
the integration for state variable v: 

 1 32 33n n n nu P s v P u    (16) 

 1 m m m( ) 4
6 2n n n n n
h hv I t I t I t h v   (17) 

 1 33n ns P s   (18) 

 
2 2

m 2 2 2( ) 1 exp ( )
2 e

t tI t P I t   (19) 

 int
i / 2t t T t   (20) 

where subscript n indicates the n-th simulation step, h is the 
simulation step size, tint is the arrival time of the most recent 
spike in Cint, and P2, P32, and P33 are constant parameters 
defined by the following relations: 
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The WSN model incorporates two types of spike 
receptors to distinguish whether a spike is send to Sint or Senc, 
in the same manner as any other neuron model implemented 
in NEST which could receive spike input from more than one 
type of synapses. Input spikes with receptor type I are 
recognized as spikes sent to Sint, which could reset vn to zero 
and set tint to the current time; while input spikes with receptor 
type II are recognized as spikes sent to Senc, which in turn 
could reset u to uc and s to zero. 

A normal LIF neuron Nclk with an exponential decay 
synapse is implemented in this network as the clock generator. 
This LIF neuron is connected to itself with axon delay Tclk and 
synaptic efficacy large enough to generate a new output spike 
from itself. A short strong pulse injected to Nclk could 
initialize the first firing of Nclk, and generate oscillatory clock 
spikes at constant interval approximate to Tclk. These clock 
spikes are sent to type I receptors of WSN neurons with a 
short delay D0, and type II receptors with a longer delay Te. 

We built an encoding network to convert the human 
voice records obtained from Census Database of Carnegie 
Mellon University [16] (AN4) into spike trains related to the 
wavelet spectrum. An array of 100 WSNs with τ = 45 ms and 
σ varies between 0.2 ms and 10.0 ms were implemented in the 
encoding network. The spike trains could encode frequency 
components ranging from 100 Hz to 50 kHz in the input 
signal, which is wider than the human voice frequency 
limitations. Time constants Tclk = 100 ms, D0 = 1.0 ms, 
Ti = 45 ms, and Te = 50 ms was selected to meet all the 
requirements posed by (9). A negative threshold 
Vth = −1.0 mV was used in this implementation. The reset 
membrane voltage was set to uc = −2.72 mV so that the 
longest spike delay is Tmax = 45 ms, according to the solution 
of (10) with V(T) = 0 mV and u(Tmax) = uth. Since 
Te + Tmax < Tclk, there is always one output spike from each 
WSN within one clock cycle. 

3 Results and Discussion 
The record file “an253-fash-b.raw” from the training set 

of AN4 database was used as the input to the WSN encoding 
network. The state variables of each WSN neurons were 
recorded for the testing purpose. A portion of the recorded 
variables of one WSN with σ = 5.64 ms was captured and 
plotted in Fig. 2 

Vertical red dash lines in Fig. 2 represent the arrival 
times of the clock spikes for the type I synapse receptor of this 
neuron. Input Ie was modulated with the wavelet kernel for 
45 ms after each clock signal. When Ie contains components 
matching the 5.64 ms time scale of the wavelet function, the 
WSN generates a larger modulated current, yielding as a 
consequence a larger state variable v. The clock spikes arrive 
at the type II synapse receptor of this WSN after 50 ms delay 
(indicated by the green vertical lines in Fig. 2, which trigger 
the encoding periods. At the beginning of each encoding 
period, the integration of v has already finished, thus v holds 
its value for the whole encoding period. The LIF neuron 

 

 
Fig. 2 Time course of variables in one WSN with 
σ = 5.64 ms. Red vertical dash lines indicates the arrival times 
of spikes in Cint; green dash lines indicates the arrival times of 
spikes in Cenc. 

