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Abstract - Patterns of Life are general human behavioral 
patterns that emerge from individual behaviors and reflect 
group tendencies, especially sociocultural tendencies.  
Challenges for modeling patterns of life are somewhat 
different from challenges for traditional modeling of 
cognition, decision-making, and expertise.  Modeling patterns 
of life requires solutions for background agents, which are not 
individually complex, but are individually unique and 
representative of rich sociocultural backgrounds; as well as 
solutions for foreground agents, which are unique and 
complex, but also blend in with the background behavior 
patterns.  This paper presents a POL modeling architecture 
that addresses issues in authoring and executing such large 
populations of unique individuals. 

Keywords: Patterns of life, Large-scale behavior modeling, 
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1 Patterns of life 
  We have pursued several projects that involve 
computational modeling of human Patterns of Life (POL). 
Schatz et al. [1] define POL as follows: “In the context of 
cultural training, patterns of life are the archetypal emergent 
properties of a complex sociocultural system.”  In addition, 
“…the emergent properties…can be organized into categories 
that describe classes of patterns of life that share similar 
general features, and we expect these same classes will 
manifest (likely with different nuanced characteristics) across 
all societies and cultures.” Folsom-Kovarik et al. [2] proposed 
scalable POL models as a challenge problem for applied 
artificial intelligence.  This paper describes an architecture 
and approach to respond to that challenge. 

 POL are properties of a society that determine how 
individuals function on a day-to-day basis.  The US military 
uses POL for Stability, Security, Transition, and 
Reconstruction (SSTR) operations, to train US Forces who 
must operate in these communities, and to identify threats 
based on POL anomalies. The DARPA Insight program 
sponsored research into the structure of generative POL 

models to support a simulation and test environment for threat 
recognition algorithms. Typical applied and theoretical work 
in artificial intelligence focuses on high-level competence or 
intelligent decision-making of individuals.  In contrast, POL 
modeling focuses on social, cultural, and everyday behavior.  
POL are themes that appear in a population’s everyday 
actions and interactions. The ability to understand patterns of 
life, and thus to represent and instantiate POL models, is a 
critical emerging military requirement. 

 This paper describes technical issues of POL modeling 
and details of the approach we have developed across many 
projects, beginning with the sophisticated Insight simulation.  
POL modeling requires solutions for breadth, efficiency, and 
authoring of agent behaviors.  We use cultural representations 
that explicitly allow for natural human variation, and a 
computational infrastructure that generates a continuum of 
relevant socio-cultural behaviors in two classes: efficient 
schedule-based scripts that support high-density populations 
and knowledge-rich individual models with the competence to 
adapt decisions based on goals and situational understanding. 

2 Application areas 
 The Department of Defense (DOD) recognizes that POL 
analysis is an excellent mechanism for threat identification 
and engaging with a population in appropriate socio-cultural 
ways [3].  Those who live in or analyze foreign areas learn to 
recognize anomalies in typical patterns and react accordingly.  
The training challenge is to prepare those who are not in the 
area or do not have time to slowly become familiar with these 
threats. Consider an example where a U.S. Marine Corps 
squad leader is operating near a town of about 10,000 people, 
with reports of insurgent activity in the area. On a given 
morning, the marketplace includes a small number of people 
milling around (perhaps a dozen or so), a few bicycles and 
one car.   Some stalls in the marketplace are empty.  Is this a 
clear indication of danger or normal for this particular time? 

 Understanding the local POL is essential for the squad 
leader to build an overall assessment of this situation, 
determine whether any observed elements are unusual or 
dangerous, and predict what is likely to happen next.  The 
squad leader’s observations must cohere into high-level 
patterns that make sense.  In this example, perhaps the traffic 
is typical for this time of the day and should increase 
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dramatically later.  This is just one example of how POL 
analysis informs modern warfighting and peacekeeping.  
Modeling POL can support scenarios with increasing levels of 
behavior fidelity depending on the simulation need.

