
Training Artificial Neural Networks to Learn a
Nondeterministic Game

Thomas E. Portegys

DigiPen Institute of Technology
9931 Willows Rd. NE, Redmond, WA, 98052 USA

portegys@gmail.com

Abstract - It is well known that artificial neural networks
(ANNs) can learn deterministic automata. Learning
nondeterministic automata is another matter. This is
important because much of the world is nondeterministic,
taking the form of unpredictable or probabilistic events
that must be acted upon. If ANNs are to engage such
phenomena, then they must be able to learn how to deal
with nondeterminism. In this project the game of Pong
poses a nondeterministic environment. The learner is
given an incomplete view of the game state and underlying
deterministic physics, resulting in a nondeterministic
game. Three models were trained and tested on the game:
Mona, Elman, and Numenta’s NuPIC.

Keywords: Mona artificial neural network, Elman
artificial neural network, NuPIC hierarchical temporal
memory, nondeterministic learning, game learning.

1 Introduction
 Games, like many endeavors, are about reacting to

and predicting events in the pursuit of goals. Games often also
feature sequential actions as part of their play. Artificial neural
networks (ANNs) have demonstrated considerable success in
sequence prediction [1, 2]. For “conventional” multilayer
perceptron (MLP) types of ANNs, sequences to be recognized
are trained into the network beforehand as a set of static
patterns. Because of this, reacting to untrained events is not a
strength. This is an impediment to the use of MLPs in types of
games that require this capability. Recent notable achievements
playing arcade-style games [3] rely on the power of pattern
classification rather than sequence recognition.

The aim of this project is to examine ANN
architectures applied to learning a game that features both
unpredictable events and sequential actions. These features are
manifested in a nondeterministic finite automaton (NDA) [4].
Much of the world is nondeterministic, taking the form of
unpredictable or probabilistic events that must be acted upon.
If ANNs are to engage such phenomena, as biological networks
do so readily, then they must be able to learn nondeterministic
environments.

It is well known that recurrent MLPs, e.g. an Elman
network, can learn deterministic finite automata [5, 6].
Learning the Reber Grammar is an example of this [7].
Learning nondeterministic finite automata is another matter.
NDAs can produce event streams that are impossible to predict,

making comprehensive ANN training infeasible. This is
anathema for MLPs that rely on such training to be effective.

In this project the game of Pong provides a
nondeterministic environment. While a deterministic game of
Pong can readily be learned by an ANN given the ball position
and velocity [8, 9], in this project the learner is given an
incomplete view of the game state and underlying physics,
resulting in a nondeterministic game.

Three ANN models were trained and tested on the game:
 Mona, a goal-seeking network [10, 11].
 Elman, a popular MLP recurrent network [12].
 Numenta’s NuPIC, a model of hierarchical temporal

memory (HTM), which is closely based on neurological
structure and function [13, 14].

2 Description
2.1 Pong game environment

 The computer game of Pong [15] involves striking a
moving ball with a movable paddle in a two-dimension playing
area on a computer screen. Two paddles, controlled by
opposing players, are positioned at the left and right ends of the
playing area where they can be moved up and down to meet the
ball. The ball can bounce off of the sides of the area as well as
the paddles. A player loses when the ball gets by the player’s
paddle without being struck successfully.

In this project there is only one player, the ANN
learner, controlling a paddle that is located on the right side of
the playing area. A loss occurs when the ball passes the paddle,
and a win is signified by a successful paddle hit. From the
player’s point of view, the playing area is overlaid by a 5x5
grid. The grid does not affect ball movements. The learner
possesses sensors and response capabilities that are only
effective in its currently located grid cell.

2.1.1 Sensors
There are two sensors, one each for the ball and paddle

states. Their values are supplied by the underlying game
mechanics.

Int'l Conf. Artificial Intelligence | ICAI'15 | 729

The ball sensor values:
BALL_ABSENT, BALL_PRESENT,
BALL_MOVING_LEFT, BALL_MOVING_RIGHT,
BALL_MOVING_UP, BALL_MOVING_DOWN
If the ball is moving up or down but also left or right, the ball
sensor will report a vertical movement.

The paddle sensor values:
PADDLE_ABSENT, PADDLE_PRESENT

2.1.2 Responses
The learner can express these responses:
 CHECK_BALL: ask the physics for a ball sensor reading;

this is only effective when the ball is in the current grid
cell.

 TRACK_BALL_LEFT: move the learner’s current grid
cell left one cell, which is the correct response to the
BALL_MOVING_LEFT sensor value.

 TRACK_BALL_RIGHT: move current grid one cell right.
 PAN_LEFT: move current grid cell left across the playing

area until the ball or the left side is encountered.
 PAN_RIGHT: move current grid cell right until ball,

paddle, or right side encountered.
 MOVE_PADDLE_UP: move paddle and current grid cell

one cell up; this is only effective when the paddle is
present.