 

 
Fig. 3 Comparison of WSN encoding with Continuous 
Wavelet Transform at corresponding translations. Green lines 
bars output spikes from the WSN array 
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incorporated by the WSN would encode the constant v into an 
output firing delay. It could be found from the records of u 
that, the WSN fires faster when the input signal Ie contains 
components matching σ = 5.64 ms (i.e., periods from 3520 ms 
to 3720 ms), yet fires slower at almost the end of each 
encoding period when Ie contains only higher frequency 
components (i.e., periods from 3120 ms to 3320 ms). 

The voice record used in this experiment was the sound 
of female pronouncing the word “GO”. The output spikes of 
all 100 WSNs were raster-plotted for the time range from 
3500 ms to 5000 ms using short vertical green bars as shown 
in Fig. 3. Continuous wavelet transform using Mexican-hat 
wavelet was also applied to the same voice record. The 
wavelet transform at translations ti

clk + 22.5 ms were color 
coded and superimposed on Fig. 3, where ti

clk are the firing 
times of Nclk. It could be found from Fig. 3 that, the change of 
the fundamental frequency when pronouncing the word “GO” 
was clearly captured by the Mexican-hat wavelet transform, 
and the delay phases of WSN output fires were a good 
representation of the wavelet spectrum amplitudes during each 
clock cycle. Such phase encoded spike trains are applicable to 
any supervised spiking neural learning. Thus, the clustered or 
classified features of the frequency changes could be used to 
recognize the word pronounced. The phase delays of the 
WSN array in this example could substitute for the 
spectrogram in estimating key characteristics in speech 
recognition [17], and could support the building of speech 
perception system using ASNN. 

3.1 Encoding Non-linearity 

The logarithm relationship between stimulation intensity 
and the delay phase of encoded spikes in sensory neurons was 
identified by many neurologists [18]. In many spiking neural 
network applications which implements PE as the sensing 
method, a log function was applied to the input signals to 
mimic the logarithm relationship [9], [12]. The WSN 
encoding method is highly nonlinear according to (13) and 
(15), yet the logarithmic relationship between stimulation 
intensity and the delay phase of spikes is a natural feature of 
the WSN encoding. 

As shown in Fig. 4, the linearity between wlog X and 

log T could be found in certain regions for the five selected 
WSN neurons with time constants τ being 20 ms, 40 ms, 
60 ms, 80 ms and 100 ms, respectively. In Fig. 4(a), positive 
firing threshold was adopted for these neurons, and the 
wavelet spectrum amplitude threshold was set to Xth = 10−3 for 
all five neurons. The firing threshold uth for these neurons 
could be calculated by (14). We could find that WSN could 
encode wlog X to log T in a linear way when wX  is in 
the linear region shown in Fig. 4(a). Different time constants τ 
introduce different offsets to the linear relationship along the 
y-axis: larger τ values corresponds to better encoding 
resolution for small wX . 

As a comparison, negative firing threshold were used for 
the WSN neurons in Fig. 4(b), with uth all set to −0.2 mV. uc 
for these neurons was adjusted according to: 

 c th maxexp /u u   (22) 

such that the maximum output fire delay was always 
Tmax = 100 ms. Linearity could also be found in the linear 
region indicated in Fig. 4(b), when T is a bit smaller than Tmax. 
Different time constants τ introduce different offsets to the 
linear relationship along the x-axis. 

It should be noted that, using the same τ settings, 
negative firing thresholds provide better logarithm linearity 
than positive firing thresholds for the encoding of signals with 
a larger range of wX . Since the parameter τ in the WSN 
neuron is limited by the encoding window length, negative 
firing thresholds could be a better choice when the encoding 
linearity is of interest, as demonstrated in this paper when 
encoding was performed on the example of the human voice 
record. However, the wX cut-off feature provided by the 
positive firing thresholds could be useful when only large 
values of wX  are of interest. The threshold configuration as 
well as the time constant τ should thus be carefully selected 
for a given application, so that the features of interest in the 
input signal could be best encoded into the delay of output 
fires. 

