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Abstract— Outlier detection has an important role in di-
verse fields of research and application domains including
pattern recognition, exploratory data analysis and data
mining. In classical regression analysis, these outliers are
often removed from the data set, being usually regarded
as errors of the process. However, in SDA domain, this
procedure is unsuitable because a single symbolic data
observation may represent the generalization of a subset
of other classical observations. This paper introduces an
expectation-maximization algorithm for interval data in or-
der to detect atypical intervals concerned with regression
analysis problems. The algorithm is evaluated regarding
different simulated and real interval data sets.
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1. Introduction
Interval data have been considered in real world applica-

tions: analysis of census data [1], electricity load profiling

[2], scientific production of researches [3]. This kind of

data has been studied mainly in Symbolic Data Analysis
(SDA) which is a research field related to multivariate

analysis, pattern recognition and artificial intelligence [4].

SDA aims to provide a comprehensive way to summarize

data sets by means of symbolic data resulting in a smaller

and more manageable data set which preserves the essential

information. In the literature of SDA, several approaches

for interval data have been introduced: recommendation

systems [5], classification [6], principal component analysis

[7], regression [8]. Symbolic data allow multiple values

for each variable. These new variables (set-valued, interval-

valued, and histogram-valued) make it possible to hold data

intrinsic variability and/or uncertainty from the original data

set as shown in [4].

Interval-valued data arise in practical situations such as

recording monthly interval temperatures in meteorological

stations, daily interval stock prices, among others. Another

common source of interval data is the aggregation of data

into a reduced number of groups. In this case, SDA starts

extracting knowledge from a data set in order to provide

symbolic descriptions that are mathematically modeled by

a generalization process applied to a set of individuals. An

example is an amanita mushroom specie data set formed by

23 mushroom species. The intervals of this data set were

obtained by aggregating individual mushrooms according to

the kind of species. Each individual mushroom is described

by three interval variables that are: stipe length, stipe thick-

ness and pileus cap.

Figure 1 shows the amanita data set. In this figure, we can

observe that there are two intervals which are substantially

different from all other ones. They were obtained from the

generalization process applied to the amanita data set.

Fig. 1: Interval Amanita mushroom data

According to [4], overgeneralization problems can arise

when these extreme values are actually outliers or when

the set of individuals to generalize is in fact composed of

subsets of different distributions. Indeed, in these situations

interval outliers can be found, as it is highlighted in the

amanita interval data set, and methods that identify them

are essential. Investigation methods of outliers as primary

analysis is an opened research topic.

In classical data analysis, point outliers are observations

in a data set which do not follow the pattern of the other

observations. Such data play important role in regression

since they can lead to inaccurate regression estimates. It

is a common practice to distinguish between two types of

outliers: on the response variable, called outlier, represents

a model failure and may indicate a sample peculiarity, a

data entry error or another problem; and with respect to

the predictors variables, called leverage points. This paper

addresses outliers on response variables.

In SDA, interval outliers are also unusual observations and
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interval regression is an extension of the classical regression

for symbolic interval data [8]. In the amanita data set of

the Figure 1, the regression problem concerns to estimate

pileus cap (response interval variable) from stipe length,

stipe thickness (predictor interval variable).

The main contribution of this work is to propose an EM-

type algorithm regarding a multivariate gaussian mixture

model for interval data to identify atypical intervals in

regression analysis. The proposed algorithm is evaluated

with different real and simulated interval data sets. For

simulated interval data, the performance of the proposed

algorithm is measured by the false negative and false positive

rates in the framework of a Monte Carlo experiment.

The rest of the paper is organized in the following form:

Section 2 presents the simulated and real data sets used in

this work. Section 3 describes the EM-type algorithm for

detecting atypical intervals. Section 4 presents a performance

analysis. Finally, Section 5 gives the concluding remarks.

2. Interval data sets
Different simulated interval data sets which comprises two

arrangements for interval outliers and the Amanita interval

data set are presented in this section.

