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Abstract - It is well known that artificial neural networks 
(ANNs) can learn deterministic automata. Learning 
nondeterministic automata is another matter. This is 
important because much of the world is nondeterministic, 
taking the form of unpredictable or probabilistic events 
that must be acted upon. If ANNs are to engage such 
phenomena, then they must be able to learn how to deal 
with nondeterminism. In this project the game of Pong 
poses a nondeterministic environment. The learner is 
given an incomplete view of the game state and underlying 
deterministic physics, resulting in a nondeterministic 
game. Three models were trained and tested on the game: 
Mona, Elman, and Numenta’s NuPIC. 
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1 Introduction 
  Games, like many endeavors, are about reacting to 

and predicting events in the pursuit of goals. Games often also 
feature sequential actions as part of their play. Artificial neural 
networks (ANNs) have demonstrated considerable success in 
sequence prediction [1, 2]. For “conventional” multilayer 
perceptron (MLP) types of ANNs, sequences to be recognized 
are trained into the network beforehand as a set of static 
patterns. Because of this, reacting to untrained events is not a 
strength. This is an impediment to the use of MLPs in types of 
games that require this capability. Recent notable achievements 
playing arcade-style games [3] rely on the power of pattern 
classification rather than sequence recognition. 

The aim of this project is to examine ANN 
architectures applied to learning a game that features both 
unpredictable events and sequential actions. These features are 
manifested in a nondeterministic finite automaton (NDA) [4]. 
Much of the world is nondeterministic, taking the form of 
unpredictable or probabilistic events that must be acted upon. 
If ANNs are to engage such phenomena, as biological networks 
do so readily, then they must be able to learn nondeterministic 
environments. 

It is well known that recurrent MLPs, e.g. an Elman 
network, can learn deterministic finite automata [5, 6]. 
Learning the Reber Grammar is an example of this [7]. 
Learning nondeterministic finite automata is another matter. 
NDAs can produce event streams that are impossible to predict, 

making comprehensive ANN training infeasible.  This is 
anathema for MLPs that rely on such training to be effective. 

In this project the game of Pong provides a 
nondeterministic environment. While a deterministic game of 
Pong can readily be learned by an ANN given the ball position 
and velocity [8, 9], in this project the learner is given an 
incomplete view of the game state and underlying physics, 
resulting in a nondeterministic game. 

 
Three ANN models were trained and tested on the game:  
 Mona, a goal-seeking network [10, 11].  
 Elman, a popular MLP recurrent network [12]. 
 Numenta’s NuPIC, a model of hierarchical temporal 

memory (HTM), which is closely based on neurological 
structure and function [13, 14].  

2 Description 
2.1 Pong game environment 

 The computer game of Pong [15] involves striking a 
moving ball with a movable paddle in a two-dimension playing 
area on a computer screen. Two paddles, controlled by 
opposing players, are positioned at the left and right ends of the 
playing area where they can be moved up and down to meet the 
ball. The ball can bounce off of the sides of the area as well as 
the paddles. A player loses when the ball gets by the player’s 
paddle without being struck successfully.  

In this project there is only one player, the ANN 
learner, controlling a paddle that is located on the right side of 
the playing area. A loss occurs when the ball passes the paddle, 
and a win is signified by a successful paddle hit. From the 
player’s point of view, the playing area is overlaid by a 5x5 
grid. The grid does not affect ball movements. The learner 
possesses sensors and response capabilities that are only 
effective in its currently located grid cell. 

2.1.1 Sensors  
There are two sensors, one each for the ball and paddle 

states. Their values are supplied by the underlying game 
mechanics. 
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The ball sensor values: 
BALL_ABSENT, BALL_PRESENT, 
BALL_MOVING_LEFT, BALL_MOVING_RIGHT, 
BALL_MOVING_UP, BALL_MOVING_DOWN 
If the ball is moving up or down but also left or right, the ball 
sensor will report a vertical movement. 
 
