
Automated Monitoring and Validation of Synthetic
Intelligent Behavior

Randolph M. Jones1, Ben Bachelor1, Webb Stacy2, John Colonna-Romano2, and Robert E. Wray1

1Soar Technology, 3600 Green Court, Suite 600, Ann Arbor, MI 48105, USA
2Aptima, 12 Gill Street, Suite 1400, Woburn, MA 01801, USA

rjones@soartech.com, ben.bachelor@soartech.com, wstacy@aptima.com, jcromano@aptima.com,
wray@soartech.com

Abstract - Validation of software models that emulate
complex human reasoning has historically been informal,
subjective, and difficult or impossible to scale to large
numbers of models. This paper describes an approach to
validation of intelligent behavior models (and semi-automated
force, SAF, models more generally) that employs a formal
knowledge representation (called a Behavior Envelope) to
validate SAF behavior in both off-line and on-line modes of
operation. The Goal Constraint System (GCS) employs
constraint-based representations that enable requirement
specification at different levels of abstraction and a penalty
assessment approach that allows a subject matter expert to
specify the relative importance of constraint violations. We
describe the GCS language, interpreter, and several
applications of the technology.

Keywords: Constraint-based knowledge representation,
software verification and validation, intelligent behavior
modeling, synthetic intelligent forces

1 Intelligent behavior validation
 Synthetic forces are an application of artificial
intelligence that raise the quality of simulation-based Semi-
Automated Forces (SAFs) to the level where they realistically
emulate human tactical reasoning [1]. Because these models
see use in realistic training and experimentation applications,
validating the quality of modeled intelligent behavior is a key
concern. The essential question to be addressed is “Given the
richness and complexity of human behavior, how can we tell
if any specific behavior produced by a synthetic force or SAF
model is acceptably realistic?” Validation is one form of
behavior evaluation that is useful for multiple reasons and at a
variety of different levels of detail. For example, evaluation
techniques are relevant to software verification, assessment of
scientific contributions, assessment of student and SAF
performance, runtime monitoring and intervention, evaluation
of behavior-driven scenarios, and experimental assessment of
new technologies. For the purposes of this paper, we will
focus on software validation. In later sections, we will discuss
approaches to extending our validation techniques to other
types of intelligent-systems evaluation.

 Validating human-level model behaviors (as well as
actual human behaviors) is particularly challenging ([2]
includes a thorough discussion of the challenges). Intelligent
behavior is complex, and it is difficult to build automated
validation tools that capture all the nuances of “good” and
“bad” behavior. As a result, validation is often performed
subjectively. Human subject-matter experts (SMEs) or
training experts observe behavior and create assessments or
scores based on their observations. Subjective validation
allows the assessment of complex and nuanced behavior (to
some extent), but it also has limitations:

•Subjective validation is inconsistent across different
evaluators.

•Subjective validation is often inconsistent even when
performed by a single evaluator.

•Validation criteria (i.e., requirements on behavior)
themselves are often subjective and often not specified in
detailed, archival, or formal form.

•Subjective validation is often qualitative or categorical,
lacking nuanced assessment of individual decisions that led
to a result.

•Subjective validation requires the availability of one or more
human evaluators, which increases opportunity costs of
validation.

•Depending on the complexity of the observed behaviors,
validation may stress the cognitive capacity of the evaluator,
especially for run-time validation.

•Validation may require deliberation that prevents the
evaluator from keeping pace with the execution of the
behaviors.

 The overarching issues is that it is difficult and
expensive to define objective requirements that capture all the
nuances of human-level behavior. These limitations argue for
an automated validation solution that provides rapid,
consistent, and accurate assessments, using objective
validation criteria than can be archived, inspected, and
adjusted by humans. The primary gap for automation is
having an inexpensive way to create formal requirements
specifications to validate from.

252 Int'l Conf. Artificial Intelligence | ICAI'15 |

 We describe an automated behavior validation system
called the Goal Constraint System (GCS). GCS works within
a broader requirements-specification concept called Behavior
Envelopes, being jointly researched and developed by Aptima
and Soar Technology. Behavior Envelopes allow users to
specify behavior validation criteria in the form of behavior
constraints that hold within a particular behavior context.
GCS comprises a formal representation language for Behavior
Envelopes and a language for automatically scoring violations
of constraints. It incorporates an implemented reasoner that
infers the current behavior context for an entity, and monitors
and scores observed behaviors for that context, either at run
time or off line. We outline the need for formal behavior
specification and the particular solution provided by the
Behavior-Envelope concept. We then describe details of the
GCS implementation and present several detailed examples of
application of the GCS system, as well as higher-level
descriptions of other GCS applications.