2.1 Simulated interval data sets containing out-
liers

Initially, each seed sxi (i = 1, . . . , n) on coordinate X
arises from an uniform distribution [a, b]. A seed syi on

coordinate Y is related to the seed sxi as syi = β0+ β1s
x
i +εi

(i = 1, . . . , n) where β0 and β1 are simulated from an

uniform distribution [c, d] and εi is simulated from a standard

normal distribution.

Thus, seed data sets are now formed by bivariate points

(sxi , s
y
i ) (i = 1, . . . , n). For each point i, a random sample of

size 30 is drawn from a bivariate gaussian distribution with

mean vector and the diagonal covariance matrix μ= (sxi , s
y
i )

and Σ = σI where σ is a parameter of scale. From each

sample, the rectangle i is defined by a vector of two intervals

v = (xi = [ai, bi], yi = [λ, γ])
′

where ai = Qx
1 , bi = Qx

3 , λi = Qy
1 and γi = Qy

3 are first

and third quartiles of the samples on coordinates X and Y ,

respectively.

Interval outliers are created in the following way. First of

all, the sets are sorted ascending by the dependent variable

Y c and a small cluster containing the m first points of the

sorted set (yci , x
c
i ) is selected. The observations of this cluster

are changed into outlier points by

xc
i = xc

i + fx.S(X
c)

yci = yci + fy.S(Y
c)

where S(Y c) and S(Xc) are, respectively, the standard

deviation of (yc1, . . . , y
c
n) and the standard deviation of

(xc
1, . . . , x

c
n), and, fx and fy are fixed values.

Two different configurations for rectangles containing

remote intervals in terms of position (center of the intervals)

are considered in this paper. Figures 2 and 3 display the

interval data sets 1 and 2, respectively, with sx ∼ U [a, b] =
[10, 40], β0, β1 ∼ U [c, d] = [1, 10], n = 50 and σ = 3.

Figure 2 (fx = 0 and fy = 10) shows a scenario in which

there are intervals that are strongly outliers. Figure 3 (fx = 5
and fy = 10) considers a data set with a group of intervals

that are slightly outliers.

Fig. 2: Interval data set 1 containing intervals that are strongly
outliers.

Fig. 3: Interval data set 2 containing intervals that are slightly
outliers.

2.2 Amanita interval data set

Table 1 shows a mushroom specie data set. These

mushroom species are members of the genus Amanita
in which the values were collected from the Fungi of
California Species Index (http : //www.mykoweb.com
/CAF/species _index. html).

From the values in the table above, three species are

candidate outliers on the response variable. They are:

Lanei, Muscaria and Pachycolea. Regarding the pileus cap

response variable, the Lanei and Muscaria species have

atypical intervals.
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Table 1: Ranges of pileus cap, stipe length and stipe thickness of
the Amanita mushroom family.

Amanita Interval Variables
species Pileus Cap Stipe Length Stipe Thickness
Lanei [8.00 : 25.00] [10.00 : 20.00] [1.50 : 4.00]

Constricta [6.00 : 12.00] [9.00 : 17.00] [1.00 : 2.00]
Franchetii [4.00 : 12.00] [5.00 : 15.00] [1.00 : 2.00]
Novinupta [5.00 : 14.00] [6.00 : 12.00] [1.50 : 3.50]
Muscaria [6.00 : 39.00] [7.00 : 16.00] [2.00 : 3.00]
Ocreata [5.00 : 13.00] [10.00 : 22.00] [1.50 : 3.00]

Pachycolea [8.00 : 18.00] [10.00 : 25.00] [1.00 : 3.00]
Pantherina [4.00 : 15.00] [7.00 : 11.00] [1.00 : 2.50]
Phalloides [3.50 : 15.00] [4.00 : 18.00] [1.00 : 3.00]
Protecta [4.00 : 14.00] [5.00 : 15.00] [1.00 : 3.00]
Vaginata [5.50 : 10.00] [6.00 : 13.00] [1.20 : 2.00]
Velosa [5.00 : 11.00] [4.00 : 11.00] [1.00 : 2.50]
Aprica [5.00 : 15.00] [3.30 : 9.10] [1.40 : 3.50]