Realistic background context in training.  POL can provide a 
realistically rich background for focused training activities.  
This can improve training simply by increasing user presence 
or putting the training into a realistic context, even if the POL 
itself is not a key part of the training.   

Training of anomaly identification.  For other types of 
training, POL is a key focus.  A trainee may be learning to 
distinguish significant, anomalous behavior from the normal 
patterns in an area.  In this case, background POL models 
include routine behaviors, while foreground models generate 
patterns that are similar, but characteristic of significant 
anomalous threats. A trainee must pick out the anomalous 
behavior patterns from the background. 

Socio-cultural sense making.  For analysis and situational 
understanding, POL models can define high-level, latent 
behavior clusters that explain several low-level, observable 
behaviors. For example, a crowd meeting at a particular 
location every weekday morning might represent a high-level 
behavior of going to a bus stop to get to school.  In such an 
application, an SSTR planner might use this information to 
decide where to locate schools or build roads. A logistics 
planner might use these patterns to decide when and how to 
move people and goods through the space with minimal risk. 

3 Requirements for patterns of life 
 The problem of simulating POLs is to provide the 
simulated environment with realistic foreground and 
background representations of the human terrain.  Realistic 
foreground models require groups of entities to be intelligent 
enough to appear realistic under scrutiny. Threatening 
insurgent behavior often comes from groups who blend in 
with normal patterns most of the time, but step out carefully as 
required to achieve goals.  Foreground models must be aware 
of their surroundings, react to local dynamics and proximal 
entities, and blend in with the background POL models, so 
they cannot be simple scripts. Without sufficient fidelity, 
foreground agents stand out from the background population, 
making them easy to spot and useless for training or planning. 
Realistic background models must generate sufficiently broad 
behavior patterns that accurately reflect the agents’ 
sociocultural milieu.  The models must also be efficient to
execute and easy to author.  Individually authoring entity 
behaviors is intractable for large populations, but random 
generation produces unrealistic behaviors, too easy for a 
human learner to detect.  

 The overall POL of a population describes the actions 
and interactions of many individuals taken as a whole. The 
patterns emerge from aggregated individual actions. An 

observer can recognize general trends that characterize the 
group, even if they are not true for any one individual. 
Individual decisions and actions that comprise group behavior 
arise from underlying facts and narratives pertaining to the 
sociocultural situation. These provide a causal context that an 
observer can use to infer latent meanings from relatively few 
visible actions. Together, the emergent group behaviors and 
the background facts and narratives make up the POL for a 
particular region and population.  

 There is a unique collection of technical challenges to 
modeling POL. The major focus must be on routine behaviors 
rather than complex decision making.  However, the behavior 
must be appropriate to situational context, so the agents must 
have some level of situation-understanding competence.  
Similarly, in order for behaviors to adapt appropriately to 
context, they cannot simply be scripts that break down if the 
assumptions behind the scripts become violated.  The range of 
behaviors must be sufficiently broad and varied to provide a 
rich population-level dynamic in which a large variety of 
group-level patterns are observable and “normal”, but that 
there are not just a large number of agents doing exactly the 
same things.  The behaviors must also be appropriately 
configurable to represent sub-populations, such as different 
cultural groups, economic and social roles, occupation types, 
social strata, etc.  The simulation must be computationally 
efficient enough to generate hundreds of thousands of 
background agents, as well as perhaps dozens of more 
sophisticated (and presumably more expensive) foreground 
agents.  Finally, the technical solution cannot reasonably 
require specific programming of each background agent.  
There must be ways to configure the behaviors using 
population-level demographic parameters.   