2 Expected behavior specification
 From one perspective, behavior validation is the
problem of measuring observed behavior against a formal
characterization of expected behavior. There is a long
tradition of formal behavior specification in computer science,
particularly with respect to defining the requirements for the
behavior of engineered software systems [3]. One of the
primary advantages of a formal specification is that it requires
unambiguous and objective descriptions of the desired
behavior. This removes the elements of subjectivity,
inconsistency, and ambiguity. Formal specification often
provides the additional benefit that validation can be
automated by computer software that is able to interpret the
formal specification and match that specification to
observable system behavior.

 While these specification languages are formal, like
computer programming languages, an additional advantage
(usually) is that they provide a higher level of abstraction than
a programming language does. This allows requirements
builders to specify requirements for complex systems without
having to duplicate all the work that would be required to
build the system in the first place. However, for standard
specification languages, this higher level of abstraction can
leave the specification non-executable. This, in turn, can make
system validation difficult to automate.

 Property-oriented specification languages [4] facilitate
automated validation. A property-oriented specification
asserts particular relationships between elements of a system’s
data or behavior. A big advantage is that property-oriented
specification does not need to be complete to be useful or to
be automated. Automated software can monitor various
assertions about properties and report any violations.
Property-oriented specifications therefore have some appeal
for application to the validation of intelligent behavior
systems. However, there are two issues to be resolved in

adopting a similar approach to validating complex intelligent
behavior.

 First, the context of a specification must be determined.
In standard software engineering systems, assertions about
behavior occur at the point in the code at which those
assertions are applicable. This is feasible because, even for
complex software, there are individual threads of execution
that define the “location” of the execution logic at any point in
time. In contrast, intelligent behavior involves much more
loosely bound goals to be achieved, methods for achieving
them, and processes for making sense of the world. In an
intelligent system, all of these processes must interleave
flexibly in ways that make it difficult to recognize a “state”
for the system. (This behavioral flexibility explains in part
why formalizations like state machines break down as
behavior complexity increases.) We desire the ability to
specify the context in which some property holds, including
contexts that may not be entirely observable.

 Second, intelligent behavior is rarely usefully classified
as simply “correct” or “incorrect”. Intelligent behavior is
varied and flexible, and competence for accomplishing goals
occurs in varying degrees. Thus, we desire a specification
language that supports validation scoring functions that are
not simply binary. The automated specification system should
be able to indicate the degree to which an observed behavior
meets the specification, rather than simply reporting that it
fails to meet the specification.

3 Behavior envelopes
 Aptima and Soar Technology have developed an
approach to property-oriented specification languages that we
term Behavior Envelopes. The approach builds and unifies
work on scenario envelopes [5] and behavior bounding and
variation [6][7]. A primary advantage of Behavior Envelopes
is that they allow the specification of constraints to an
arbitrary level of detail. As with property-oriented
specifications for traditional software systems, this allows
users to create inexpensive but useful behavior specifications,
or to invest in more detailed specifications for particular
intelligent behaviors.

 Behavior Envelopes are a general concept to support a
broad range of applications that all rely on the idea of a
formal, declarative representation of behavior contexts and
behavior constraints. For this paper, however, we focus on a
particular implementation of Behavior Envelopes in GCS,
targeted toward a smaller class of monitoring and validation
applications (described below). A GCS Behavior Envelope
consists of two primary components. The first component is a
formal, relational representation of a situational context for an
intelligent entity. The context can be considered a formula in
predicate logic, composed of constituent predicates and
propositions. The context may include observable features of
the entity’s situation (such as geographic location), as well as

Int'l Conf. Artificial Intelligence | ICAI'15 | 253

unobservable features describing the entity’s internal state
(such as a particular goal that the entity is trying to achieve).
The second component is a formally specified set of
constraints that the entity behavior should meet in situations
where the behavior context applies. Each constraint is also a
formal, logical predicate, often relying on relational
predicates that related multiple properties together. GCS
provides the machinery for making each logical predicate
operational for a particular simulation system.