 MOVE_PADDLE_DOWN: move paddle and current grid
cell one cell down when the paddle is present.

Figure 1 – Pong play. Box indicates sensory area.

Figure 1 is a snapshot of a game in progress. A video

is also available on the web at http://youtu.be/Urdu9AJxoA0.
Figure 2 shows the state space for winning games. The states
are annotated with sensor states and the edges are annotated
with responses. State transitions inputs are defined by implicit
“step” signals which can have multiple target states, hence the
state space embodies a nondeterministic automaton.

A game begins with the ball in the center of the
playing area and the paddle in the center position. The ball is
set to a random direction with a speed that is normalized so as
not to outstrip the learner’s ability to track it. Game play is turn-
based, with the game mechanics changing the ball position and
direction and the learner responding to sensor inputs.

Figure 2 – Pong state space for winning games.

2.2 Training
The learner is trained to track with the ball as it moves

left and right. When sensors indicate that the ball is moving up
or down, the learner is trained to (1) pan right to the paddle, (2)
move the paddle up or down to remain aligned with the ball,
and (3) pan left to locate the ball. The paddle-movement
sequence is particularly challenging to train for two reasons: (1)
the learner must remember which way to move the paddle
without sensing the ball, and (2) the learner must remember that
after it has moved the paddle and while continuing to sense the
paddle, it must pan left to the ball.

2.3 ANN models

The following ANN models were trained and tested
on the Pong game task. It should be mentioned that a fourth
model, BECCA (Brain Emulating Cognitive Control
Architecture) [16], was considered for comparison but was not
included due to time constraints. BECCA was exhibiting
preliminary promising performance but was not optimally
trained as of this writing.

2.3.1 Mona
Mona [10, 11] is a goal-seeking ANN that learns

hierarchies of cause and effect contexts. These contexts allow
Mona to predict and manipulate future events. The structure of

730 Int'l Conf. Artificial Intelligence | ICAI'15 |

the environment is modeled in long-term memory; the state of
the environment is modeled in working memory. Mona uses
environmental contexts to produce responses that navigate the
environment toward goal events that satisfy internal needs.
Because of its goal-seeking nature, Mona is also an example of
reinforcement learning. Mona was selected for this task to
illustrate the plasticity of a goal-seeking network in dealing
with an NDA environment.

For the Pong task two sensors were configured, one
for the ball and one for the paddle. A set of values between 0
and 1 were defined for the 6 ball sensor values and the 2 paddle
sensor values. The response output ranged from 0 to 6 to
encode the 7 possible response values.

2.3.2 Elman
An Elman network [12], also known as a Simple

Recurrent Network, contains feedback units that allow it to
retain temporal state information useful in classifying
sequential input patterns. These feedback units reside in a
context layer as shown in Figure 3. Each hidden layer unit has
a connection to a corresponding context unit with a fixed
weight of 1. An Elman network was selected for this task as a
means of comparing non-MLP models with a popular MLP
model.

For the Pong task the Elman network was created with
Lens (Light efficient network simulator) [17]. The network was
configured with 8 input units for the 6 ball sensor plus 2 paddle
sensor values; 20 hidden and 20 context units; and 7 output
units for the 7 possible response values. “Off”/“on” sensor
values were 0/1. Outputs were similarly trained to values of 0
and 1. The learning rate was set to 0.2.

Figure 3 - Elman recurrent network.

2.3.3 NuPIC
NuPIC, the Numenta Platform for Intelligent Computing

[13, 14], comprises a set of learning algorithms that attempts to
faithfully capture how layers of neurons in the neocortex learn.
NuPIC was selected for this task based on its successful
performance in a number of sequential prediction tasks. At the
heart of NuPIC is Hierarchal Temporal Memory, or HTM.

From an algorithmic point of view there are three principle
properties:

 Sparse Distributed Representations (SDRs): a sensor
encoding technique that permits both noise tolerance and
efficient pattern comparisons.

 Temporal inference: prediction of upcoming patterns in a
stream.

 On-line learning: learning and prediction are concurrent.

For the Pong task the inputs and output were configured as they
were for Mona.

3 Results
3.1 Training

For training, fifty random games of Pong were
generated. For Mona, the BALL_PRESENT sensor state was
defined as the only goal, which motivates the network to
produce responses to navigate to the ball. As Figure 2
demonstrates, returning to the BALL_PRESENT state will
generate winning Pong actions.

Figure 4 – Mona network after training.

Figure 5 – Some mediator neurons in the trained Mona

network.

Int'l Conf. Artificial Intelligence | ICAI'15 | 731

A single pass of the training set was given with the

correct responses enforced on the network, and working
memory cleared before each game. The Mona network after
training is shown in Figures 4 and 5.