4 POL modeling architecture 
 We have designed and partially implemented a POL 
modeling architecture that specifically addresses these 
technical challenges.  The architecture allows us to build 
models of the activities of many individuals in a scalable way. 
It includes a library of goals and behavior patterns that 
generate a wide variety of behaviors that instantiate group-
level patterns.  It also provides mechanisms to minimize user 
input for configuring large populations of agents.  Figure 1 
displays the components and functions of the POL 
architecture. The architecture addresses two primary modes of 
operation: on the left, a scenario author carries out scenario 
generation.  On the right, an operator takes the generated 
scenario and carries out scenario execution.  In many 
situations, the author and operator are a single user.  
Generation and execution both rely on a POL knowledge 
representation that supports background and foreground 
agents.  Background agents are highly scheduled, with 
configuration mostly or entirely determined by population-
level parameters.  Foreground agents generally have minimal 
scheduling, make their own decisions during execution, and 
have more detailed and unique goals and activities, rather than 
population-level parameters.  However, in our design, any 
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POL agent can be authored with a mix of population-level and 
detailed parameters, as well as more or less scheduling of 
specific activities.  This enables rapid construction of the 
essential details and automated variation of the non-essential 
backgrounds.  Because the background and foreground 
behaviors use the same sets of primitive actions and 
overlapping intermediate goals, the architecture supports the 
generation of foreground behaviors that blend appropriately 
with background behaviors. 

5 POL knowledge representation 
 The knowledge representation includes primitive 
actions, goals, schedules, and configuration parameters.  For 
this architecture, it is important to note that agent reasoning 
can take place during scenario authoring and execution.  The 
output of the authoring process is a set of goals incorporated 
into a schedule.  The agents know how to achieve the goals 
using the available primitive actions.  The schedule may be 
complete or only partial.  Background agent generation 
creates for each agent a rough schedule with some actions 
determined and some slots, where actions will be chosen from 
a reasonable range in order to create variation.  Foreground 
agents have run-time knowledge for scheduling their own 
goals and actions.  Configuration parameters influence the 
agents’ choices of goals and the timing of the actions.  In 
general, configuration parameters for background agents are 
used to generate choices during scenario authoring, while 
foreground agents may make some or most of their choices by 
reasoning about goals and parameters during scenario 
execution.  The rest of this section provides more detail on 
each of these knowledge components. 

Primitive actions. These define the interface between 
the agents and the simulation.  Primitive actions generally 
provide the observable actions that a POL agent will generate, 
including movement, entering or exiting buildings and 
vehicles, using devices (e.g., to communicate), and interacting 
with other agents.  Primitive actions can also be unobservable, 
such as a change in beliefs or achievement of a goal.  In 
general, the primitive actions used by background agents are 
the same (or at least a large subset) of the primitive actions 
used by the foreground agents.  This is because at a surface 
level there must be a possibility of confusing observable 
background and foreground behavior, so there should be 
nothing (or very little) observable that is unique to either type 
of agent.   

Goal hierarchies. An important property of the POL 
architecture is that schedules are not merely timed scripts of 
primitive actions.  Rather, they are composed of goals that can 
be decomposed into actions.  The use of goals allows the 
agents to adapt their actions to changes in the scenario.  As a 
simple example, if the schedules were composed only of 
actions, a schedule item might be something like “Starting at 
noon, drive Car X to Location Y”.  This is a specific and 
brittle command, which could fail if any assumptions behind 
the command become violated during scenario execution.  For 
example, what happens if Car X becomes unavailable, or the 
agent is not able to get to Car X before noon?  To address 
such possibilities, the POL schedules refer to goals, such as 
“As soon as possible before lunch time, drive to a nearby 
restaurant, with Car X being the preferred vehicle and 
Location Y being the preferred restaurant.”  This specification 
of schedules in terms of goals and preferences allows each 
agent to adapt its behavior when assumptions break down. 

 POL agents also organize their behavior around goals 
that can contain both scheduled and unscheduled actions.  The 
primary difference between background and foreground 
agents is that the goals for background agents are generally at 
a level of abstraction closer to the primitive actions, while 
goals for foreground agents are more abstract.  Both types of 
agents have goals centered on group activities that are fluid 
and contain unscheduled elements. Therefore, they can even 
carry out complex tasks such as planning a covert attack. 