Figure 1. A Behavior Envelope consists of a Context and a set
of Constraints. In this simple example, the Context specifies
that the envelope only applies to entities who have a current
position inside the Supersonic Region. The Constraints
specify that any entities inside this region are considered to
have acceptable speeds if the speed is above Mach 1.0, and
unacceptable speeds if the speed is below Mach 1.0.

 In order for the representations of context and
constraints to qualify as “formal”, a Behavior Envelope
system must strictly define a set of domain-specific terms and
predicates that compose to define each context and constraint.
Thus, any particular instantiation of a Behavior Envelope
system (such as GCS) must provide a well-defined language
for specifying the conditions under which a particular
envelope is relevant (Context conditions), as well as the
conditions that must be met during the enforcement of a
particular envelope (Constraints conditions). In addition, to
operationalize these representations, they must be connected
(via a programming interface) to the system generating the
behavior. For example, a Behavior Envelope system that
includes geographical regions for context must access a
simulation interface that detects when entities are in particular
geographical regions. GCS thus provides a level of formality

necessary to enable objective, automated validation. We
provide below examples of some of the formal representations
built into GCS.

 As a simple example, consider a Behavior Envelope that
specifies a speed constraint over a geographic area. This type
of constraint is common, for example, in training ranges. In
such a case, the envelope context would consist of relations
that specify the entity’s position inside the controlled speed
area. The envelope constraints would dictate the required
speed limitations within this geographic area (See Figure 1).

A slightly more complex example envelope might describe the
behavior expectations for an aircraft to fly a “racetrack”
(oval) pattern. The envelope context in this case might be a
complex set of conditions that specify when it is appropriate
for the aircraft to be flying a particular racetrack pattern.
These conditions would include mission specifications, the
aircraft’s geographic location, the position of the center of the
racetrack point, the orientation expectations for the oval, and
possibly some historical information about the entity (such as
recent command-and-control messages).

Although these examples are simple, the GCS language
supports arbitrary levels of complexity, for both envelope
contexts and constraints. Users can create fine-grained
envelopes when detailed validation is necessary, but
complexity can be traded off in areas that do not require such
detail. GCS thus supports a “spiral” approach to requirements,
starting simple and increasing complexity as resources allow.

4 The Goal Constraint System
 Thus, GCS provides a behavior validation capability
(based on Behavior Envelopes) that enables user-specified
validation of entity behavior at varying levels of detail. The
GCS implementation consists of 1) the language that specifies
Behavior Envelopes and 2) the executable system that
interprets these envelops and uses them to monitor and
validate observable intelligent behavior in a simulation. We
describe each of these in this section.

4.1 The GCS language
 The GCS language instantiates a specific version of the
Behavior Envelope concept introduced above. The language
supports the declaration of individual entities (i.e., the
behavior generators), variables that bind at validation time to
any of a predefined set of entities, and individual envelopes
that define constraints on the behaviors of these individual
entities or groups of entities. In GCS, the envelope context is
primarily defined by a goal (or subgoal) that an entity (or
group of entities) is attempting to achieve (note that this is the
approach used in GCS, but Behavior Envelopes generally
support a much wider range of context definitions). GCS
provides methods to infer when an entity has spawned a
subgoal from a previously active goal, or transitioned from

254 Int'l Conf. Artificial Intelligence | ICAI'15 |

achieving one goal to achieving a new goal. In contrast to
alternative methods that assume agent goals are always
explicit, GCS does not make that assumption. Thus, GCS can
validate behavior generation methodologies that do not use
explicit representations of goals, as well as those that do. This
one of GCS’ primary strengths, because it separates the
representation of goals in GCS from the representation of
goals in the behavior system. For example, GCS goals can be
specified by SMEs who have no knowledge of a particular
behavior system’s implementation.

 Each constraint set is a list of actions or goal transitions
that the entity is expected to generate. A GCS Behavior
Envelopes definition first declares the constants, variables,
functional predicates, and goals relevant to the envelope.
Then envelope constraint definitions specify relationships
between series of functional predicates. GCS also elaborates
the Behavior Envelope with a set of penalty functions. These
penalty functions generate numeric scores when constraints
are violated. Penalty values can be either “one shot”, or they
can accrue over time when envelope constraints are violated.

