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Abstract - Validation of software models that emulate 
complex human reasoning has historically been informal, 
subjective, and difficult or impossible to scale to large 
numbers of models. This paper describes an approach to 
validation of intelligent behavior models (and semi-automated 
force, SAF, models more generally) that employs a formal 
knowledge representation (called a Behavior Envelope) to 
validate SAF behavior in both off-line and on-line modes of 
operation. The Goal Constraint System (GCS) employs 
constraint-based representations that enable requirement 
specification at different levels of abstraction and a penalty 
assessment approach that allows a subject matter expert to 
specify the relative importance of constraint violations. We 
describe the GCS language, interpreter, and several 
applications of the technology. 
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1 Intelligent behavior validation 
  Synthetic forces are an application of artificial 
intelligence that raise the quality of simulation-based Semi-
Automated Forces (SAFs) to the level where they realistically 
emulate human tactical reasoning [1]. Because these models 
see use in realistic training and experimentation applications, 
validating the quality of modeled intelligent behavior is a key 
concern. The essential question to be addressed is “Given the 
richness and complexity of human behavior, how can we tell 
if any specific behavior produced by a synthetic force or SAF 
model is acceptably realistic?” Validation is one form of 
behavior evaluation that is useful for multiple reasons and at a 
variety of different levels of detail. For example, evaluation 
techniques are relevant to software verification, assessment of 
scientific contributions, assessment of student and SAF 
performance, runtime monitoring and intervention, evaluation 
of behavior-driven scenarios, and experimental assessment of 
new technologies. For the purposes of this paper, we will 
focus on software validation. In later sections, we will discuss 
approaches to extending our validation techniques to other 
types of intelligent-systems evaluation. 

 Validating human-level model behaviors (as well as
actual human behaviors) is particularly challenging ([2] 
includes a thorough discussion of the challenges). Intelligent 
behavior is complex, and it is difficult to build automated 
validation tools that capture all the nuances of “good” and 
“bad” behavior. As a result, validation is often performed 
subjectively. Human subject-matter experts (SMEs) or 
training experts observe behavior and create assessments or 
scores based on their observations. Subjective validation 
allows the assessment of complex and nuanced behavior (to 
some extent), but it also has limitations: 

•Subjective validation is inconsistent across different 
evaluators. 

•Subjective validation is often inconsistent even when 
performed by a single evaluator. 

•Validation criteria (i.e., requirements on behavior) 
themselves are often subjective and often not specified in 
detailed, archival, or formal form. 

•Subjective validation is often qualitative or categorical, 
lacking nuanced assessment of individual decisions that led 
to a result.  

•Subjective validation requires the availability of one or more 
human evaluators, which increases opportunity costs of 
validation. 

•Depending on the complexity of the observed behaviors, 
validation may stress the cognitive capacity of the evaluator, 
especially for run-time validation. 

•Validation may require deliberation that prevents the 
evaluator from keeping pace with the execution of the 
behaviors. 

 The overarching issues is that it is difficult and 
expensive to define objective requirements that capture all the 
nuances of human-level behavior. These limitations argue for 
an automated validation solution that provides rapid, 
consistent, and accurate assessments, using objective 
validation criteria than can be archived, inspected, and 
adjusted by humans. The primary gap for automation is 
having an inexpensive way to create formal requirements 
specifications to validate from. 
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 We describe an automated behavior validation system 
called the Goal Constraint System (GCS). GCS works within 
a broader requirements-specification concept called Behavior 
Envelopes, being jointly researched and developed by Aptima 
and Soar Technology. Behavior Envelopes allow users to 
specify behavior validation criteria in the form of behavior 
constraints that hold within a particular behavior context. 
GCS comprises a formal representation language for Behavior 
Envelopes and a language for automatically scoring violations 
of constraints. It incorporates an implemented reasoner that 
infers the current behavior context for an entity, and monitors 
and scores observed behaviors for that context, either at run 
time or off line. We outline the need for formal behavior 
specification and the particular solution provided by the 
Behavior-Envelope concept. We then describe details of the 
GCS implementation and present several detailed examples of 
application of the GCS system, as well as higher-level 
descriptions of other GCS applications. 

