
High-Density Pattern-Of-Life Modeling
Randolph M. Jones1, J. T. Folsom-Kovarik1, Pat McLaughlin2, and Rich Frederiksen1

1Soar Technology, 3600 Green Court, Suite 600, Ann Arbor, MI, 48105 USA
2Scientific Systems Company, 24632 Monte Royale, Laguna Hills, CA, 92653 USA

rjones@soartech.com, jeremiah.folsom-kovarik@soartech.com, Pat.McLaughlin@ssci.com, rdf@soartech.com

Abstract - Patterns of Life are general human behavioral
patterns that emerge from individual behaviors and reflect
group tendencies, especially sociocultural tendencies.
Challenges for modeling patterns of life are somewhat
different from challenges for traditional modeling of
cognition, decision-making, and expertise. Modeling patterns
of life requires solutions for background agents, which are not
individually complex, but are individually unique and
representative of rich sociocultural backgrounds; as well as
solutions for foreground agents, which are unique and
complex, but also blend in with the background behavior
patterns. This paper presents a POL modeling architecture
that addresses issues in authoring and executing such large
populations of unique individuals.

Keywords: Patterns of life, Large-scale behavior modeling,
Automated scenario authoring

1 Patterns of life
 We have pursued several projects that involve
computational modeling of human Patterns of Life (POL).
Schatz et al. [1] define POL as follows: “In the context of
cultural training, patterns of life are the archetypal emergent
properties of a complex sociocultural system.” In addition,
“…the emergent properties…can be organized into categories
that describe classes of patterns of life that share similar
general features, and we expect these same classes will
manifest (likely with different nuanced characteristics) across
all societies and cultures.” Folsom-Kovarik et al. [2] proposed
scalable POL models as a challenge problem for applied
artificial intelligence. This paper describes an architecture
and approach to respond to that challenge.

 POL are properties of a society that determine how
individuals function on a day-to-day basis. The US military
uses POL for Stability, Security, Transition, and
Reconstruction (SSTR) operations, to train US Forces who
must operate in these communities, and to identify threats
based on POL anomalies. The DARPA Insight program
sponsored research into the structure of generative POL

models to support a simulation and test environment for threat
recognition algorithms. Typical applied and theoretical work
in artificial intelligence focuses on high-level competence or
intelligent decision-making of individuals. In contrast, POL
modeling focuses on social, cultural, and everyday behavior.
POL are themes that appear in a population’s everyday
actions and interactions. The ability to understand patterns of
life, and thus to represent and instantiate POL models, is a
critical emerging military requirement.

 This paper describes technical issues of POL modeling
and details of the approach we have developed across many
projects, beginning with the sophisticated Insight simulation.
POL modeling requires solutions for breadth, efficiency, and
authoring of agent behaviors. We use cultural representations
that explicitly allow for natural human variation, and a
computational infrastructure that generates a continuum of
relevant socio-cultural behaviors in two classes: efficient
schedule-based scripts that support high-density populations
and knowledge-rich individual models with the competence to
adapt decisions based on goals and situational understanding.

2 Application areas
 The Department of Defense (DOD) recognizes that POL
analysis is an excellent mechanism for threat identification
and engaging with a population in appropriate socio-cultural
ways [3]. Those who live in or analyze foreign areas learn to
recognize anomalies in typical patterns and react accordingly.
The training challenge is to prepare those who are not in the
area or do not have time to slowly become familiar with these
threats. Consider an example where a U.S. Marine Corps
squad leader is operating near a town of about 10,000 people,
with reports of insurgent activity in the area. On a given
morning, the marketplace includes a small number of people
milling around (perhaps a dozen or so), a few bicycles and
one car. Some stalls in the marketplace are empty. Is this a
clear indication of danger or normal for this particular time?

 Understanding the local POL is essential for the squad
leader to build an overall assessment of this situation,
determine whether any observed elements are unusual or
dangerous, and predict what is likely to happen next. The
squad leader’s observations must cohere into high-level
patterns that make sense. In this example, perhaps the traffic
is typical for this time of the day and should increase

Distribution Statement A: Approved for Public Release, Distribution
Unlimited. The views expressed are those of the author and do not
reflect the official policy or position of the Department of Defense or
the U.S. Government.