 GCS defines functional predicates from an easily
extensible set of native primitives. A GCS file that defines a
set of constraints includes five sections: constant-value
definitions, entity-variable definitions, predicate definitions,
event definitions, and Behavior Envelope definitions. The
Behavior Envelope definitions include the goal context for
each envelope, the set of constraints for that context, and the
penalty function for scoring constraint violations. Table 1
provides a snapshot of a portion of a GCS file describing
envelopes for air combat behaviors. This snapshot does not
include declarations or predicate definitions, but it gives two
examples of Behavior Envelopes with constraints and penalty
functions. One envelope’s context is the “fly_racetrack” goal.
This goal includes a subgoal constraint, indicating the
conditions under which GCS infers an entity to be pursuing
the subgoal “fly_inbound_racetrack_leg”.

 Constants provide symbolic references to constraint
parameters that may take different values for different entities
and scenarios. For example, a %radar_range parameter may
specify the typical radar range of a particular aircraft, and the

user could change this constant to validate a set of behaviors
over a range of different aircraft. As another example, the
%cap_orientation parameter can be changed when validating
the behavior of different entities with different specific
combat air patrol (CAP) missions.

 Entities define the different types of objects over which
GCS can specify constraints. Usually there is at least one
entity variable representing the entity whose behavior is being
validated. However, there can also be other “behaving”
entities that interact with the primary entity of interest.
Additionally, there can be “non-behaving” entities, such a
geographical features (e.g., waypoints or boundaries) and
physical systems (e.g., radar systems or weapons systems).
Each type of entity has associated properties that can be
included in envelope constraints. Another strength of GCS is
that it can validate the aggregate behaviors of groups of
entities or even entire scenarios, as well as individual-level
behaviors.

 Predicates define relations of interest that combine to
build envelope constraints. Predicates are the primary form
taken by individual constraints. A predicate is a relation that
can either be met or unmet in a particular situation, and
predicates can be constructed from other predicates, from
events, and from primitive relationships (such as equalities
and inequalities). An example simple predicate is
“entity_is_airborne”, which is met for an entity if the entity’s
altitude above ground level is greater than zero. A more
complex example is “has_racetrack_inbound_heading”, which
is met if the reciprocal of the entity’s heading is within some
parameterized range around the mission-specified CAP
orientation assigned to the entity (See Figure 2).

 Events are similar to predicates, in that they also define
relations to be included in envelope constraints. The
difference is that the GCS Interpreter (described below)
continuously checks whether predicates match. In contrast,
for events, GCS only checks for transitions between being
“unmet” and being “met”. Once an event has been “met”, the
interpreter does not continue monitoring that event. An
example event is “bandit_is_destroyed”.

@fly_racetrack(=waypoint):
 **start -> @turn_to_inbound_racetrack_leg(=waypoint) within %time_delta minutes || inf
 **start -> @turn_to_outbound_racetrack_leg(=waypoint) within %time_delta minutes || inf

@turn_to_inbound_racetrack_leg(=waypoint):
 **start -> @fly_inbound_racetrack_leg(=waypoint) within %max_turning_time || inf

@fly_inbound_racetrack_leg(=waypoint):
 ^holds($has_racetrack_inbound_heading(=self)) || %medium_continuous_penalty per minute
 ^holds($at_cap_altitude(=self)) || %medium_continuous_penalty per minute
 ^holds($at_inbound_cap_speed(=self)) || %medium_continuous_penalty per minute
 $at_racetrack_distance(=self, =waypoint) -> @turn_to_outbound_racetrack_leg(=waypoint) ||
%large_one_time_penalty

@turn_to_outbound_racetrack_leg(=waypoint):
 **start -> @fly_outbound_racetrack_leg(=waypoint) within %max_turning_time || inf

Table 1. A portion of an example GCS file for tactical air behaviors.

Int'l Conf. Artificial Intelligence | ICAI'15 | 255

 Goals define the contexts of the Behavior Envelopes, as
well as the conditions under which GCS should transition to
monitoring a new envelope (either via activation of a subgoal
or transition from one goal to a subsequent goal). The current
set of “active envelopes” (isomorphic to the current set of
“active goals”) defines the constraints that should be
monitored for a particular entity. An envelope is active as
long as GCS assumes that the entity is still pursuing the goal
that defines the context for that envelope.

Figure 2. The "has_racetrack_inbound_heading" predicate is
true if the entity's current heading lies within parameterized
limits for approaching the Cap Point.