Bivolvata [7.00 : 10.00] [13.00 : 15.00] [1.60 : 2.50]
Gemmata [3.00 : 11.00] [4.00 : 15.00] [0.50 : 2.00]

Magniverrucata [4.00 : 13.00] [7.00 : 11.50] [1.00 : 2.50]
Smithiana [5.00 : 17.00] [6.00 : 18.00] [1.00 : 3.50]

Cokeri [7.00 : 15.00] [10.00 : 20.00] [1.00 : 2.00]
Porphyria [3.00 : 12.00] [5.00 : 18.00] [1.00 : 1.50]
Silvicola [5.00 : 12.00] [6.00 : 10.00] [1.00 : 2.50]

Californica [6.00 : 7.00] [6.00 : 10.00] [0.60 : 0.80]
Farinosa [2.50 : 6.50] [3.00 : 6.50] [0.30 : 1.00]

Breckonii [4.00 : 9.00] [7.00 : 10.00] [0.90 : 2.00]

3. EM-type algorithm for interval data
The Expectation Maximization(EM) algorithm [9] has

been widely applied to estimation problems involving in-

complete data, or in problems which can be modeled as

mixture of distributions. In brief, the EM algorithm aims

at finding maximum likelihood estimates of parameters in

probabilistic models in the presence of missing or hidden

data. Due to its simplicity, the EM for multivariate gaussian

mixture model is by far the most employed mixture model

with many applications in cluster analysis and statistical

pattern recognition (see, for instance, [10]).

In the outlier framework, the EM algorithm can be em-

ployed as a tool for detecting atypical observations from the

data sets . For this reason, a EM-type algorithm for interval

data (EM-IVD) is introduced in this paper. EM-IVD extends

the standard EM algorithm for multivariate gaussian mixture

model to treat interval-valued data.

Consider X∗ as a n × r input data matrix and whose

each row is represented as an interval feature vector x∗
i =

(x∗
i1, . . . , x

∗
ir)

′
where x∗

ij = [aij , bij ], (j = 1, . . . , r) ∈
� = {[a, b] : a, b ∈ �, a ≤ b}. The interval Expectation-

Maximization (iE-M) algorithm sets an initial partition and

alternates two steps such an expected log likelihood-type

function reaches a stationary value representing a local

maximum.

Let {C1, C2} be a partition of X∗ in 2 clusters (outliers

and inliers) and θk = (τk,μk,Σk)
′
(k ∈ {1, 2}) be a param-

eter vector of Ck where μk = ([μ1
kl, μ

1
ku], . . . , [μ

r
kl, μ

r
ku])

′

is an average interval vector, Σk be a covariance matrix

and τk be a mixture coefficient of Ck. In the iE-M method,

there is an average interval vector represented as μk that

correspond average values of boundaries of intervals and a

single covariance matrix Σk whose the values measure the

variability of the intervals related to this average interval

vector.

3.1 Initialization step
Randomly choose 2 different objects g1 and g2 belonging

to X∗ and assign each objects i to a class Cm such that

m = arg mink=1,2 d(x∗
i , gk) where d is the normalized

Hausdorff distance [11] between two interval vectors.

Let x∗i e x∗
h two interval vectors in �r, the normalized

Hausdorff distance between these vectors is given by:

d(x∗
i , x∗h) =

⎧⎨
⎩

r∑
j=1

[
Max[ |aji − ajh|, |bji − bjh| ]

Hj

]2
⎫⎬
⎭

1/2

,

(1)

with

H2
j =

1

2n2

n∑
i=1

n∑
h=1

[
Max[ |aji − ajh|, |bji − bjh| ]

]2
.

Given a partition {C1, C2}, the initial values for the

parameters of the class Ck (k = 1, 2) are computed as:

• average interval vector

μ̂k = ([μ̂1
kl, μ̂

1
ku], . . . , [μ̂

r
kl, μ̂

r
ku])

′
(2)

with

μ̂j
kl =

1

|Ck|
∑
i∈Ck

aji

and

μ̂j
ku =

1

|Ck|
∑
i∈Ck

bji .