438 Int'l Conf. Artificial Intelligence | ICAI'15 |

dramatically later. This is just one example of how POL
analysis informs modern warfighting and peacekeeping.
Modeling POL can support scenarios with increasing levels of
behavior fidelity depending on the simulation need.

Realistic background context in training. POL can provide a
realistically rich background for focused training activities.
This can improve training simply by increasing user presence
or putting the training into a realistic context, even if the POL
itself is not a key part of the training.

Training of anomaly identification. For other types of
training, POL is a key focus. A trainee may be learning to
distinguish significant, anomalous behavior from the normal
patterns in an area. In this case, background POL models
include routine behaviors, while foreground models generate
patterns that are similar, but characteristic of significant
anomalous threats. A trainee must pick out the anomalous
behavior patterns from the background.

Socio-cultural sense making. For analysis and situational
understanding, POL models can define high-level, latent
behavior clusters that explain several low-level, observable
behaviors. For example, a crowd meeting at a particular
location every weekday morning might represent a high-level
behavior of going to a bus stop to get to school. In such an
application, an SSTR planner might use this information to
decide where to locate schools or build roads. A logistics
planner might use these patterns to decide when and how to
move people and goods through the space with minimal risk.

3 Requirements for patterns of life
 The problem of simulating POLs is to provide the
simulated environment with realistic foreground and
background representations of the human terrain. Realistic
foreground models require groups of entities to be intelligent
enough to appear realistic under scrutiny. Threatening
insurgent behavior often comes from groups who blend in
with normal patterns most of the time, but step out carefully as
required to achieve goals. Foreground models must be aware
of their surroundings, react to local dynamics and proximal
entities, and blend in with the background POL models, so
they cannot be simple scripts. Without sufficient fidelity,
foreground agents stand out from the background population,
making them easy to spot and useless for training or planning.
Realistic background models must generate sufficiently broad
behavior patterns that accurately reflect the agents’
sociocultural milieu. The models must also be efficient to
execute and easy to author. Individually authoring entity
behaviors is intractable for large populations, but random
generation produces unrealistic behaviors, too easy for a
human learner to detect.

 The overall POL of a population describes the actions
and interactions of many individuals taken as a whole. The
patterns emerge from aggregated individual actions. An

observer can recognize general trends that characterize the
group, even if they are not true for any one individual.
Individual decisions and actions that comprise group behavior
arise from underlying facts and narratives pertaining to the
sociocultural situation. These provide a causal context that an
observer can use to infer latent meanings from relatively few
visible actions. Together, the emergent group behaviors and
the background facts and narratives make up the POL for a
particular region and population.

 There is a unique collection of technical challenges to
modeling POL. The major focus must be on routine behaviors
rather than complex decision making. However, the behavior
must be appropriate to situational context, so the agents must
have some level of situation-understanding competence.
Similarly, in order for behaviors to adapt appropriately to
context, they cannot simply be scripts that break down if the
assumptions behind the scripts become violated. The range of
behaviors must be sufficiently broad and varied to provide a
rich population-level dynamic in which a large variety of
group-level patterns are observable and “normal”, but that
there are not just a large number of agents doing exactly the
same things. The behaviors must also be appropriately
configurable to represent sub-populations, such as different
cultural groups, economic and social roles, occupation types,
social strata, etc. The simulation must be computationally
efficient enough to generate hundreds of thousands of
background agents, as well as perhaps dozens of more
sophisticated (and presumably more expensive) foreground
agents. Finally, the technical solution cannot reasonably
require specific programming of each background agent.
There must be ways to configure the behaviors using
population-level demographic parameters.