2 Expected behavior specification 
 From one perspective, behavior validation  is the 
problem of measuring observed behavior against a formal 
characterization of expected behavior. There is a long 
tradition of formal behavior specification in computer science, 
particularly with respect to defining the requirements for the 
behavior of engineered software systems [3]. One of the 
primary advantages of a formal specification is that it requires 
unambiguous and objective descriptions of the desired 
behavior. This removes the elements of subjectivity, 
inconsistency, and ambiguity. Formal specification often 
provides the additional benefit that validation can be 
automated by computer software that is able to interpret the 
formal specification and match that specification to 
observable system behavior.  

 While these specification languages are formal, like 
computer programming languages, an additional advantage 
(usually) is that they provide a higher level of abstraction than 
a programming language does. This allows requirements 
builders to specify requirements for complex systems without 
having to duplicate all the work that would be required to 
build the system in the first place.  However, for standard 
specification languages, this higher level of abstraction can 
leave the specification non-executable. This, in turn, can make 
system validation difficult to automate. 

 Property-oriented specification languages [4] facilitate 
automated validation. A property-oriented specification 
asserts particular relationships between elements of a system’s 
data or behavior. A big advantage is that property-oriented 
specification does not need to be complete to be useful or to 
be automated. Automated software can monitor various 
assertions about properties and report any violations. 
Property-oriented specifications therefore have some appeal 
for application to the validation of intelligent behavior 
systems. However, there are two issues to be resolved in 

adopting a similar approach to validating complex intelligent 
behavior.  

 First, the context of a specification must be determined. 
In standard software engineering systems, assertions about 
behavior occur at the point in the code at which those 
assertions are applicable. This is feasible because, even for 
complex software, there are individual threads of execution 
that define the “location” of the execution logic at any point in 
time. In contrast, intelligent behavior involves much more 
loosely bound goals to be achieved, methods for achieving 
them, and processes for making sense of the world. In an 
intelligent system, all of these processes must interleave 
flexibly in ways that make it difficult to recognize a “state” 
for the system. (This behavioral flexibility explains in part 
why formalizations like state machines break down as 
behavior complexity increases.) We desire the ability to 
specify the context in which some property holds, including 
contexts that may not be entirely observable. 

 Second, intelligent behavior is rarely usefully classified 
as simply “correct” or “incorrect”. Intelligent behavior is 
varied and flexible, and competence for accomplishing goals 
occurs in varying degrees. Thus, we desire a specification 
language that supports validation scoring functions that are 
not simply binary. The automated specification system should 
be able to indicate the degree to which an observed behavior 
meets the specification, rather than simply reporting that it 
fails to meet the specification. 

3 Behavior envelopes 
 Aptima and Soar Technology have developed an 
approach to property-oriented specification languages that we 
term Behavior Envelopes. The approach builds and unifies 
work on scenario envelopes [5] and behavior bounding and 
variation [6][7]. A primary advantage of Behavior Envelopes 
is that they allow the specification of constraints to an 
arbitrary level of detail. As with property-oriented 
specifications for traditional software systems, this allows 
users to create inexpensive but useful behavior specifications, 
or to invest in more detailed specifications for particular 
intelligent behaviors. 

 Behavior Envelopes are a general concept to support a 
broad range of applications that all rely on the idea of a 
formal, declarative representation of behavior contexts and 
behavior constraints. For this paper, however, we focus on a 
particular implementation of Behavior Envelopes in GCS, 
targeted toward a smaller class of monitoring and validation 
applications (described below). A GCS Behavior Envelope 
consists of two primary components. The first component is a 
formal, relational representation of a situational context for an 
intelligent entity. The context can be considered a formula in 
predicate logic, composed of constituent predicates and 
propositions. The context may include observable features of 
the entity’s situation (such as geographic location), as well as 
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unobservable features describing the entity’s internal state 
(such as a particular goal that the entity is trying to achieve). 
The second component is a formally specified set of 
constraints that the entity behavior should meet in situations 
where the behavior context applies. Each constraint is also a 
formal, logical predicate, often relying on relational 
predicates that related multiple properties together. GCS 
provides the machinery for making each logical predicate 
operational for a particular simulation system. 