• covariance matrix Σ̂k = (σ̂vj
k ) with

σ̂vj
k =

∑
i,v∈Ck

[
(avi − μ̂v

kl)(a
j
i − μ̂j

kl) + (bvi − μ̂v
ku)(b

j
i − μ̂j

ku))
]

2|Ck| .

(3)

• mixture coefficient

τ̂c =
|Ck|
n

. (4)
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3.2 E step
Let μ̂kl = (μ̂1

kl, . . . , μ̂
r
kl)

′
and μ̂ku = (μ̂1

ku, . . . , μ̂
r
ku)

′

be vectors associated to lower and upper bounds of the

intervals of μ̂k. Consider also x∗il = (a1i , . . . , a
p
i )

′
and

x∗iu = (b1i , . . . , b
p
i )

′
as vectors associated to lower and upper

bounds of the intervals of the pattern x∗
i (i = 1, . . . , n).

Given the parameter vector θ̂k = (τ̂k, μ̂k, Σ̂k)
′
(k ∈

{1, 2}), the probability of the object i belong to Ck is defined

as:

P̂ r(Ck|x∗i ) =
τ̂kP̂ r(x∗i |Ck)∑2
k=1 τ̂kP̂ r(x∗i |Ck)

, (5)

where

P̂ r(x∗i |Ck) =
exp−

1
2 [A+B]√

(2π)p × |Σ̂k|
, (6)

A = (x∗
il − μ̂kl)

TΣ̂
−1

k (x∗
il − μ̂kl)

B = (x∗
iu − μ̂ku)

TΣ̂
−1

k (x∗
iu − μ̂ku)

3.3 M step
The parameter vector θ̂k = (τ̂k, μ̂k, Σ̂k)

′
(k ∈ {1, 2}) is

updated by:

τ̂k =
1

n

n∑
i=1

P̂ r(Ck|x∗i ), (7)

μ̂k = ([μ̂1
kl, μ̂

1
ku], . . . , [μ̂

r
kl, μ̂

r
ku])

′

with

μ̂j
kl =

∑
i∈Ω

aij · P̂ r(Ck|x∗)
∑
i∈Ω

P̂ r(Ck|x∗)
, (8)

μ̂j
ku =

∑
i∈Ω

bij · P̂ r(Ck|x∗)
∑
i∈Ω

P̂ r(Ck|x∗)
(9)

Σ̂k =

∑
i∈Ω

P̂ r(Ck|x∗)× (W + V )

2 ·∑i∈Ω P̂ r(Ck|x∗)
, (10)

with

W = (x∗il − μ̂ki)(x
∗
il − μ̂kl)

′

V = (x∗
iu − μ̂ku)(x

∗
iu − μ̂ku)

′
.

3.3.1 Algorithm schema
The iE-M algorithm has the following steps:

Algorithm 1 A EM-type algorithm for interval data.

1: Initialization step: Randomly choose a partition (C
(0)
1 , C

(0)
2 ) of X∗

or randomly choose 2 distinct objects g(0)1 , g(0)2 belonging to X∗
and assign each objects i to the closest prototype gm, where m =
arg mink=1,2 d(x∗i , gk) and d is the Hausdorff distance defined in Eq.

(1). Obtain initial estimate for parameters τ̂0k , μ̂
0
k and Σ̂

0
k (k = 1, 2)

according to the Eqs. (2), (3) and (4), respectively. Do t = 1.
2: E-step: For i = 1, . . . , n, compute the probability P̂ r(x∗i |Ck)

t (k =
1, 2) using the Eq. (5).

3: M-step: For k = 1, 2, compute the vector θ̂
t
k = (τ̂ tk, μ̂

t
k, Σ̂

t
k)

according to the Eqs. (7), (8), (9) and (10).

