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Abstract - Good ATM network cash management requires 
accurate information of future cash demand. In this paper we 
compare computational intelligence models when performing 
cash flow forecasting for one day. Adaptive input selection 
and model parameter identification are used with every 
forecasting model in order to perform more flexible 
comparison. Experimental data contains 200 ATMs from real 
ATM network with historical period of 26 months. 
Investigation of historical data length influence for forecasting 
accuracy with every model is also performed. Results suggest 

-SVR (support vector regression) forecasting model 
performs best when SMAPE forecasting accuracy measure is 
used.

Keywords: Computational Intelligence, Cash Flow, One-
Step-Ahead Forecasting.

1 Introduction
In order to optimize cash distribution in ATM network 

an estimation of cash demand in the future must be done. So 
cash demand forecasting accuracy determines overall 
performance of cash management system. Good cash 
management for ATM network brings savings for retail banks 
that are related to: 1) dormant cash reduction; 2) reduced 
replenishment costs; 3) decrease of cash preparation costs; 4) 
reduction of cash insurance costs.

Various uncertain factors influence cash demand in 
ATM that makes this process hard to forecast: nonlinear trend 
and seasonal component mixtures with non-stationary 
heteroscedastic uncertainty. However approximate empirical 
relationship between input and output variables can be 
obtained using complex data-based regression or time series 
models.

In this research we apply and compare data-based 
computational intelligence (CI) regression models for one day 
ahead cash demand forecasting. The dataset used consist of 
200 ATMs.

This paper is further divided into following sections: 1) 
literature review (a review of existing methods applied for 
cash demand forecasting); 2) forecasting models 
(specification of each forecasting model used); 3) 
experimental data and methodology (short explanation of 
methodology used for forecasting and experimental data 
specifications); 4) results (analysis of forecasting results); 5) 
conclusions and future works.

2 Literature review
Process of cash demand in ATM is highly affected by 

holidays, seasonal and calendar effects [1]. These effects can 
be incorporated into classical neural network models that 
could be used for cash demand forecasting [2]. However cash 
demand varies in time, so more flexible approach [3] to 
incorporate neural networks for cash demand in ATM is 
needed. Advantage of popular support vector machines over 
neural networks applied for regression was experimentally 
denied [4] when cash demand forecasting with long historical 
period training data was performed. However, for data with 
shorter history support vector regression may be more 
effective. An interval type-2 fuzzy neural network (IT2FNN) 
applied [5] for cash demand forecasting is another approach 
that adapts to dynamic nature of ATM cash flow and (as 
author claims) is better than other systems based on time 
series.

Despite CI model applications, time series models are 
also used for cash demand forecasting problem. Researches 
show that SARIMA models among classical econometric 
models perform best [6] and even outperform joint 
forecasting approach using vector time series models [7].
Authors in [8] made a comparison between time series 
probability density forecast models: linear models, 
autoregressive models, structural time series models and 
Markov-switching models. Results showed that Markov-
switching models performed best.

Other researchers use cash demand forecasting 
approaches that deeper investigate cash demand process 
(beyond aggregated data-based empirical relationships). 
Random-effects models [9] [10] were used to model 
individual cash withdrawal patterns for ATM withdrawal 
forecasting. Researcher in [11]  treats intraday cash flow time 
series as random continuous functions projected onto low 
dimensional subspace and use functional autoregressive 
model as predictor of cash flow and intensity of transactions.
ATM clustering approach was employed by [12] when 
integrated forecasting of aggregation of nearby-location ATM 
cash demand was performed.

3 Forecasting models
3.1 Support vector regression

Support vector machine (SVM) originally proposed in 
[13] is linear model that is used both for classification and 
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regression. SVM application for regression is called support 
vector regression (SVR). Main idea of SVM is to map input 
data vectors into high dimensional feature space by using 
kernel functions. By doing so, linear nature of SVM model 
can be applied to nonlinear function approximation. This type 
of mapping is called kernel trick. In this research we use two 
types of SVR: 1) -support vector regression ( -SVR) and 2) 
least squares support vector regression (LSSVR).