Figure 1. A Behavior Envelope consists of a Context and a set 
of Constraints. In this simple example, the Context specifies 
that the envelope only applies to entities who have a current 
position inside the Supersonic Region. The Constraints 
specify that any entities inside this region are considered to 
have acceptable speeds if the speed is above Mach 1.0, and 
unacceptable speeds if the speed is below Mach 1.0.

 In order for the representations of context and 
constraints to qualify as “formal”, a Behavior Envelope 
system must strictly define a set of domain-specific terms and 
predicates that compose to define each context and constraint. 
Thus, any particular instantiation of a Behavior Envelope 
system (such as GCS) must provide a well-defined language 
for specifying the conditions under which a particular 
envelope is relevant (Context conditions), as well as the 
conditions that must be met during the enforcement of a 
particular envelope (Constraints conditions).  In addition, to 
operationalize these representations, they must be connected 
(via a programming interface) to the system generating the 
behavior.  For example, a Behavior Envelope system that 
includes geographical regions for context must access a 
simulation interface that detects when entities are in particular 
geographical regions.  GCS thus provides a level of formality 

necessary to enable objective, automated validation. We 
provide below examples of some of the formal representations 
built into GCS. 

 As a simple example, consider a Behavior Envelope that 
specifies a speed constraint over a geographic area. This type 
of constraint is common, for example, in training ranges. In 
such a case, the envelope context would consist of relations 
that specify the entity’s position inside the controlled speed 
area. The envelope constraints would dictate the required 
speed limitations within this geographic area (See Figure 1). 

A slightly more complex example envelope might describe the 
behavior expectations for an aircraft to fly a “racetrack” 
(oval) pattern. The envelope context in this case might be a 
complex set of conditions that specify when it is appropriate 
for the aircraft to be flying a particular racetrack pattern. 
These conditions would include mission specifications, the 
aircraft’s geographic location, the position of the center of the 
racetrack point, the orientation expectations for the oval, and 
possibly some historical information about the entity (such as 
recent command-and-control messages). 

Although these examples are simple, the GCS language 
supports arbitrary levels of complexity, for both envelope 
contexts and constraints. Users can create fine-grained 
envelopes when detailed validation is necessary, but 
complexity can be traded off in areas that do not require such 
detail. GCS thus supports a “spiral” approach to requirements, 
starting simple and increasing complexity as resources allow. 

4 The Goal Constraint System 
 Thus, GCS provides a behavior validation capability 
(based on Behavior Envelopes) that enables user-specified 
validation of entity behavior at varying levels of detail. The 
GCS implementation consists of 1) the language that specifies 
Behavior Envelopes and 2) the executable system that 
interprets these envelops and uses them to monitor and 
validate observable intelligent behavior in a simulation. We 
describe each of these in this section. 

4.1 The GCS language 
 The GCS language instantiates a specific version of the 
Behavior Envelope concept introduced above. The language 
supports the declaration of individual entities (i.e., the 
behavior generators), variables that bind at validation time to 
any of a predefined set of entities, and individual envelopes 
that define constraints on the behaviors of these individual 
entities or groups of entities. In GCS, the envelope context is 
primarily defined by a goal (or subgoal) that an entity (or 
group of entities) is attempting to achieve (note that this is the 
approach used in GCS, but Behavior Envelopes generally 
support a much wider range of context definitions). GCS 
provides methods to infer when an entity has spawned a 
subgoal from a previously active goal, or transitioned from 
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achieving one goal to achieving a new goal. In contrast to 
alternative methods that assume agent goals are always 
explicit, GCS does not make that assumption. Thus, GCS can 
validate behavior generation methodologies that do not use 
explicit representations of goals, as well as those that do. This 
one of GCS’ primary strengths, because it separates the 
representation of goals in GCS from the representation of 
goals in the behavior system. For example, GCS goals can be 
specified by SMEs who have no knowledge of a particular 
behavior system’s implementation. 