Schedules. Agents achieve goals based on schedules. 
Each agent has a schedule that tells it where and when to 
achieve its goals. A schedule covers a day, and agents can 
have more than one schedule to govern different types of days 
such as weekdays and weekends. Variation between daily 
schedules is accomplished with probability distributions over 
action alternatives. This is implemented via efficient fuzzy 
state machines, with extensions to improve expressivity, 
adaptivity, look-ahead reasoning, and behavior authoring.  For 
example, a schedule might specify a 10% chance of going out 
to lunch and 90% chance of staying in the office.  As another 
example, a leave_for_work goal’s start time may vary about a 
7:00AM center point.  Each schedule items dictates a goal to 
achieve, with some indication of the time to start pursuing or 

Figure 1. Schematic and functions of the POL architecture.
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to aim to achieve the goal (or some other temporal 
relationship).  Depending on the situation and the parameters, 
there is room for variation in goal achievement.  POL agents 
have the knowledge to refine goals into primitive actions.  
Simpler goals that generally populate the schedules of 
background agents have simple achievement actions.  
Additionally, the schedules include fuzzy adaptation 
parameters to reflect natural human variation.  Without this, 
every employee of an office might stand up to leave at exactly 
the same time or use the same route to get to work. This 
approach enables us to simulate thousands of diverse 
background agents on a single machine. 

Parameters. Depending on the type of goal and/or how 
the goal will be achieved, there can be additional parameters 
that need to be specified for each instance of a schedule goal.  
Example parameters include: 

•Location of goal achievement 
•Start time to pursue the goal 
•End time to achieve the goal 
•Type of goal 
•Transportation plan to get to location, including 
oSequence of waypoints to achieve 
oTransportation mode to use for waypoint sequences 

•Equipment to be used to achieve the goal 
•Target agent for communication or interaction goals

 Foreground agents do not require values for all of their 
goal parameters.  The scenario author and operator may leave 
the decision up to the agent to instantiate the parameters.  
Depending on the parameter type, the scenario, and the run-
time situation, the agent may make the decision at authoring 
or execution time.  In addition, the goals for foreground 
agents can be more abstract and complex, meaning they might 
be refined into other goals, rather than being refined directly 
to primitive actions.   

 In addition to the goal parameters specified above, each 
agent can have associated population and role parameters that 
are used at scenario authoring time to assist in automatically 
generating goals and schedules.  For example, the architecture 
provides the ability to generate schedules for all agents in a 
region based on percentages the author assigns to that region. 
The author might specify that a certain percentage of the 
population in a region adhere to a particular religion, are 
employed, are married, own cars, etc.  The generated 
schedules follow rules to keep them internally consistent. For 
example, agents are not scheduled to work far from their 
homes if they have no transportation to get them to work. 

 POL agents can also form groups and act together when 
all members of a group except one have schedules that specify 
they should follow the movements directed by one other 
agent. POL agents have social network links that specify 
relationships, and they use these links to form groups when 
appropriate. For example, when an agent goes to work on a 
weekday it goes alone, but when it takes the family to a park 
on the weekend, the entire family pursues the goal together.    

Configuration parameters are not only associated with goals 
and agents.  They are also associated with the geography and 
regional infrastructure.  This allows the scenario-authoring 
component to associate authoring choices together based on 
mixes of parameters.  The next section presents examples of 
how parameters drive scenario-authoring decisions. 

6 POL authoring 
 When discussing behavior models for thousands, or 
possibly hundreds of thousands, of agents, it is infeasible to 
take an approach that requires detailed specification of each 
individual agent.  Thus, it is necessary for a POL architecture 
to support population-level specification of scenario authoring 
choices.  In our architecture, scenario authoring consists of 
three basic activities: 

• Geography and infrastructure.  This involves setting up 
the simulated infrastructure of the scenario, including location 
and functions of buildings, as well as available objects (such 
as vehicles or devices). 

• Background agent specification.  This involves 
specifying population-level parameters that are used 
automatically to generate schedules for the individual 
background agents. 