4 POL modeling architecture
 We have designed and partially implemented a POL
modeling architecture that specifically addresses these
technical challenges. The architecture allows us to build
models of the activities of many individuals in a scalable way.
It includes a library of goals and behavior patterns that
generate a wide variety of behaviors that instantiate group-
level patterns. It also provides mechanisms to minimize user
input for configuring large populations of agents. Figure 1
displays the components and functions of the POL
architecture. The architecture addresses two primary modes of
operation: on the left, a scenario author carries out scenario
generation. On the right, an operator takes the generated
scenario and carries out scenario execution. In many
situations, the author and operator are a single user.
Generation and execution both rely on a POL knowledge
representation that supports background and foreground
agents. Background agents are highly scheduled, with
configuration mostly or entirely determined by population-
level parameters. Foreground agents generally have minimal
scheduling, make their own decisions during execution, and
have more detailed and unique goals and activities, rather than
population-level parameters. However, in our design, any

Int'l Conf. Artificial Intelligence | ICAI'15 | 439

POL agent can be authored with a mix of population-level and
detailed parameters, as well as more or less scheduling of
specific activities. This enables rapid construction of the
essential details and automated variation of the non-essential
backgrounds. Because the background and foreground
behaviors use the same sets of primitive actions and
overlapping intermediate goals, the architecture supports the
generation of foreground behaviors that blend appropriately
with background behaviors.

5 POL knowledge representation
 The knowledge representation includes primitive
actions, goals, schedules, and configuration parameters. For
this architecture, it is important to note that agent reasoning
can take place during scenario authoring and execution. The
output of the authoring process is a set of goals incorporated
into a schedule. The agents know how to achieve the goals
using the available primitive actions. The schedule may be
complete or only partial. Background agent generation
creates for each agent a rough schedule with some actions
determined and some slots, where actions will be chosen from
a reasonable range in order to create variation. Foreground
agents have run-time knowledge for scheduling their own
goals and actions. Configuration parameters influence the
agents’ choices of goals and the timing of the actions. In
general, configuration parameters for background agents are
used to generate choices during scenario authoring, while
foreground agents may make some or most of their choices by
reasoning about goals and parameters during scenario
execution. The rest of this section provides more detail on
each of these knowledge components.

Primitive actions. These define the interface between
the agents and the simulation. Primitive actions generally
provide the observable actions that a POL agent will generate,
including movement, entering or exiting buildings and
vehicles, using devices (e.g., to communicate), and interacting
with other agents. Primitive actions can also be unobservable,
such as a change in beliefs or achievement of a goal. In
general, the primitive actions used by background agents are
the same (or at least a large subset) of the primitive actions
used by the foreground agents. This is because at a surface
level there must be a possibility of confusing observable
background and foreground behavior, so there should be
nothing (or very little) observable that is unique to either type
of agent.

Goal hierarchies. An important property of the POL
architecture is that schedules are not merely timed scripts of
primitive actions. Rather, they are composed of goals that can
be decomposed into actions. The use of goals allows the
agents to adapt their actions to changes in the scenario. As a
simple example, if the schedules were composed only of
actions, a schedule item might be something like “Starting at
noon, drive Car X to Location Y”. This is a specific and
brittle command, which could fail if any assumptions behind
the command become violated during scenario execution. For
example, what happens if Car X becomes unavailable, or the
agent is not able to get to Car X before noon? To address
such possibilities, the POL schedules refer to goals, such as
“As soon as possible before lunch time, drive to a nearby
restaurant, with Car X being the preferred vehicle and
Location Y being the preferred restaurant.” This specification
of schedules in terms of goals and preferences allows each
agent to adapt its behavior when assumptions break down.

 POL agents also organize their behavior around goals
that can contain both scheduled and unscheduled actions. The
primary difference between background and foreground
agents is that the goals for background agents are generally at
a level of abstraction closer to the primitive actions, while
goals for foreground agents are more abstract. Both types of
agents have goals centered on group activities that are fluid
and contain unscheduled elements. Therefore, they can even
carry out complex tasks such as planning a covert attack.

Schedules. Agents achieve goals based on schedules.
Each agent has a schedule that tells it where and when to
achieve its goals. A schedule covers a day, and agents can
have more than one schedule to govern different types of days
such as weekdays and weekends. Variation between daily
schedules is accomplished with probability distributions over
action alternatives. This is implemented via efficient fuzzy
state machines, with extensions to improve expressivity,
adaptivity, look-ahead reasoning, and behavior authoring. For
example, a schedule might specify a 10% chance of going out
to lunch and 90% chance of staying in the office. As another
example, a leave_for_work goal’s start time may vary about a
7:00AM center point. Each schedule items dictates a goal to
achieve, with some indication of the time to start pursuing or

Figure 1. Schematic and functions of the POL architecture.