 Each constraint set is a list of actions or goal transitions 
that the entity is expected to generate. A GCS Behavior 
Envelopes definition first declares the constants, variables, 
functional predicates, and goals relevant to the envelope. 
Then envelope constraint definitions specify relationships 
between series of functional predicates. GCS also elaborates 
the Behavior Envelope with a set of penalty functions. These 
penalty functions generate numeric scores when constraints 
are violated. Penalty values can be either “one shot”, or they 
can accrue over time when envelope constraints are violated.   

 GCS defines functional predicates from an easily 
extensible set of native primitives. A GCS file that defines a 
set of constraints includes five sections: constant-value 
definitions, entity-variable definitions, predicate definitions, 
event definitions, and Behavior Envelope definitions. The 
Behavior Envelope definitions include the goal context for 
each envelope, the set of constraints for that context, and the 
penalty function for scoring constraint violations. Table 1 
provides a snapshot of a portion of a GCS file describing 
envelopes for air combat behaviors. This snapshot does not 
include declarations or predicate definitions, but it gives two 
examples of Behavior Envelopes with constraints and penalty 
functions. One envelope’s context is the “fly_racetrack” goal. 
This goal includes a subgoal constraint, indicating the 
conditions under which GCS infers an entity to be pursuing 
the subgoal “fly_inbound_racetrack_leg”. 

 Constants provide symbolic references to constraint 
parameters that may take different values for different entities 
and scenarios.  For example, a %radar_range parameter may 
specify the typical radar range of a particular aircraft, and the 

user could change this constant to validate a set of behaviors 
over a range of different aircraft. As another example, the 
%cap_orientation parameter can be changed when validating 
the behavior of different entities with different specific 
combat air patrol (CAP) missions. 

 Entities define the different types of objects over which 
GCS can specify constraints.  Usually there is at least one 
entity variable representing the entity whose behavior is being 
validated.  However, there can also be other “behaving” 
entities that interact with the primary entity of interest.  
Additionally, there can be “non-behaving” entities, such a 
geographical features (e.g., waypoints or boundaries) and 
physical systems (e.g., radar systems or weapons systems).  
Each type of entity has associated properties that can be 
included in envelope constraints. Another strength of GCS is 
that it can validate the aggregate behaviors of groups of 
entities or even entire scenarios, as well as individual-level 
behaviors. 

 Predicates define relations of interest that combine to 
build envelope constraints.  Predicates are the primary form 
taken by individual constraints.  A predicate is a relation that 
can either be met or unmet in a particular situation, and 
predicates can be constructed from other predicates, from 
events, and from primitive relationships (such as equalities 
and inequalities).  An example simple predicate is 
“entity_is_airborne”, which is met for an entity if the entity’s 
altitude above ground level is greater than zero. A more 
complex example is “has_racetrack_inbound_heading”, which 
is met if the reciprocal of the entity’s heading is within some 
parameterized range around the mission-specified CAP 
orientation assigned to the entity (See Figure 2). 

 Events are similar to predicates, in that they also define 
relations to be included in envelope constraints.  The 
difference is that the GCS Interpreter (described below) 
continuously checks whether predicates match.  In contrast, 
for events, GCS only checks for transitions between being 
“unmet” and being “met”.  Once an event has been “met”, the 
interpreter does not continue monitoring that event.  An 
example event is “bandit_is_destroyed”. 