The paddle sensor values: 
PADDLE_ABSENT, PADDLE_PRESENT 

2.1.2 Responses 
The learner can express these responses: 
 CHECK_BALL: ask the physics for a ball sensor reading; 

this is only effective when the ball is in the current grid 
cell. 

 TRACK_BALL_LEFT: move the learner’s current grid 
cell left one cell, which is the correct response to the 
BALL_MOVING_LEFT sensor value. 

 TRACK_BALL_RIGHT: move current grid one cell right. 
 PAN_LEFT: move current grid cell left across the playing 

area until the ball or the left side is encountered.  
 PAN_RIGHT: move current grid cell right until ball, 

paddle, or right side encountered. 
 MOVE_PADDLE_UP: move paddle and current grid cell 

one cell up; this is only effective when the paddle is 
present. 

 MOVE_PADDLE_DOWN: move paddle and current grid 
cell one cell down when the paddle is present. 

 

 
Figure 1 – Pong play. Box indicates sensory area. 

 
Figure 1 is a snapshot of a game in progress. A video 

is also available on the web at http://youtu.be/Urdu9AJxoA0.  
Figure 2 shows the state space for winning games. The states 
are annotated with sensor states and the edges are annotated 
with responses. State transitions inputs are defined by implicit 
“step” signals which can have multiple target states, hence the 
state space embodies a nondeterministic automaton.  

A game begins with the ball in the center of the 
playing area and the paddle in the center position. The ball is 
set to a random direction with a speed that is normalized so as 
not to outstrip the learner’s ability to track it. Game play is turn-
based, with the game mechanics changing the ball position and 
direction and the learner responding to sensor inputs. 

 

 
 

Figure 2 – Pong state space for winning games. 
 

2.2 Training 
The learner is trained to track with the ball as it moves 

left and right. When sensors indicate that the ball is moving up 
or down, the learner is trained to (1) pan right to the paddle, (2) 
move the paddle up or down to remain aligned with the ball, 
and (3) pan left to locate the ball. The paddle-movement 
sequence is particularly challenging to train for two reasons: (1) 
the learner must remember which way to move the paddle 
without sensing the ball, and (2) the learner must remember that 
after it has moved the paddle and while continuing to sense the 
paddle, it must pan left to the ball. 

 
2.3 ANN models 

The following ANN models were trained and tested 
on the Pong game task. It should be mentioned that a fourth 
model, BECCA (Brain Emulating Cognitive Control 
Architecture) [16], was considered for comparison but was not 
included due to time constraints. BECCA was exhibiting 
preliminary promising performance but was not optimally 
trained as of this writing. 

2.3.1 Mona 
Mona [10, 11] is a goal-seeking ANN that learns 

hierarchies of cause and effect contexts. These contexts allow 
Mona to predict and manipulate future events. The structure of 
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the environment is modeled in long-term memory; the state of 
the environment is modeled in working memory. Mona uses 
environmental contexts to produce responses that navigate the 
environment toward goal events that satisfy internal needs. 
Because of its goal-seeking nature, Mona is also an example of 
reinforcement learning. Mona was selected for this task to 
illustrate the plasticity of a goal-seeking network in dealing 
with an NDA environment. 

For the Pong task two sensors were configured, one 
for the ball and one for the paddle. A set of values between 0 
and 1 were defined for the 6 ball sensor values and the 2 paddle 
sensor values. The response output ranged from 0 to 6 to 
encode the 7 possible response values. 

2.3.2 Elman 
An Elman network [12], also known as a Simple 

Recurrent Network, contains feedback units that allow it to 
retain temporal state information useful in classifying 
sequential input patterns. These feedback units reside in a 
context layer as shown in Figure 3. Each hidden layer unit has 
a connection to a corresponding context unit with a fixed 
weight of 1. An Elman network was selected for this task as a 
means of comparing non-MLP models with a popular MLP 
model. 