440 Int'l Conf. Artificial Intelligence | ICAI'15 |

to aim to achieve the goal (or some other temporal
relationship). Depending on the situation and the parameters,
there is room for variation in goal achievement. POL agents
have the knowledge to refine goals into primitive actions.
Simpler goals that generally populate the schedules of
background agents have simple achievement actions.
Additionally, the schedules include fuzzy adaptation
parameters to reflect natural human variation. Without this,
every employee of an office might stand up to leave at exactly
the same time or use the same route to get to work. This
approach enables us to simulate thousands of diverse
background agents on a single machine.

Parameters. Depending on the type of goal and/or how
the goal will be achieved, there can be additional parameters
that need to be specified for each instance of a schedule goal.
Example parameters include:

•Location of goal achievement
•Start time to pursue the goal
•End time to achieve the goal
•Type of goal
•Transportation plan to get to location, including
oSequence of waypoints to achieve
oTransportation mode to use for waypoint sequences

•Equipment to be used to achieve the goal
•Target agent for communication or interaction goals

 Foreground agents do not require values for all of their
goal parameters. The scenario author and operator may leave
the decision up to the agent to instantiate the parameters.
Depending on the parameter type, the scenario, and the run-
time situation, the agent may make the decision at authoring
or execution time. In addition, the goals for foreground
agents can be more abstract and complex, meaning they might
be refined into other goals, rather than being refined directly
to primitive actions.

 In addition to the goal parameters specified above, each
agent can have associated population and role parameters that
are used at scenario authoring time to assist in automatically
generating goals and schedules. For example, the architecture
provides the ability to generate schedules for all agents in a
region based on percentages the author assigns to that region.
The author might specify that a certain percentage of the
population in a region adhere to a particular religion, are
employed, are married, own cars, etc. The generated
schedules follow rules to keep them internally consistent. For
example, agents are not scheduled to work far from their
homes if they have no transportation to get them to work.

 POL agents can also form groups and act together when
all members of a group except one have schedules that specify
they should follow the movements directed by one other
agent. POL agents have social network links that specify
relationships, and they use these links to form groups when
appropriate. For example, when an agent goes to work on a
weekday it goes alone, but when it takes the family to a park
on the weekend, the entire family pursues the goal together.

Configuration parameters are not only associated with goals
and agents. They are also associated with the geography and
regional infrastructure. This allows the scenario-authoring
component to associate authoring choices together based on
mixes of parameters. The next section presents examples of
how parameters drive scenario-authoring decisions.

6 POL authoring
 When discussing behavior models for thousands, or
possibly hundreds of thousands, of agents, it is infeasible to
take an approach that requires detailed specification of each
individual agent. Thus, it is necessary for a POL architecture
to support population-level specification of scenario authoring
choices. In our architecture, scenario authoring consists of
three basic activities:

• Geography and infrastructure. This involves setting up
the simulated infrastructure of the scenario, including location
and functions of buildings, as well as available objects (such
as vehicles or devices).

• Background agent specification. This involves
specifying population-level parameters that are used
automatically to generate schedules for the individual
background agents.

• Foreground agent specification. This is a more
interactive process of creating more complex goals, schedules,
and decision points for foreground agents. Still, the author is
not required to script every action for any character. Also,
foreground agent behaviors can be derived from templates for
foreground agents that have similar goals.

 Scenario authoring begins by creating a geographical
terrain with specified building locations and functions.
Buildings can be residential, commercial, industrial, religious,
educational, or governmental. Next, the scenario author
specifies demographic parameters for regions of the terrain.
For example, an author can outline a neighborhood and enter
parameters that tell how many of the people generated in that
region are employed, how many own a car, how many belong
to a particular religion, etc.

 Once these regions have been defined, the authoring
component automatically generates population individuals,
characteristics, and relationships. For residential buildings,
the demographic parameters are used to generate populations
that occupy each building (using parameters such as average
family size, together with sex and age distributions).
Demographic parameters are also used to determine
ownership of goods (such as vehicles and devices) for each
agent. For non-residential buildings, the POL authoring
component generates job slots for each building, based on
building size and job-related parameters for the region. Using
employment parameters, the authoring component
stochastically assigns available job slots to “adult” members
of the population. It is possible to bias employment
assignments using factors such as employment rate, ethnicity,
religion, residential location, vehicle ownership, etc.