 Each envelope constraint conjoins predicates and events,
together with a penalty formula to use when the constraint is
violated. Envelopes also include special “goal transition
constraints”. That is, an envelope’s constraints can specify
the conditions under which the entity “ought to” transition to a
new goal. The GCS interpreter performs a search (using the
penalty functions as heuristics) to infer whether the entity has
started pursuing the behaviors associated with the new goal.
The interpreter invokes the goal-transition constraint’s penalty
formula if the constraints indicate that a goal transition should
have occurred, but the entity’s behavior does not appear to be
consistent with a transition to the new goal. Penalty formulas
can have varied forms. Two primary forms are “one-time”
penalties and “continuous” penalties. One-time penalties
incur on the initial violation of a constraint. Continuous
penalties accumulate over the duration of a constraint
violation. For continuous penalties, it is also possible to
specify a time period for the penalty accumulation (such as
“per second”, or “per minute”). It is also possible to specify a
penalty value of “inf”, meaning an infinite penalty, to
represent constraints that are always expected to hold.

4.2 The GCS interpreter
 The GCS Interpreter matches envelope contexts (goals)
and constraints (specified in the constraint language) to
streams of behavior data. The interpreter can run
simultaneously with a dynamic behavior stream (e.g., during

run time of a scenario) or offline on a collected data log file.
The first job of the GCS interpreter is to infer, at any given
time point, which goal(s) an entity is pursuing, indicating
which Behavior Envelopes should currently be in force. The
interpreter’s second job is to monitor which constraints are
satisfied or violated for the set of active Behavior Envelopes.
Finally, the interpreter uses the penalty scoring functions to
compute penalty values for each violated constraint. Using
heuristic search, the penalty values also allow the interpreter
to infer whether the entity has made any changes in the goals
it is pursuing. Ultimately, the interpreter generates a series of
penalty values for each set of envelope constraints, reflecting
how well the entity is meeting the behavior requirements for
each active goal at each point in time. These penalty values
aggregate into general validation measures of the behavior
fidelity the entity generates for each Behavior Envelope.

 The first implementation of GCS modeled entity
behavior as a series of unknown goals with associated
constraints. This version assumed that an entity could
potentially transition from a current goal to any other goal, in
response to some event. This approach naturally produced
quite a large search space of potential goal sequences, which
the interpreter navigated using the A* search algorithm. The
interpreter used the GCS constraints and penalties associated
with each envelope to compute a “best fit” score of the
entity’s current behaviors to each particular set of envelope
constraints. This allowed the interpreter to infer the goal
sequence pursued by the entity during the course of a
scenario. This approach was effective in analyzing off-line
logs of behavior data. However, it was not efficient enough to
produce timely validation of real-time behavior data streams.

 For run-time validation, we refactored the GCS
Interpreter, leaving the GCS language intact. Version 2 of the
interpreter models entity goal sequences as a hybrid Hidden
Markov Model / Finite State Machine. The interpreter tracks,
in real time, the lowest possible penalty that could result in
each possible goal being an active goal. Transition penalties
between goals are recalculated each tick based on the current
state of the simulation. Because a graph structure indicates
the possible goal transitions, the GCS interpreter can
efficiently track entity progress through potential goal
sequences. This allows the solver to infer goals and compute
penalties at low computational expense, allowing validation of
both off-line data logs or run-time data streams. This
approach does have the limitation that it cannot recognize
goal transitions not specified in advance but, for synthetic
force applications, such a limitation is typically acceptable.

5 Applications
The automated behavior monitoring, validation, and

scoring that GCS implements can be used in a number of
different applications. This section introduces potential
applications and describes in more detail several examples of
actual implementations.

256 Int'l Conf. Artificial Intelligence | ICAI'15 |

5.1 Run-time SAF behavior corrections
 If a constructive simulation scenario exhibits a run-time
problem, such as an unexpected and incorrect SAF behavior,
then an obvious remediation step would be to attempt to
remove or reduce the violation while the scenario is still
running. One way to use GCS would be to signal a human
operator to respond to such a behavior violation.
Alternatively, GCS could simply record violations in a log.
We have been exploring a third option, in which violations
inform adaptive technology that can attempt to “repair” the
SAF behavior problem during execution (although this
application can also do signaling and logging).