For the Elman network, 5000 training epochs were
performed. For NuPIC, a swarm optimization using the training
set was performed to select the optimal internal parameter
values.
3.2 Testing

For testing, a separate set of fifty random Pong games
was generated. Each game was scored according to the
percentage of initial consecutive correct responses toward
winning the game. So if there were 10 responses to win a game
and the learner output the first 8 correctly, the score for the
game would be 80%. The rationale for this scoring scheme is
that making any error will cast the learner off course from a
winning response sequence.

Figure 6 – Testing results.

Figure 6 shows results of testing with the test set as

well as the training set for comparison (except for NuPIC). The
Mona network performed perfectly for both sets. As might be
expected, the Elman network performed perfectly for the set it
was trained on, but much poorer for the test set, where it
frequently encountered game play sequences that it was not
trained to handle. This task obviously was not suitable for
NuPIC, at least in its current form.

4 Conclusion

Even a simple nondeterministic game environment
can pose significant problems for some ANN models, as the
results show. For Mona, the goal-seeking component of its
architecture is a major reason for its success on the task: it
provides a mechanism for dynamically propagating motivation
through a plethora of possible game sequences. For the Elman
network, its success in predicting sequences that it has been
trained on it notable. However, when sequences vary as they do
in different untrained games, a marked decrease in performance
ensues. For NuPIC, it seems clear that handling
unpredictability is currently not a strong point. However,

NuPIC remains under development as new neurological
mechanisms are incorporated into it.

Modeling the brain has produced significant successes
in the area of pattern classification for ANNs. However, the
brain obviously has much more to teach in the domain of
learning and executing behaviors that interact successfully with
real-world environments. An aim of this project is to highlight
the capabilities of models other than the prevalent multilayer
perceptrons. These models can be complementary as well: for
example, the pattern classification prowess of deep learning
networks might be meshed with a behavioral oriented network
such as Mona or a high fidelity neurological network model to
form formidable hybrid architectures.

The open source code for Mona and the Pong project
is available at http://mona.codeplex.com/ See the Readme in
src/pong.

5 References
[1] Edwards, T., Tansley, D, S. W., Davey, N., Frank, R. J.
(1997). Traffic Trends Analysis using Neural Networks.
Proceedings of the International Workshop on Applications of
Neural Networks to Telecommunications 3. pp. 157-164.

[2] Bengio, S., Fessant F., Collobert (1995). D. A Connectionist
System for Medium-Term Horizon Time Series Prediction. In
Proc. Intl. Workshop Application Neural Networks to
Telecoms pp. 308-315.

[3] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A.
K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A.,
Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S.,
Hassabis, D. (2015). Human-level control through deep
reinforcement learning. Nature, 518, 529-533
doi:10.1038/nature14236

[4] Martin, J. (2010). Introduction to Languages and the Theory
of Computation. McGraw Hill. p. 108. ISBN 978-0071289429

[5] Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G.
Z., Lee, Y. C. (1992). Learning and Extracting Finite State
Automata with Second-Order Recurrent Neural Networks.
Neural Computation, Vol. 4, 393-405.

[6] Firoiu, L., Oates, T., Cohen, P. R. (1998). Learning a
deterministic finite automaton with a recurrent neural network.
Lecture Notes in Computer Science, Volume 1433, pp. 90-101.

[7] Cerňanský, M., Benuškov, L. (2001). Finite-State Reber
Automaton and the Recurrent Neural Networks Trained in
Supervised and Unsupervised Manner. Artificial Neural
Networks — ICANN 2001. Lecture Notes in Computer
Science, Volume 2130, 2001, pp. 737-742.

[8] Fyfe, C. (2005). Local vs Global Models in Pong, Artificial
Neural Networks: Formal Models and Their Applications –

0

20

40

60

80

100

Mona Elman NuPIC

%
 C

or
re

ct

Train Test

732 Int'l Conf. Artificial Intelligence | ICAI'15 |

ICANN 2005, Lecture Notes in Computer Science, Volume
3697, 2005, pp 975-980.

[9] Pong video:
https://www.youtube.com/watch?v=LD6OgKEj5JE

[10] Portegys, T. (2010). A Maze Learning Comparison of
Elman, Long Short-Term Memory, and Mona Neural
Networks. Neural Networks, 23(2):306-13.

[11] Mona white paper:
http://tom.portegys.com/research/MonaWhitepaper.pdf

[12] Elman, J. L. (1990). Finding structure in time. Cognitive
Sci. 14 179-211.

[13] Numenta website: http://numenta.org/ White paper:
http://numenta.org/htm-white-paper.html

[14] Hawkins, J. (2004). On Intelligence (1 ed.). Times Books.
p. 272. ISBN 0805074562.

[15] Pong: http://en.wikipedia.org/wiki/Pong

[16] Rohrer, B. (2012). BECCA: Reintegrating AI for natural
world interaction, AAAI Spring Symposium on Designing
Intelligent Robots: Reintegrating AI.

[17] Lens neural network simulator:
http://web.stanford.edu/group/mbc/LENSManual/

Int'l Conf. Artificial Intelligence | ICAI'15 | 733