Int'l Conf. Artificial Intelligence | ICAI'15 | 441

 Once the basic background population has been
generated, organized into families (based on residence), and
assigned jobs, additional demographic parameters are used to
compute additional types of relationships between individuals.
These relationships include:

• Non-immediate family connections
• Religious connections
• Political connections
• Miscellaneous “interest group” connections
• Social connections
• Educational connections
• Other economic connections

 These simulated relationships and group memberships
are then used to generate schedules for the background agents.
Without the relations, the system would produce a
background population that exhibits the specified population
statistics at random. However, demographic facts in reality
have dependencies between categories that make some
characteristics predict others. In order to reflect these patterns,
the POL system applies causal and correlative information to
eliminate unwarranted independence and to introduce
underlying causality. For example, if it is known that
employment in an urban neighborhood is correlated with
education level, the authoring component can use that
knowledge to fill in blanks in the authored percentages and to
impose additional patterns that mere percentages do not
capture. The output of the authoring component is a
background population bearing realistic simulated
demographics that produce rational behavior patterns.

 In addition, cultural baseline knowledge helps transform
population demographics into agents with plans and goals.
This process converts otherwise random assignments into
population-level patterns. Agent generation creates rough
schedules with some actions determined and some slots,
where actions will be chosen from a reasonable range in order
to allow variation. For the scenario author, using the POL
architecture’s baseline knowledge reduces or eliminates the
need to hand-code any portion of the background agent
schedules. This background knowledge imposes consistency
and causality on the schedules. For example, in some cultures,
it is rare for an individual to fail to attend religious
ceremonies at least once a week. Without cultural knowledge,
the choice to skip attendance would be random and carry no
meaning for a human to understand. Cultural knowledge adds
causation to the event. It changes the output of the random
generator so the agent more closely follows the norm for its
assigned culture, religion, ethnicity, or other relationship.
Alternatively, it might add parameters labeling some
population members as religiously unobservant, a fact that
would lead to further constraints on agent schedules.

6.1 Foreground agent authoring
 The basic characteristics of foreground agents can be
defined in the same ways that background agents are
configured. However, because foreground agents engage in

more complex and specialized behaviors, the POL authoring
component contains additional tools for building their more
complicated schedules. Figure 2 depicts the general
framework for representing foreground agent knowledge and
generating foreground agent schedules. Foreground agents are
implemented within the Soar cognitive architecture [4][5] to
allow them to reason about their environment and adjust their
goal-directed behavior accordingly. A comprehensive long-
term knowledge specification contains the goals, tasks,
conditional logic, and goal decompositions available to the
foreground agents. An author runs the scenario/behavior
planning user interface to configure foreground agents. This
interface uses the long-term knowledge specification to assist
in creating a behavior schedule for the foreground agents. For
example, if the user specifies that the scenario should include
agents with the goal “achieve-covert-attack”, the user
interface will automatically decompose that mission into a
supporting set of subgoals, primitive actions, and parameter
slots. The user interface will allow the user to examine the
mission structure and fill parameters, including scheduling
times to achieve goals. As the user fills parameters, the user
interface performs further task decompositions and displays
them to the user. This also identifies additional parameters
that the user can fill. The user has the option of filling each
parameter or allowing the agent to fill it during scenario
execution. Ultimately, the output of the planning process is a
partial schedule of goals for the foreground agent to achieve,
with unspecified parameters left as choice points for the agent
during execution. In the extreme, but atypical, case where the
user selects values for all parameters in the schedule, the
output is a scripted schedule similar to the background agents.
However, the schedule includes a full goal hierarchy, which
increases adaptivity and traceability in dynamic situations.

Figure 2. Multiple interpretations of HVI knowledge
and behavior specifications.