3.1.1 -SVR
Given the set of data points such that xi Rn is an input 

vector (i-th observation n-dimensional vector) yi R1 is a 
target output, the optimization problem for -SVR algorithm 
is formulated by following equations [14]:
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Where ix is kernel function that performs mapping of 
input space to high dimensional feature space (the space 
where linear regression is performed); w is a parameter vector 
of n-dimensional hyperplane; b is hyperplane bias parameter; 

i
*, i are upper and lower training errors (slack variables) 

subject to – insensitive tube; C is a cost parameter, that 
controls the trade-off between allowing training errors and 
forcing rigid margins; is regularization parameter that 
controls parameter number of support vectors; l – is number 
of data points (observations). Data points that lie on the 
boundaries of – insensitive tube are called support vectors.

In this research we use -SVR code that is implemented 
in LIBSVM library (see [14]).

3.1.2 LSSVR
Least squares support vector regression optimization 

problem is formulated by following equations [15]:
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Where ei are error variables and is regularization 
constant. 

In this research we use LSSVR code from LS-SVMlab
toolbox presented in [16].

Differently from -SVR, LSSVR has no insensitive tube 
and is only regularized by one parameter ( ). The loss 
function is quadratic for LSSVR and so the sparseness 
property for LSSVR is lost. For both -SVR and LSSVR in 

this research we use Gaussian kernel function with one 
dispersion parameter that needs to specify ( ). So for -SVR 
there will be total three parameters ( , C, ) and for LSSVR 
two parameters ( ) to specify.

3.2 Relevance vector regression
Relevance vector regression [17] is model that has same 

linear functional form as support vector regression:( ; ) = ( , ) + . (3)

Where ( , ) is defined as kernel function and is model 
weight vector.

Despite that SVR (except for LSSVR) is sparse model, 
RVR uses even less support vectors (is more sparse) that are 
called relevance vectors because of Bayesian inference 
methodology that is used during model parameter and 
relevance vector determination. RVR uses EM-like 
(expectation-maximization) learning algorithm and applies a
priori distributions (because of Bayesian methodology)  over 
parameters without need to be specified with some external 
parameters by user. With RVR we also use Gaussian kernel as 
in both LSSVR and  -SVR cases. 

In this research we use RVR implemented in 
SparseBayes package by author himself (see [17]).

3.3 Feed-forward neural network
We also apply feed-forward neural network (FFNN) 

models for cash demand forecasting with logarithmic sigmoid 
transfer functions in the hidden layer and linear transfer 
function in the output layer. For neural network training we 
use two backpropagation [18] – based algorithms: 1) 
Levenberg – Marquardt backpropagation [19]; 2) Levenberg –
Marquardt backpropagation with Bayesian regulation [20].

Levenberg – Marquardt backpropagation training 
algorithm is frequently used as the most effective training 
algorithm for function approximation (regression) problems 
and uses mean-squared-error (MSE) cost function. This 
algorithm employs Jacobian matrix (J) w.r.t. network weights. 
An update of network weights using network output error (e)
is calculated by formula:

= (4)

Where I is the identity matrix.
The main idea of this algorithm is to interpolate between 

Gauss – Newton and gradient descend algorithms by 
controlling scalar value .

Levenberg – Marquardt backpropagation with Bayesian 
regularization updates weights and bias values according to 
Levenberg – Marquardt optimization, but it minimizes a linear 
combination of squared errors and weights. The weight term 
in loss function doesn’t let network to overfit and it 
corresponds to Bayesian regularization. 
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Both Levenberg – Marquardt backpropagation and
Levenberg – Marquardt backpropagation with Bayesian 
regularization use validation set as stopping criterion in order 
to speed up training process. As parameters we use number of 
neurons in hidden layer. For forecasted value estimation we 
use average ensemble of neural networks, because of random 
weight initialization during training.

In this research we use MATLAB Neural Network 
Toolbox for FFNN forecasting.

3.4 Generalized regression neural networks
Generalized Regression Neural Network (GRNN) [21] is

special case of radial basis function (RBF) neural network. 
It‘s first layer is the same as for radial basis neural network, 
but second layer is different.

GRNN does not require an iterative training procedure 
(error back propagation). Training procedure requires only 
specification of radial basis function spread parameter. It uses 
radial basis functions to cover input space and approximates 
function as weighted linear combination of radial basis 
functions. Number of RBF function is equal to number of 
observations. Each RBF is formed for each data point vector 
that is a center of RBF. RBF transfer function values are 
calculated according to input value Euclidean distance from 
the central point. 

In this research we use GRNN implemented in MATLAB 
Neural Network Toolbox.