• Foreground agent specification.  This is a more 
interactive process of creating more complex goals, schedules, 
and decision points for foreground agents. Still, the author is 
not required to script every action for any character.  Also, 
foreground agent behaviors can be derived from templates for 
foreground agents that have similar goals. 

 Scenario authoring begins by creating a geographical 
terrain with specified building locations and functions.  
Buildings can be residential, commercial, industrial, religious, 
educational, or governmental.  Next, the scenario author 
specifies demographic parameters for regions of the terrain.  
For example, an author can outline a neighborhood and enter 
parameters that tell how many of the people generated in that 
region are employed, how many own a car, how many belong 
to a particular religion, etc.  

 Once these regions have been defined, the authoring 
component automatically generates population individuals, 
characteristics, and relationships. For residential buildings, 
the demographic parameters are used to generate populations 
that occupy each building (using parameters such as average 
family size, together with sex and age distributions).  
Demographic parameters are also used to determine 
ownership of goods (such as vehicles and devices) for each 
agent.  For non-residential buildings, the POL authoring 
component generates job slots for each building, based on 
building size and job-related parameters for the region.  Using 
employment parameters, the authoring component 
stochastically assigns available job slots to “adult” members 
of the population.  It is possible to bias employment 
assignments using factors such as employment rate, ethnicity, 
religion, residential location, vehicle ownership, etc. 
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 Once the basic background population has been 
generated, organized into families (based on residence), and 
assigned jobs, additional demographic parameters are used to 
compute additional types of relationships between individuals.  
These relationships include: 

• Non-immediate family connections 
• Religious connections  
• Political connections  
• Miscellaneous “interest group” connections  
• Social connections  
• Educational connections  
• Other economic connections  

 These simulated relationships and group memberships 
are then used to generate schedules for the background agents.  
Without the relations, the system would produce a 
background population that exhibits the specified population 
statistics at random. However, demographic facts in reality 
have dependencies between categories that make some 
characteristics predict others. In order to reflect these patterns, 
the POL system applies causal and correlative information to 
eliminate unwarranted independence and to introduce 
underlying causality. For example, if it is known that 
employment in an urban neighborhood is correlated with 
education level, the authoring component can use that 
knowledge to fill in blanks in the authored percentages and to 
impose additional patterns that mere percentages do not 
capture. The output of the authoring component is a 
background population bearing realistic simulated 
demographics that produce rational behavior patterns. 

 In addition, cultural baseline knowledge helps transform 
population demographics into agents with plans and goals. 
This process converts otherwise random assignments into 
population-level patterns. Agent generation creates rough 
schedules with some actions determined and some slots, 
where actions will be chosen from a reasonable range in order 
to allow variation.  For the scenario author, using the POL 
architecture’s baseline knowledge reduces or eliminates the 
need to hand-code any portion of the background agent 
schedules. This background knowledge imposes consistency 
and causality on the schedules. For example, in some cultures, 
it is rare for an individual to fail to attend religious 
ceremonies at least once a week. Without cultural knowledge, 
the choice to skip attendance would be random and carry no 
meaning for a human to understand. Cultural knowledge adds 
causation to the event. It changes the output of the random 
generator so the agent more closely follows the norm for its 
assigned culture, religion, ethnicity, or other relationship.  
Alternatively, it might add parameters labeling some 
population members as religiously unobservant, a fact that 
would lead to further constraints on agent schedules.  

6.1 Foreground agent authoring 
 The basic characteristics of foreground agents can be 
defined in the same ways that background agents are 
configured.  However, because foreground agents engage in 