4: Stopping criterion If || θ̂
t

k−θ̂
t−1

k

θ̂
t

k

|| < ε for k = 1, 2 then go to step 5

else do t = t+ 1 and go to 2.
5: Classification step: For i = 1, . . . , n find the cluster Ck∗ such that

k∗ = arg max1≤k≤2 P̂ r(xi|Ck).

Let K be the number of classes (here, K = 2). The

time complexity of the E-step is O(nKr2t) and the time

complexity of the M-step is O(nKt + nKrt + nKr2t).
Therefore, the time complexity of the iE-M algorithm is

O(nKr2t).

4. Performance Analysis
For simulated interval data sets 1 and 2, the performance is

measured by the false positive and false negative rates (FNR

and FPR) in the framework of a Monte Carlo experience with

100 replications for each interval data set. Here, FNR is the

number of elements of the inlier class labeled as belonging

to outlier class divided by the size of the inlier class and

FPR is the number of elements of the outlier class labeled

as belonging to inlier class divided by the size of the outlier

class.

For each data set, four situations are considered taking into

account the quantity (percentage of the data set) of outlying

observations presents in each interval data set, that is, 2%,

6%, 10% and 20% of the interval data are indeed interval

outliers. Moreover, values for the seed sc are generated from

an uniform U [1, 10] and the values for the parameters β0, β1

are selected randomly from an uniform distribution U [1, 10].
Each interval data set has two clusters, one with regular

intervals and the other with outlying intervals.

Tables 2 shows the the average of the false negative

and false positive rates (FNR and FPR). The iE-M method

performs well in terms of false positive rate for all cases.

Moreover, this method based on the full covariance surpasses

that based on the diagonal matrix for both scenarios. This

is expected because the linear relation assumed for the

interval variables. Regarding the false negative rate, the iE-

M method improves when the number of outliers increases

and it is important to observe that this method has the worst
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Table 2: FPR(%) and FNR (%) for scenarios 1 and 2.
Outliers Scenario 1 Scenario 2

FPR FNR FPR FNR
Diag Full Diag Full Diag Full Diag Full

2% 0.00 0.00 10.90 10.07 0.00 0.00 11.09 13.45
6% 10.34 0.00 1.18 0.83 2.67 0.40 1.62 1.03

10% 18.80 0.00 1.00 0.76 7.00 0.40 1.32 0.92
20% 32.50 0.00 0.65 0.55 20.50 0.10 0.78 0.70

Table 3: Average number of iterations for the iE-M algorithm.
Outliers Scenario 1 Scenario 2

Diagonal Full Diagonal Full
Matrix Matrix Matrix Matrix

2% 3.20 3.22 3.53 3.18
6% 4.66 3.13 4.16 3.11

10% 4.48 3.05 4.03 3.04
20% 3.83 3.15 3.46 3.22

performance for the data sets containing a small group of

outliers (2% of the data set).

Table 3 shows the average number of iterations for the

iE-M algorithm and scenarios 1, 2 and 3. In general, the

convergence of this method was achieved with less than five

iterations. The algorithm based on full covariance matrix

achieves the convergence faster than the algorithm based on

diagonal covariance.

With respect the application of the iE-M algorithm to the

amanita data set, two groups are obtained. The first group

contains 20 species: Lanei, Constricta, Franchetii, Nov-

inupta, Pantherina, Phalloides, Protecta, Vaginata, Velosa,

Aprica, Bivolvata, Gemmata, Magniverrucata, Smithiana,

Cokeri, Porphyria, Silvicola, Californica, Farinosa and

Breckonii. The second group contains 3 species: Muscaria,

Ocreata and Pachycolea. From these results and Figure 1

that points out two outliers belonging to the amanita data

set, we can say that the Muscaria, Ocreata and Pachycolea

species are candidate outliers.

5. Conclude remarks
In this paper, an interval Expectation-maximization for

detecting outlier in the framework of regression analysis

which is related to symbolic data analysis is presented. The

method has as input data a set of predictor interval symbolic

variables and a response interval symbolic variable. The ex-

periments regarding different scenarios of simulated interval

data sets containing interval outliers and an application with

a mushroom interval data base showed the usefulness of this

algorithm.
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