3.5 Adaptive neuro-fuzzy inference system
Adaptive neuro-fuzzy inference system (ANFIS) [22] is 

a combination of neural network and fuzzy inference system 
features. ANFIS model architecture with two membership 
functions is depicted in Fig. 1. ANFIS architecture has fuzzy 
layer (1), product layer (2), normalization layer (3), 
defuzzification layer (4) and summation layer (5). 

For a 1st order of Sugeno fuzzy model, a typical IF-
THEN rule set can be expressed as:

1) IF x is A1 AND y is B1 THEN f1 = p1x + q1y + r1;
2) IF x is A2 AND y is B2 THEN f2 = p2x + q2y + r2.

Further each of five layer functionality is shortly 
explained:

1 layer. Forms output, which determines membership degree 
in each of membership functions (μA1, μA2, μB1, μB2):

, = ( ), = 1, 2, (5)

, = ( ), = 3, 4. (6)

2 layer. In this layer each node is fixed and represents weight 
of particular rule. In each node AND operation is performed, 
which is product of inputs:

, = = ( ) ( ), = 1, 2. (7)

3 layer. Each node of this layer is also fixed and calculates 
normalized rule excitation degree:

, = = ,   = 1, 2. (8)

4 layer. This layer is not fixed as other and parameters (pi, qi,
ri) are estimated during training process. Output of nodes are 
calculated as:

, = = ( + + ). (9)

5 layer. This is an output layer, where output value is 
calculated as a sum of all inputs:

, = =  . (10)

1 layer 2 layer     3 layer 4 layer 5 layer

1w 1w 11fw
X

F

Y 2w 2w 22fw

A1

A2

B1

B2

Fig. 1. Illustration of ANFIS model architecture with two 
membership functions.

ANFIS model training is usually performed using two 
training algorithms: gradient steepest descend 
backpropagation or hybrid algorithm. Hybrid learning 
combines gradient descend backpropagation and least squares 
methods. Backpropagation is used for parameters that are 
related with input membership functions, while least squares 
is applied for output function parameters (that are linear w.r.t. 
parameters). In this research we use both training algorithms 
and select best using validation set.

For membership function parameter initialization we use 
FCM (fuzzy c-means) clustering that extract set of rules that 
model input data behavior. So for ANFIS model number of 
clusters is parameter that we also select using validation set.

In this research we use ANFIS model that is 
implemented in MATLAB Fuzzy Logic Toolbox.

3.6 Extreme learning machines
Extreme learning machines (ELM) [23] are another type 

of single-hidden feed-forward neural networks that randomly 
chooses hidden nodes and analytically determines the output 
weights. Main advantage of this kind of learning over 
traditional backpropagation learning used in neural networks 
is speed.

Given N number of observations (xi, yi), single layer 
neural network output with M hidden nodes is modeled as:o = f(w x + b ) . (11)
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Where is ith input vector; is weight vector connecting 
the jth hidden node and the input nodes; is weight scalar 
connecting jth hidden node and output node; is bias 
parameter of jth hidden node.

In this research we use linear output nodes and sigmoid 
hidden nodes. Above equation can be written in vector form:o = H . (12)

Where is × hidden layer output matrix and , =( + ).
The solution of applying extreme learning machines 

theory is simply estimated as:=  . (13)

Where = ( ) is Moore – Penrose generalized 
inverse (pseudoinverse) matrix.

Because of speed of ELM we use larger average 
ensemble than with FFNN models to estimate forecasted 
value. As a parameter estimated using validation set for ELM 
we use number of neurons in hidden layer.

A MATLAB implementation of classical ELM is used in 
this research, which is available at webpage (see [23]).

4 Experimental data and methodology
Experimental data consist of 200 ATM real world daily 

cash demand time series, for historical period equal 26 
months. Historical data period used for training varies from 6 
months to 2 years (6, 12, 18 and 24 months) and forecasting 
one day ahead is performed for two months for each of 200 
ATM daily cash demand time series. 10-fold cross-validation 
procedure is used for input and parameter selection with 
training set for every forecasting model. As forecasting 
accuracy measure we use symmetric mean absolute
percentage error: = | |. (| | | |) . (14)

Where is ith predicted value and ith true value.
For all CI models following inputs were used: 1) week 

number; 2) day of the month; 3) cash flow value one day 
before ( 4) cash flow value 7 days before (
flow value 14 days before (
before (
sum of cash flow values for last 5 days. All those 8 inputs 
were categorized into four groups with following input sets: 
{1, 2}; {3}; {4, 5, 6, 7}; {8} (it was decided to do so in order 
to save computational time and preliminary experiments 
showed that this way of categorizing is reasonable). All those 
four groups were used for feature selection (when using 10-
fold cross-validation with parameter selection) concluding to 
15 different feature set combinations (using binomial formula = 2 1 = 2 1 = 15) for reduced number of 
feature selection, whereas considering each of 8 features 

separately would conclude to 255 different feature 
combinations which was not accepted for practical purposes.