more complex and specialized behaviors, the POL authoring 
component contains additional tools for building their more 
complicated schedules.  Figure 2 depicts the general 
framework for representing foreground agent knowledge and 
generating foreground agent schedules. Foreground agents are 
implemented within the Soar cognitive architecture [4][5] to 
allow them to reason about their environment and adjust their 
goal-directed behavior accordingly. A comprehensive long-
term knowledge specification contains the goals, tasks, 
conditional logic, and goal decompositions available to the 
foreground agents.  An author runs the scenario/behavior 
planning user interface to configure foreground agents.  This 
interface uses the long-term knowledge specification to assist 
in creating a behavior schedule for the foreground agents.  For 
example, if the user specifies that the scenario should include 
agents with the goal “achieve-covert-attack”, the user 
interface will automatically decompose that mission into a 
supporting set of subgoals, primitive actions, and parameter 
slots.  The user interface will allow the user to examine the 
mission structure and fill parameters, including scheduling 
times to achieve goals.  As the user fills parameters, the user 
interface performs further task decompositions and displays 
them to the user.  This also identifies additional parameters 
that the user can fill.  The user has the option of filling each 
parameter or allowing the agent to fill it during scenario 
execution.  Ultimately, the output of the planning process is a 
partial schedule of goals for the foreground agent to achieve, 
with unspecified parameters left as choice points for the agent 
during execution. In the extreme, but atypical, case where the 
user selects values for all parameters in the schedule, the 
output is a scripted schedule similar to the background agents. 
However, the schedule includes a full goal hierarchy, which 
increases adaptivity and traceability in dynamic situations. 

Figure 2.  Multiple interpretations of HVI knowledge 
and behavior specifications. 
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7 POL agent execution 
 At run time, the execution agent follows the goals and 
actions dictated in each behavior schedule.  For background 
agents, this typically executes a schedule of low-level goals.  
However, even low-level goals include adaptive constraints, 
such as pedestrians yielding to moving vehicles.  These 
execute with high computational efficiency, because they do 
not involve any sophisticated sensing, understanding, or 
intelligent decision making.  Rather, they require only 
efficient primitive functions for activities like route planning 
and schedule estimation. Foreground agents usually include 
schedule elements with unspecified parameter values or goal 
decompositions. The execution agent uses its decision logic 
and long-term knowledge specification to make choices, with 
the choices being sensitive to the current state of the execution 
environment.  This allows foreground behavior that is not 
scripted, but is adaptive to the current situation.  The 
execution agent fills in any details necessary to execute the 
mission.  This type of adaptive, intelligent reasoning and 
situation understanding requires more computational 
resources than the simple schedules executed by background 
agents.  Thus, we expect a scenario to include on the order of 
dozens of foreground agents. 

 After execution, an explanation/debriefing interface can 
examine population behavior patterns and apply long-term 
knowledge to generate explanations for the parameters, goals, 
and situational elements that contributed to decisions and 
actions generated by the execution agent.  The interface uses 
the background knowledge base to reflect, after the fact, on 
the decisions that a foreground agent made during execution 
time [6]. This improves scenario creation and evaluation, by 
supporting traceability of the behavior to knowledge. 

8 Current status 
 The POL architecture continues development under 
several DOD-funded projects, together with internal research 
and development efforts.  We implemented the initial 
prototype under a DOD training program and DARPA 

Insight.  Figure 3 shows a demonstration simulation 
environment running the initial POL prototype 
implementation.  The prototype implemented background and 
foreground agents.  The background engine interpreted 
schedules, translating goals into primitive actions using 
functions for path planning and action sequencing.  It modeled 
several thousand agents per CPU core. The foreground engine 
used the Soar cognitive architecture [4] to implement situation 
understanding, hierarchical goal decomposition, and 
parameter-value selection at domain-specific choice points. 
We are extending this initial prototype through a collection of 
active projects, with specific recent focus on authoring. 

 Currently, users author the scenarios, with a user 
developing background and foreground schedules with 
population parameters used to generate some of the schedule 
goals, timings, and parameters.  The full capabilities for 
relationship management and interactive behavior planning 
are still in the design phase. We have evaluated the initial 
prototype on a set of use cases in a schoolhouse environment, 
demonstrating the ability to deploy large numbers of 
background agents, together with foreground agents that 
perform team-based insurgent activities.  Background and 
foreground agents blend in the simulation environment.  We 
have demonstrated that demographic parameters allow us to 
configure up to 320,000 background agents.  We have run 
example scenarios populated with 20,000 background agents 
per CPU core, plus small numbers of foreground agents that 
blend in. 