@fly_racetrack(=waypoint):
 **start -> @turn_to_inbound_racetrack_leg(=waypoint) within %time_delta minutes || inf 
 **start -> @turn_to_outbound_racetrack_leg(=waypoint) within %time_delta minutes || inf 

@turn_to_inbound_racetrack_leg(=waypoint): 
 **start -> @fly_inbound_racetrack_leg(=waypoint) within %max_turning_time || inf 

@fly_inbound_racetrack_leg(=waypoint): 
 ^holds($has_racetrack_inbound_heading(=self)) || %medium_continuous_penalty per minute 
 ^holds($at_cap_altitude(=self)) || %medium_continuous_penalty per minute 
 ^holds($at_inbound_cap_speed(=self)) || %medium_continuous_penalty per minute 
 $at_racetrack_distance(=self, =waypoint) -> @turn_to_outbound_racetrack_leg(=waypoint) || 
%large_one_time_penalty 

@turn_to_outbound_racetrack_leg(=waypoint): 
 **start -> @fly_outbound_racetrack_leg(=waypoint) within %max_turning_time || inf 

Table 1. A portion of an example GCS file for tactical air behaviors. 
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 Goals define the contexts of the Behavior Envelopes, as 
well as the conditions under which GCS should transition to 
monitoring a new envelope (either via activation of a subgoal 
or transition from one goal to a subsequent goal).  The current 
set of “active envelopes” (isomorphic to the current set of 
“active goals”) defines the constraints that should be 
monitored for a particular entity. An envelope is active as 
long as GCS assumes that the entity is still pursuing the goal 
that defines the context for that envelope.   

Figure 2. The "has_racetrack_inbound_heading" predicate is 
true if the entity's current heading lies within parameterized 
limits for approaching the Cap Point. 

 Each envelope constraint conjoins predicates and events, 
together with a penalty formula to use when the constraint is 
violated.  Envelopes also include special “goal transition 
constraints”.  That is, an envelope’s constraints can specify 
the conditions under which the entity “ought to” transition to a 
new goal. The GCS interpreter performs a search (using the 
penalty functions as heuristics) to infer whether the entity has 
started pursuing the behaviors associated with the new goal.  
The interpreter invokes the goal-transition constraint’s penalty 
formula if the constraints indicate that a goal transition should 
have occurred, but the entity’s behavior does not appear to be 
consistent with a transition to the new goal.  Penalty formulas 
can have varied forms.  Two primary forms are “one-time” 
penalties and “continuous” penalties.  One-time penalties 
incur on the initial violation of a constraint.  Continuous 
penalties accumulate over the duration of a constraint 
violation.  For continuous penalties, it is also possible to 
specify a time period for the penalty accumulation (such as 
“per second”, or “per minute”).  It is also possible to specify a 
penalty value of “inf”, meaning an infinite penalty, to 
represent constraints that are always expected to hold. 

4.2 The GCS interpreter 
 The GCS Interpreter matches envelope contexts (goals) 
and constraints (specified in the constraint language) to 
streams of behavior data. The interpreter can run 
simultaneously with a dynamic behavior stream (e.g., during 

run time of a scenario) or offline on a collected data log file.  
The first job of the GCS interpreter is to infer, at any given 
time point, which goal(s) an entity is pursuing, indicating 
which Behavior Envelopes should currently be in force. The 
interpreter’s second job is to monitor which constraints are 
satisfied or violated for the set of active Behavior Envelopes.  
Finally, the interpreter uses the penalty scoring functions to 
compute penalty values for each violated constraint. Using 
heuristic search, the penalty values also allow the interpreter 
to infer whether the entity has made any changes in the goals 
it is pursuing.  Ultimately, the interpreter generates a series of 
penalty values for each set of envelope constraints, reflecting 
how well the entity is meeting the behavior requirements for 
each active goal at each point in time.  These penalty values 
aggregate into general validation measures of the behavior 
fidelity the entity generates for each Behavior Envelope. 

 The first implementation of GCS modeled entity 
behavior as a series of unknown goals with associated 
constraints.  This version assumed that an entity could 
potentially transition from a current goal to any other goal, in 
response to some event.  This approach naturally produced 
quite a large search space of potential goal sequences, which 
the interpreter navigated using the A* search algorithm.  The 
interpreter used the GCS constraints and penalties associated 
with each envelope to compute a “best fit” score of the 
entity’s current behaviors to each particular set of envelope 
constraints.  This allowed the interpreter to infer the goal 
sequence pursued by the entity during the course of a 
scenario.  This approach was effective in analyzing off-line 
logs of behavior data.  However, it was not efficient enough to 
produce timely validation of real-time behavior data streams.   