The example of cash demand time series is depicted in 
Fig. 2. This illustration shows the complexity of ATM cash 
flow demand and seasonality patterns: mixture of amplitude 
varying yearly, monthly and weekly seasonality (it is seen 
from autocorrelation function) including nonlinear trend that 
varies for different ATMs and also nonstationary noise which 
represents uncertainty degree in the cash demand process.

Fig. 2. An example of ATM cash demand.

5 Results
Overall forecasting results are presented in Table 1. It is 

seen that on average most accurate model is -SVR with 2 
year training/validation dataset. Also results suggest that 
using 2 years of historical daily data yields best forecasting 
results over all models. However, interesting result is that 
using 18 month (1,5 year) history yields slightly less accurate 
forecasting results than using 12 month (1 year). This 
suggests that there was some disturbance event in the history 
that significantly affected data generating process. However 
as expected 6 month (0,5 year) data history significantly 
worsens forecasting accuracy of every forecasting model. 

Table 1. Forecasting mean SMAPE (%) results
- 2 year 

training
1,5 year 
training

1 year 
training

0,5 year 
training Avg.

ANFIS 44,12 44,24 44,17 45,71 44,56

ELM 44,18 44,20 44,00 45,95 44,58
LMBR-
FFNN 44,03 44,13 44,26 45,74 44,54

LM-
FFNN 43,87 44,07 44,10 45,61 44,41

GRNN 44,14 44,29 43,97 45,08 44,37

LS-SVR 43,85 44,05 43,88 45,28 44,27

-SVR 43,72 43,73 44,12 45,62 44,30

RVR 44,98 45,12 45,12 45,94 45,29

Avg. 44,11 44,23 44,20 45,62 -
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Fig. 3 illustrates SMAPE distribution forecasting results 
using 2 year historical period for every model

Fig. 3. SMAPE distribution for each forecasting model (2 year 
training case).

Table 2 show what percentage of all 200 ATMs every
model gave best forecasting results. For example 10% show 
that model gave best forecasting results among all models for 
20 ATMs. The results show that -SVR most often yield best 
accuracy for all training cases.

Table 2. Percentage of how often each model was most 
accurate for every training case separately.

- 2 year 
training

1,5 year 
training

1 year 
training

0,5 year 
training

ANFIS 9,0% 7,0% 15,0% 13,5%

ELM 8,5% 11,0% 10,5% 6,0%

LMBR-FFNN 11,0% 9,5% 10,5% 10,5%

LM-FFNN 14,5% 11,5% 11,0% 11,5%

GRNN 16,0% 15,0% 13,5% 10,5%

LS-SVR 8,0% 7,0% 11,5% 16,0%

-SVR 21,0% 28,5% 18,5% 19,0%

RVR 12,0% 10,5% 9,5% 13,0%

Fig. 4 show the relationship between ATM average 
(median) cash demand and forecasting accuracy averaged
over all models. Illustration clearly confirms the aggregation 
advantage: uncertainty approaches minimum (forecasting 
increases) as aggregation of more population values 
(aggregation of larger cash demand amounts) takes place.

Fig. 4. Relationship between forecasting accuracy (averaged 
over all models) and ATM cash demand median (2 year 

training case)

6 Conclusions and future works
One day ahead forecasting results show that -SVR

performs best compared to other models when using adaptive 
input selection. Also results confirm that using longer history 
can increase forecasting accuracy. However the relationship 
between historical data length and average forecasting 
accuracy was not smooth, showing that 1 year historical data 
period sometimes is better than using 1,5 year historical data. 
This suggests that some important factors affecting data 
generating process took place and deeper investigation of 
those factors (that can be related to structural breaks) is 
needed.

In the future works we are planning to investigate more 
deeply joint forecasting approach, when cash demand 
information of few or more ATMs is integrated or aggregated 
to increase forecasting accuracy. Also this study only 
contained one day ahead forecasting, when more often 
multiple step ahead forecasting is needed. We also aim to 
investigate multiple step ahead forecasting strategies with CI 
models more deeply in the future.
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