For the Pong task the Elman network was created with 
Lens (Light efficient network simulator) [17]. The network was 
configured with 8 input units for the 6 ball sensor plus 2 paddle 
sensor values; 20 hidden and 20 context units; and 7 output 
units for the 7 possible response values. “Off”/“on” sensor 
values were 0/1. Outputs were similarly trained to values of 0 
and 1. The learning rate was set to 0.2.  
 

 
Figure 3 - Elman recurrent network. 

2.3.3 NuPIC 
NuPIC, the Numenta Platform for Intelligent Computing 

[13, 14], comprises a set of learning algorithms that attempts to 
faithfully capture how layers of neurons in the neocortex learn. 
NuPIC was selected for this task based on its successful 
performance in a number of sequential prediction tasks. At the 
heart of NuPIC is Hierarchal Temporal Memory, or HTM. 
 
From an algorithmic point of view there are three principle 
properties: 

 Sparse Distributed Representations (SDRs): a sensor 
encoding technique that permits both noise tolerance and 
efficient pattern comparisons. 

 Temporal inference: prediction of upcoming patterns in a 
stream. 

 On-line learning: learning and prediction are concurrent. 

For the Pong task the inputs and output were configured as they 
were for Mona. 
 
3 Results 
3.1 Training 

For training, fifty random games of Pong were 
generated. For Mona, the BALL_PRESENT sensor state was 
defined as the only goal, which motivates the network to 
produce responses to navigate to the ball. As Figure 2 
demonstrates, returning to the BALL_PRESENT state will 
generate winning Pong actions.  

 

 
Figure 4 – Mona network after training. 

 

 
Figure 5 – Some mediator neurons in the trained Mona 

network. 
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A single pass of the training set was given with the 

correct responses enforced on the network, and working 
memory cleared before each game. The Mona network after 
training is shown in Figures 4 and 5. 

For the Elman network, 5000 training epochs were 
performed. For NuPIC, a swarm optimization using the training 
set was performed to select the optimal internal parameter 
values. 
3.2 Testing 

For testing, a separate set of fifty random Pong games 
was generated. Each game was scored according to the 
percentage of initial consecutive correct responses toward 
winning the game. So if there were 10 responses to win a game 
and the learner output the first 8 correctly, the score for the 
game would be 80%. The rationale for this scoring scheme is 
that making any error will cast the learner off course from a 
winning response sequence. 
 

 
Figure 6 – Testing results. 

 
Figure 6 shows results of testing with the test set as 

well as the training set for comparison (except for NuPIC). The 
Mona network performed perfectly for both sets. As might be 
expected, the Elman network performed perfectly for the set it 
was trained on, but much poorer for the test set, where it 
frequently encountered game play sequences that it was not 
trained to handle. This task obviously was not suitable for 
NuPIC, at least in its current form. 

 
4 Conclusion 

Even a simple nondeterministic game environment 
can pose significant problems for some ANN models, as the 
results show. For Mona, the goal-seeking component of its 
architecture is a major reason for its success on the task: it 
provides a mechanism for dynamically propagating motivation 
through a plethora of possible game sequences. For the Elman 
network, its success in predicting sequences that it has been 
trained on it notable. However, when sequences vary as they do 
in different untrained games, a marked decrease in performance 
ensues. For NuPIC, it seems clear that handling 
unpredictability is currently not a strong point. However, 

NuPIC remains under development as new neurological 
mechanisms are incorporated into it. 

Modeling the brain has produced significant successes 
in the area of pattern classification for ANNs. However, the 
brain obviously has much more to teach in the domain of 
learning and executing behaviors that interact successfully with 
real-world environments. An aim of this project is to highlight 
the capabilities of models other than the prevalent multilayer 
perceptrons. These models can be complementary as well: for 
example, the pattern classification prowess of deep learning 
networks might be meshed with a behavioral oriented network 
such as Mona or a high fidelity neurological network model to 
form formidable hybrid architectures. 

The open source code for Mona and the Pong project 
is available at http://mona.codeplex.com/ See the Readme in 
src/pong. 
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