 We are using violations detected by GCS to inform the
Training Executive Agent (TXA), an adaptive operator-aiding
technology [8]. The TXA is integrated with a distributed
simulation, and it exploits the behavior representations of the
simulator to modify the “native” behavior of its SAFs. The
goal of the TXA is to reduce operator workload by
automating the monitoring and management of a variety of
interventions during the execution of a training scenario. GCS
implements a major part of the monitoring and validation
capability. As an example, one possible training objective is
for trainees to intercept bandits moving at supersonic speeds.
There is a geographic zone in which the bandit entities are
expected to exhibit those supersonic speeds in order to
support this training goal. Under “normal” conditions, a
human operator might need to pay attention to aircraft
entering this area and increase the speed if needed. The TXA
reduces operator workload by automating these monitoring
and management functions. GCS can be used to monitor entity
behaviors and detect if any entity speeds are in violation of
the expected speeds for the entity’s geographical region and
goals. If a violation is found, GCS uses its penalty functions
to score the severity of the violation. This information is then
passed to the TXA, which adjusts the entity’s behavior in
order to bring the behavior in line with the expected
constraints.

 In the longer term, the ability of GCS to assess penalties
in real time, together with TXA’s ability to permute SAF
behavior, could be used in a more open-ended way
(“emergent repair”). However, thus far we have used GCS
only to identify violations of specific types and then trigger
pre-defined TXA repairs. For example, an observed speed
violation triggers a TXA directive that matches the prescribed
SAF speed to range requirements at the entity’s current
location. The advantage of using GCS in this application is
that the TXA can use the penalty score (and accumulating
scores) to determine if/when to modify behavior, rather than
simply recording and responding to a constraint violation. For
example, for an aircraft briefly transiting thru the supersonic
area, GCS can apply a different penalty function (based on
context) than a bandit that is intended to engage the trainees.

5.2 Validating training scenario goals
 SAFs may perform actions that are appropriate from a
tactical perspective, but that may not match the specific
required actions for a particular training context. For example,
imagine a training goal intended to provide a trainee with the
experience of two successive air-to-air intercepts. In this
situation, the trailing bandits need to stay far enough away
from the lead group to not interfere with the initial intercept
but close enough that the trainee has to engage them
immediately on successful prosecution of the first group. This
is the instructor’s intent for this scenario.

 On the TXA effort, we are using the GCS to provide
objective assessment of the “presentation quality” (from the
perspective of instructor’s intent) of a scenario as it evolves
under a range of experimental conditions [9]. If all the various
interactions in support of training goals execute as desired,
then the scenario can be scored as having high quality.
Various undesired interactions can impact the overall quality
of the training scenario to different degrees. Subject-matter
experts defined scoring criteria for each experimental
scenario, and then we encoded the constraints and scoring
functions into GCS. This allowed us to run a series of
experimental variations to a training scenario, and to compute
the presentation quality for each experimental condition in an
automated and objective fashion.

5.3 Verification and validation of SAFS
 If a SAF behavior results in some kind of (tactical or
instructional) constraint violation, then there are additional
potential responses, besides attempting to repair or adapt the
current scenario. When GCS detects a poor behavior, this
could be interpreted as a signal for repairing or refining the
underlying behavior representation for future use (and thus
eliminating the need for run-time repair in the future). We
have investigated the potential for behavior refinement from
several different perspectives. Most importantly, we have
developed a test harness that enables systematic variation of
parameters within a SAF behavior representation. The test
harness is able to replay a given scenario with specific
variations and combinations of behavior parameters. The test
harness uses GCS to validate, score, and summarize the
resulting behaviors. The results of this analysis indicate the
range of “presentation qualities” that a SAF behavior
definition can produce, as well as a sensitivity analysis of the
behavior definition to various parameter settings.

 Systematic variation of parameters helps modelers,
operators, and instructors develop an understanding of the
“topology” of a behavior model. Although such topology
analysis has not seen significant application, the testbed
investigations with GCS demonstrate that this type of analysis
is feasible and worthwhile, especially for generalized
behaviors. Using this approach, we foresee a much larger
future role for GCS in facilitating behavior verification and

Int'l Conf. Artificial Intelligence | ICAI'15 | 257

validation. Systematic variation using GCS may be especially
useful for learning systems that attempt to synthesize behavior
representations from observation data [10].