 

 
Fig. 4 Logarithm relationship of the input intensity and output 
spike delay: (a) the relationship of positive threshold WSNs; 
(b) the relationship of negative threshold WSNs. 
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3.2 Mother Wavelet Functions 

Although a shifted Mexican-hat wavelet mother function 
was used for the post-synaptic current shape function in Sint, it 
is not required for the WSN neuron to work properly. Any 
types of wavelet mother functions could be used as the current 
shape function in WSN, and the input signal will be 
decomposed according to the mother wavelet functions 
selected. If a discrete wavelet is demanded, the kernel 
function of the discrete wavelet at different time scale with 
proper shifting should be used as Ψ in (5). 

More interestingly, since the integration of the wavelet 
kernel performs only in a limited time duration, the only 
requirement for Ψ(t) is that: 

 lim ( ) 0
t

t   (23) 

and Ψ(t) is not required to be absolutely integrable and square 
integrable from −∞ to +∞. Some functions, such as the alpha 
function: 

 ( , ) expt tt   (24) 

could also be used to decompose the input signals. 

3.3 Temporal Resolution 

Since the wavelet of a WSN is convolved with the input 
signal only once during each clock cycle, the encoding 
temporal resolution of one WSN is limited to the clock 
interval Tclk. Considering that the total of integration time Ti 
and that encoding time Te should be smaller than Tclk, and the 
time constant τ should also be smaller than Ti, although a 
decreased Tclk could enhance the encoding temporal 
resolution, it might also harm the encoding range of the 
wavelet spectrum amplitude. In order to enhance the temporal 
resolution of a WSN array without interfering with the 
encoding range, we could still implement multiple WSNs for 
each time scale selection, but with different D0 values. 
Accordingly, the wavelet transform would be performed at 
different translations within each clock cycle, and thus could 
significantly enhance the temporal resolution of the encoding 
without shrinking the length of each clock cycle. 

4 Conclusion and Future Work 
Encoding of analog signals into spike trains is one of the 

most important steps for information processing in biological 
nervous systems. The encoding method we proposed in this 
paper incorporates the concepts of synaptic current 
modulation with phase encoding representation. We proved 
that the proposed WSN model combining a preprocessing unit 
and a LIF neuron could perform the wavelet decomposition of 
the input signal, and convert the wavelet spectrum amplitude 

at certain translation and time scales into the output fire delay 
of the WSN neuron. 

Encoding networks using WSN neurons were 
implemented in this study to encode an example of a human 
voice record, with results that are quite similar to continuous 
wavelet decomposition. The linearity property and limitations 
of mother wavelet functions of this WSN encoding method 
were discussed as a guidance for choosing proper parameters 
for the WSN network to fit a specific application. We also 
provide a simple method to overcome the temporal resolution 
limitation posed by the clock signal, so that the wavelet 
decomposition could be performed with higher temporal 
accuracy if needed. 

Beyond the above contributions, this work also provides 
an intuitive insight of how stimulations gathered by sensor 
neurons might be represented and processed by a biological 
nervous system: the modulation behavior found between 
dendrites together with the integration feature of a biological 
neuron could perform decomposition of stimulation signals 
similar to wavelet transforms, and encode only those features 
of interest in the stimulation into the spike delay phases. 

There are other possibilities for using the proposed 
encoding method such as: (1) apply graph theory [19] to find 
the connectivity between encoded spike trains, or (2) build 
spiking self-organizing-map and supervised learning systems 
to further process the encoded spike trains, and classify the 
patterns represented by the encoded spike trains into 
meaningful symbols. Although the WSN and the encoding 
network was implemented in the NEST environment, which is 
based on a digital computing platform, the concepts of WSN 
is fully compatible with analog computing. We are interested 
in developing analog circuits to implement WSN encoding 
network, so that Ultra Large Scale Integration methods could 
be used to build a highly parallel neuromorphic system. 
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