442 Int'l Conf. Artificial Intelligence | ICAI'15 |

7 POL agent execution
 At run time, the execution agent follows the goals and
actions dictated in each behavior schedule. For background
agents, this typically executes a schedule of low-level goals.
However, even low-level goals include adaptive constraints,
such as pedestrians yielding to moving vehicles. These
execute with high computational efficiency, because they do
not involve any sophisticated sensing, understanding, or
intelligent decision making. Rather, they require only
efficient primitive functions for activities like route planning
and schedule estimation. Foreground agents usually include
schedule elements with unspecified parameter values or goal
decompositions. The execution agent uses its decision logic
and long-term knowledge specification to make choices, with
the choices being sensitive to the current state of the execution
environment. This allows foreground behavior that is not
scripted, but is adaptive to the current situation. The
execution agent fills in any details necessary to execute the
mission. This type of adaptive, intelligent reasoning and
situation understanding requires more computational
resources than the simple schedules executed by background
agents. Thus, we expect a scenario to include on the order of
dozens of foreground agents.

 After execution, an explanation/debriefing interface can
examine population behavior patterns and apply long-term
knowledge to generate explanations for the parameters, goals,
and situational elements that contributed to decisions and
actions generated by the execution agent. The interface uses
the background knowledge base to reflect, after the fact, on
the decisions that a foreground agent made during execution
time [6]. This improves scenario creation and evaluation, by
supporting traceability of the behavior to knowledge.

8 Current status
 The POL architecture continues development under
several DOD-funded projects, together with internal research
and development efforts. We implemented the initial
prototype under a DOD training program and DARPA

Insight. Figure 3 shows a demonstration simulation
environment running the initial POL prototype
implementation. The prototype implemented background and
foreground agents. The background engine interpreted
schedules, translating goals into primitive actions using
functions for path planning and action sequencing. It modeled
several thousand agents per CPU core. The foreground engine
used the Soar cognitive architecture [4] to implement situation
understanding, hierarchical goal decomposition, and
parameter-value selection at domain-specific choice points.
We are extending this initial prototype through a collection of
active projects, with specific recent focus on authoring.

 Currently, users author the scenarios, with a user
developing background and foreground schedules with
population parameters used to generate some of the schedule
goals, timings, and parameters. The full capabilities for
relationship management and interactive behavior planning
are still in the design phase. We have evaluated the initial
prototype on a set of use cases in a schoolhouse environment,
demonstrating the ability to deploy large numbers of
background agents, together with foreground agents that
perform team-based insurgent activities. Background and
foreground agents blend in the simulation environment. We
have demonstrated that demographic parameters allow us to
configure up to 320,000 background agents. We have run
example scenarios populated with 20,000 background agents
per CPU core, plus small numbers of foreground agents that
blend in.

9 Related work
The POL architecture we have presented addresses the unique
collection of requirements and applications described at the
beginning of this paper. The design and implementation of
the architecture has benefited from lessons learned from other
research efforts that address portions of the POL problem.

9.1 Crowd modeling
 Crowd modeling portrays realistic movements for low-
fidelity, identical individuals in relatively small spaces [7].
Typical crowd models implement thousands of individuals
moving in areas up to the size of a football stadium. Academic
models, for example, analyze the best way to design exits to
quickly empty an auditorium. The individuals have concepts
of personal space and other data that makes small-area
movement realistic, but they are interchangeable in that they
do not have individualized choices. All agents exhibit
essentially the same behavior with small variations, such as
attempting to use different doors or different loitering areas.
Thus, looking carefully at individuals in these crowds reveals
they are merely walking around random points and not
following any latent patterns. They do not possess reasons for
their choices or actions, and they do not implement
demographically based constraints and decision logic.

Figure 3. A sample pattern-of-life simulation.

Int'l Conf. Artificial Intelligence | ICAI'15 | 443

9.2 Social network modeling
 Social network modeling describes groups of individuals
that differ in their properties and relationships. These models
represent relationships between individuals as connection
graphs [8][9]. The networks are often randomized to create a
particular overall graph structure. These models, may have
many different individuals, but are often valid only in the
aggregate. For example, such models in the academic world
have yielded results about what mechanisms for making and
breaking links are typical in the network as a whole. These
models focus on social dynamics, but typically ignore POL
dynamics related to the physical world.

 Random graph generation implies a lack of realism when
observed closely. As an example, in a real-world social
network, advertisers have recently begun to value having
people “like” their products on Facebook. This has led to
unscrupulous providers creating fake individuals and selling
their “likes.” However, random generation does not follow
real patterns of life, so it is possible to detect these fake
individuals – one product might be liked almost entirely by
people in a single foreign city, and another might be liked by
one person in each city, with no overlap. Both of these
mistakes reflect a failure to model the POLs that should
geographically cluster individuals with remote, second- and
third-order similarities and interpersonal connections.