 For run-time validation, we refactored the GCS 
Interpreter, leaving the GCS language intact. Version 2 of the 
interpreter models entity goal sequences as a hybrid Hidden 
Markov Model / Finite State Machine.  The interpreter tracks, 
in real time, the lowest possible penalty that could result in 
each possible goal being an active goal.  Transition penalties 
between goals are recalculated each tick based on the current 
state of the simulation.  Because a graph structure indicates 
the possible goal transitions, the GCS interpreter can 
efficiently track entity progress through potential goal 
sequences.  This allows the solver to infer goals and compute 
penalties at low computational expense, allowing validation of 
both off-line data logs or run-time data streams. This 
approach does have the limitation that it cannot recognize 
goal transitions not specified in advance but, for synthetic 
force applications, such a limitation is typically acceptable. 

5 Applications 
The automated behavior monitoring, validation, and 

scoring that GCS implements can be used in a number of 
different applications. This section introduces potential 
applications and describes in more detail several examples of 
actual implementations. 
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5.1 Run-time SAF behavior corrections 
 If a constructive simulation scenario exhibits a run-time 
problem, such as an unexpected and incorrect SAF behavior, 
then an obvious remediation step would be to attempt to 
remove or reduce the violation while the scenario is still 
running. One way to use GCS would be to signal a human 
operator to respond to such a behavior violation. 
Alternatively, GCS could simply record violations in a log. 
We have been exploring a third option, in which violations 
inform adaptive technology that can attempt to “repair” the 
SAF behavior problem during execution (although this 
application can also do signaling and logging).  

 We are using violations detected by GCS to inform the 
Training Executive Agent (TXA), an adaptive operator-aiding 
technology [8]. The TXA is integrated with a distributed 
simulation, and it exploits the behavior representations of the 
simulator to modify the “native” behavior of its SAFs. The 
goal of the TXA is to reduce operator workload by 
automating the monitoring and management of a variety of 
interventions during the execution of a training scenario. GCS 
implements a major part of the monitoring and validation 
capability. As an example, one possible training objective is 
for trainees to intercept bandits moving at supersonic speeds. 
There is a geographic zone in which the bandit entities are 
expected to exhibit those supersonic speeds in order to 
support this training goal. Under “normal” conditions, a 
human operator might need to pay attention to aircraft 
entering this area and increase the speed if needed. The TXA 
reduces operator workload by automating these monitoring 
and management functions. GCS can be used to monitor entity 
behaviors and detect if any entity speeds are in violation of 
the expected speeds for the entity’s geographical region and 
goals. If a violation is found, GCS uses its penalty functions 
to score the severity of the violation. This information is then 
passed to the TXA, which adjusts the entity’s behavior in 
order to bring the behavior in line with the expected 
constraints.  

 In the longer term, the ability of GCS to assess penalties 
in real time, together with TXA’s ability to permute SAF 
behavior, could be used in a more open-ended way 
(“emergent repair”). However, thus far we have used GCS 
only to identify violations of specific types and then trigger 
pre-defined TXA repairs. For example, an observed speed 
violation triggers a TXA directive that matches the prescribed 
SAF speed to range requirements at the entity’s current 
location. The advantage of using GCS in this application is 
that the TXA can use the penalty score (and accumulating 
scores) to determine if/when to modify behavior, rather than 
simply recording and responding to a constraint violation. For 
example, for an aircraft briefly transiting thru the supersonic 
area, GCS can apply a different penalty function (based on 
context) than a bandit that is intended to engage the trainees. 