9 Related work 
The POL architecture we have presented addresses the unique 
collection of requirements and applications described at the 
beginning of this paper.  The design and implementation of 
the architecture has benefited from lessons learned from other 
research efforts that address portions of the POL problem. 

9.1 Crowd modeling 
 Crowd modeling portrays realistic movements for low-
fidelity, identical individuals in relatively small spaces [7].  
Typical crowd models implement thousands of individuals 
moving in areas up to the size of a football stadium. Academic 
models, for example, analyze the best way to design exits to 
quickly empty an auditorium. The individuals have concepts 
of personal space and other data that makes small-area 
movement realistic, but they are interchangeable in that they 
do not have individualized choices.  All agents exhibit 
essentially the same behavior with small variations, such as 
attempting to use different doors or different loitering areas.  
Thus, looking carefully at individuals in these crowds reveals 
they are merely walking around random points and not 
following any latent patterns. They do not possess reasons for 
their choices or actions, and they do not implement 
demographically based constraints and decision logic. 

Figure 3.  A sample pattern-of-life simulation.
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9.2 Social network modeling 
 Social network modeling describes groups of individuals 
that differ in their properties and relationships. These models 
represent relationships between individuals as connection 
graphs [8][9]. The networks are often randomized to create a 
particular overall graph structure. These models, may have 
many different individuals, but are often valid only in the 
aggregate. For example, such models in the academic world 
have yielded results about what mechanisms for making and 
breaking links are typical in the network as a whole. These 
models focus on social dynamics, but typically ignore POL 
dynamics related to the physical world. 

 Random graph generation implies a lack of realism when 
observed closely. As an example, in a real-world social 
network, advertisers have recently begun to value having 
people “like” their products on Facebook. This has led to 
unscrupulous providers creating fake individuals and selling 
their “likes.” However, random generation does not follow 
real patterns of life, so it is possible to detect these fake 
individuals – one product might be liked almost entirely by 
people in a single foreign city, and another might be liked by 
one person in each city, with no overlap. Both of these 
mistakes reflect a failure to model the POLs that should 
geographically cluster individuals with remote, second- and 
third-order similarities and interpersonal connections. 

9.3 Abstract population models 
 Abstract population models simulate large groups with 
low detail. The population may include a few powerful 
individuals, or no individuals and only groups. For example, 
one such simulation models political, military, and other kinds 
of power as stocks and flows [10]. Some abstract population 
models include goals and beliefs associated with each stock 
that direct the flows to achieve goals, but most models do not. 
Abstract population models in general focus on group 
relationships and influences, and they do not model individual 
behaviors that would fit into an overall pattern of life. 

10 Conclusions and future work 
 POL modeling differs from typical AI modeling in its 
focus on breadth and density of behavior, as well as the 
importance of agent behaviors organizing into appropriate 
high-level patterns.  POL requires solutions that emphasize 
efficiency in behavior authoring as well as execution, and that 
model a continuum that blends background and foreground 
behaviors. Our POL architecture design addresses these 
requirement and currently implements components 
sufficiently to demonstrate efficient generation of high-density 
background populations that represent varied cultural 
demographics and provide a suitable context for sophisticated 
foreground agents to blend into. 

 An important next step is automatic generation of POL 
based on interaction with standard representations of a 
population.  The vision is to ingest a geographical and 

statistical profile, available from open-source intelligence 
reports, and combine this with socio-cultural representations 
to generate background agents automatically.  Once achieved, 
whether for training or for planning, the system will ingest 
just-in-time information and support high-fidelity simulations 
of scenarios for direct relevance to ongoing missions. A 
second consideration is modeling communications that affect 
POL. Communications have significant impact on behavior.  
Locals flee when they hear police are coming.  Crowds form 
when they learn of a controversial rally through twitter. These 
drivers of POL deviations make a difference in practice, and 
we plan to implement authoring and run-time representations 
for these effects in the next iterations of our work. 
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