5.4 Additional applications of GCS
 There are additional potential applications of GCS that
we have not yet implemented or explored significantly. For
example, the search-based inference engine in the GCS
interpreter can also be viewed as a form of plan recognizer.
This type of plan recognition can be used to infer the intent of
constructive force models without having access to the
models’ internal representations (as above), or also to
generate explanations of observed behaviors when we do have
some knowledge of a model’s internal representations. The
use of GCS to support the TXA experiments demonstrates the
ability to go beyond validation of individual entity behaviors
to validating aggregate behaviors at the scenario level.
Additionally, GCS could assist in the creation of suitable
scenarios or the run-time adjustment of scenarios (extending
the functions of the TXA).

6 Summary and conclusions
 We have introduced the problem of generating useful,
objective, and automated validation of complex intelligent
behaviors in modeling and simulation. The fluidity and
complexity of human-level behavior requires validation
solutions that extend techniques for standard software
systems. We have also described and illustrated one
implemented solution to this problem. The Goal Constraint
System relies on the concept of Behavior Envelopes, which is
itself an adaptation of property-oriented specification to the
complexities of intelligent behavior systems. The GCS
representation additionally extends the Behavior Envelope
concept to accommodate unobservable features (entity goals)
and quantitative scoring of constraint violations. The GCS
interpreter exploits its penalty scoring functions to assist in
inference about entity goals, as well as to produce quantitative
scores of individual and aggregate entity behaviors. We have
identified a number of application areas in which such
automated and objective validation is useful.

7 Acknowledgments
 This work is supported in part by the Naval Air Warfare
Center Training Systems Division (Aptima Prime Contract:
N68335-12-C-0146) and the Office of Naval Research project
N00014-1-C-0170 Tactical Semi-Automated Forces for Live,
Virtual, and Constructive Training (TACSAF). The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the
Department of Defense or Office of Naval Research. The U.S.
Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation hereon.

 We would like to thank sponsors at NAWC TSD and
ONR who have provided insights and operational perspectives
in the development of GCS: Beth Atkinson, Heather Priest,
Melissa Walwanis, Amy Bolton, and LCDR Brent Olde. GCS
also benefitted significantly from the contributions of J.T.
Folsom-Kovarik, Leon Pryor, Marcus Huber, and Sam
Wintermute at Soar Technology.

8 References
[1] Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J.,
Kenny, P., & Koss, F. V. (1999). Automated intelligent pilots
for combat flight simulation. AI Magazine, 20(1), 27–41.

[2] Wallace, S. (2003). Validating Complex Agent
Behavior, Ph.D. Thesis. The University of Michigan, Ann
Arbor.

[3] Lamsweerde, A. V. (2000). Formal specification: A
roadmap. In Proceedings of the Conference on the Future of
Software Engineering, ICSE ’00, 147-159.

[4] Dasso, A., & Funes, A. (2009). Formalization process in
software development. IRMA International.

[5] Stacy, W., Picciano, P., Sullivan, K., & Sidman, J.
(2010). From flight logs to scenario: Flying simulated
mishaps. In Proceedings of Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC 2010).
Orlando, FL.

[6] Wallace, S., & Laird, J. E. (2003). Behavior Bounding:
Toward Effective Comparisons of Agents & Human
Behavior, International Joint Conference on Artificial
Intelligence.

[7] Wray, R. E., & Laird, J. E. (2003). Variability in Human
Behavior Modeling for Military Simulations. Proceedings of
the 2003 Conference on Behavior Representation in
Modeling and Simulation. Scottsdale, AZ. May.

[8] Wray, R. E., & Woods, A. (2013). A Cognitive Systems
Approach to Tailoring Learner Practice. In J. Laird & M.
Klenk (Eds.), Proceedings of the Second Advances in
Cognitive Systems Conference. Baltimore, MD.

[9] Wray, R. E., Bachelor, B., Jones, R. M., & Newton, C.
(to appear). Bracketing human performance to support
automation for workload reduction: A case study. Accepted
for publication in Proceedings of the Human Computer
Interaction International (HCII) Conference 2015.

[10] Levchuk, G., Shabarekh, C., & Furjanic, C. (2011).
Wide-threat detection: Recognition of adversarial missions
and activity patterns in Empire Challenge 2009. In
Proceedings of the SPIE Defense, Security, and Sensing
Conference.

258 Int'l Conf. Artificial Intelligence | ICAI'15 |