9.3 Abstract population models
 Abstract population models simulate large groups with
low detail. The population may include a few powerful
individuals, or no individuals and only groups. For example,
one such simulation models political, military, and other kinds
of power as stocks and flows [10]. Some abstract population
models include goals and beliefs associated with each stock
that direct the flows to achieve goals, but most models do not.
Abstract population models in general focus on group
relationships and influences, and they do not model individual
behaviors that would fit into an overall pattern of life.

10 Conclusions and future work
 POL modeling differs from typical AI modeling in its
focus on breadth and density of behavior, as well as the
importance of agent behaviors organizing into appropriate
high-level patterns. POL requires solutions that emphasize
efficiency in behavior authoring as well as execution, and that
model a continuum that blends background and foreground
behaviors. Our POL architecture design addresses these
requirement and currently implements components
sufficiently to demonstrate efficient generation of high-density
background populations that represent varied cultural
demographics and provide a suitable context for sophisticated
foreground agents to blend into.

 An important next step is automatic generation of POL
based on interaction with standard representations of a
population. The vision is to ingest a geographical and

statistical profile, available from open-source intelligence
reports, and combine this with socio-cultural representations
to generate background agents automatically. Once achieved,
whether for training or for planning, the system will ingest
just-in-time information and support high-fidelity simulations
of scenarios for direct relevance to ongoing missions. A
second consideration is modeling communications that affect
POL. Communications have significant impact on behavior.
Locals flee when they hear police are coming. Crowds form
when they learn of a controversial rally through twitter. These
drivers of POL deviations make a difference in practice, and
we plan to implement authoring and run-time representations
for these effects in the next iterations of our work.

11 References
[1] Schatz, S., Folsom-Kovarik, J. T., Bartlett, K., Wray, R. E., &
Solina, D. 2012. Archteypal patterns of life for military training
simulations. Proceedings of I/ITSEC. Orlando, FL.

[2] Folsom-Kovarik, J. T., Schatz, S., Jones, R. M., Bartlett, K., &
Wray, R. E. (2014). AI challenge problem: Scalable models for
patterns of life. AI Magazine 35(1), 10–14.

[3] Carpenter, L. W. 2012. Emerald Warrior 2012: Joint, coalition
exercise offers special operations forces irregular warfare training.
Airman.

[4] Laird, J. E. 2012. The Soar cognitive architecture. MIT Press.

[5] Wray, R. E., & Jones, R. M. 2005. An introduction to Soar as
an agent architecture. In R. Sun (Ed.), Cognition and multi-agent
interaction: From cognitive modeling to social simulation, 53–78.
Cambridge, UK: Cambridge University Press.

[6] Taylor, G., Jones, R. M., Goldstein, M., Frederiksen, R., &
Wray, R. E. 2002. VISTA: A generic toolkit for visualizing agent
behavior. Proceedings of the Eleventh Conference on Computer
Generated Forces and Behavior Representation. Orlando, FL.

[7] Helbing, D. and Molnar, P. 1995. Social force model for
pedestrian dynamics. Physical review E, 51(5):4282.
Hughes, R. 2002. A continuum theory for the flow of pedestrians.
Transportation Research Part B: Methodological, 36(6):507-535.

[8] McPherson, M., Smith-Lovin, L., & Cook, J. M. 2001. Birds
of a feather: Homophily in social networks. Annual review of
sociology, 415-444.

[9] Mislove, A., Marcon, M., Gummadi, K. P., Druschel, P., &
Bhattacharjee, B. 2007. Measurement and analysis of online social
networks. In Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement (pp. 29-42). ACM.

[10] Taylor, G., Bechtel, R., Knudsen, K., Waltz, E., & White, J.
2008. PSTK: A toolkit for modeling dynamic power structures.
Proceedings of the Seventeenth Conference on Behavior
Representation in Modeling and Simulation. Providence.
Providence, RI.

444 Int'l Conf. Artificial Intelligence | ICAI'15 |