5.2 Validating training scenario goals 
 SAFs may perform actions that are appropriate from a 
tactical perspective, but that may not match the specific 
required actions for a particular training context. For example, 
imagine a training goal intended to provide a trainee with the 
experience of two successive air-to-air intercepts. In this 
situation, the trailing bandits need to stay far enough away 
from the lead group to not interfere with the initial intercept 
but close enough that the trainee has to engage them 
immediately on successful prosecution of the first group. This 
is the instructor’s intent for this scenario. 

 On the TXA effort, we are using the GCS to provide 
objective assessment of the “presentation quality” (from the 
perspective of instructor’s intent) of a scenario as it evolves 
under a range of experimental conditions [9]. If all the various 
interactions in support of training goals execute as desired, 
then the scenario can be scored as having high quality. 
Various undesired interactions can impact the overall quality 
of the training scenario to different degrees. Subject-matter 
experts defined scoring criteria for each experimental 
scenario, and then we encoded the constraints and scoring 
functions into GCS. This allowed us to run a series of 
experimental variations to a training scenario, and to compute 
the presentation quality for each experimental condition in an 
automated and objective fashion. 

5.3 Verification and validation of SAFS 
 If a SAF behavior results in some kind of (tactical or 
instructional) constraint violation, then there are additional 
potential responses, besides attempting to repair or adapt the 
current scenario. When GCS detects a poor behavior, this 
could be interpreted as a signal for repairing or refining the 
underlying behavior representation for future use (and thus 
eliminating the need for run-time repair in the future). We 
have investigated the potential for behavior refinement from 
several different perspectives. Most importantly, we have 
developed a test harness that enables systematic variation of 
parameters within a SAF behavior representation. The test 
harness is able to replay a given scenario with specific 
variations and combinations of behavior parameters. The test 
harness uses GCS to validate, score, and summarize the 
resulting behaviors. The results of this analysis indicate the 
range of “presentation qualities” that a SAF behavior 
definition can produce, as well as a sensitivity analysis of the 
behavior definition to various parameter settings. 

 Systematic variation of parameters helps modelers, 
operators, and instructors develop an understanding of the 
“topology” of a behavior model. Although such topology 
analysis has not seen significant application, the testbed 
investigations with GCS demonstrate that this type of analysis 
is feasible and worthwhile, especially for generalized 
behaviors. Using this approach, we foresee a much larger 
future role for GCS in facilitating behavior verification and 
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validation. Systematic variation using GCS may be especially 
useful for learning systems that attempt to synthesize behavior 
representations from observation data [10]. 

5.4 Additional applications of GCS 
 There are additional potential applications of GCS that 
we have not yet implemented or explored significantly. For 
example, the search-based inference engine in the GCS 
interpreter can also be viewed as a form of plan recognizer. 
This type of plan recognition can be used to infer the intent of 
constructive force models without having access to the 
models’ internal representations (as above), or also to 
generate explanations of observed behaviors when we do have 
some knowledge of a model’s internal representations. The 
use of GCS to support the TXA experiments demonstrates the 
ability to go beyond validation of individual entity behaviors 
to validating aggregate behaviors at the scenario level. 
Additionally, GCS could assist in the creation of suitable 
scenarios or the run-time adjustment of scenarios (extending 
the functions of the TXA). 

6  Summary and conclusions 
 We have introduced the problem of generating useful, 
objective, and automated validation of complex intelligent 
behaviors in modeling and simulation. The fluidity and 
complexity of human-level behavior requires validation 
solutions that extend techniques for standard software 
systems. We have also described and illustrated one 
implemented solution to this problem. The Goal Constraint 
System relies on the concept of Behavior Envelopes, which is 
itself an adaptation of property-oriented specification to the 
complexities of intelligent behavior systems.  The GCS 
representation additionally extends the Behavior Envelope 
concept to accommodate unobservable features (entity goals) 
and quantitative scoring of constraint violations. The GCS 
interpreter exploits its penalty scoring functions to assist in 
inference about entity goals, as well as to produce quantitative 
scores of individual and aggregate entity behaviors. We have 
identified a number of application areas in which such 
automated and objective validation is useful.
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