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Abstract— This paper presents the robust stability of
Takagi-Sugeno(T-S) fuzzy systems with sampled-data. By
constructing an augmented modified Lyapunov-Krasovskii
functional, which includes three triple integrals, some less
conservative results are obtained compared with the existing
results. Numerical examples are presented to demonstrate
the improvement of the proposed method.

Keywords: Takagi-Sugeno fuzzy systems, time-varying delay,

Lyapunov-Krasovskii functional, Linear Matrix Inequality

1. Introduction
The main advantage of T-S fuzzy model is that it can

combine the flexibility of fuzzy logic theory and rigor-

ous mathematical theory of linear system into a unified

framework to approximate complex nonlinear systems [1-

3]. On the other hand, sampled-data often appears in many

dynamical systems such as biological systems, neural net-

works, networked control systems and so on. For a digital

stabilization, sampled-data control design method can reduce

the amount of stabilization information and increases the

efficiency of bandwidth usage. Hence, the stability of T-S

fuzzy systems with sampled-data has been studied by many

researchers [3]. By construction of a modified augmented

Lyapunov-Krasovskii functional, which includes three triple

integrals, an improved stability criterion for guaranteeing the

asymptotically stable is derived by using Wirtinger-based

integral inequality [5], reciprocally convex approach [4],

new delay-partitioning method. It should be pointed out

that different with delay-partitioning method used in [3], we

only divide the time interval into some subintervals, but not

considered the cases that time-varying delay belongs to dif-

ferent subinterval, respectively. Finally, Numerical example

is given to demonstrate the effectiveness of the proposed

method.

2. Problem statement and preliminaries
Consider the following nonlinear system which can be

modeled as TS fuzzy model with sampled-data:

Rule i: If θ1(t) is Mi1 and . . . and If θn(t) is Min, then

ẋ(t) = Aix(t) +Adix(tk), i = 1, 2, . . . , r. (1)

where θ1(t), . . . , θn(t) are the premise variables, Mij is a

fuzzy set, i = 1, 2, . . . , r, j = 1, 2 . . . , n. r is the index

number of fuzzy rules, and x(t) ∈ Rn denotes the state

of the system. Ai and Adi are the known system matrices

and sampled-state matrices with appropriate dimensions,

respectively.

In this paper, the sampled signal is assumed to be gen-

erated by using a zero-order-hold (ZOH) function with a

sequence times 0 ≤ t0 < · · · < tk · · · < lim
k→∞

tk = +∞.

tk+1 − tk ≤ h.

Assume that h(t) is a time-varying delay satisfying

0 ≤ h(t) ≤ h, ḣ(t) ≤ μ, (2)

where h, μ are known constants.

Using singleton fuzzifier, product inference, and center-

average defuzzifier, the global dynamics of the delayed T-S

system (1) is described by the convex sum form

ẋ(t) =
r∑

i=1

pi(θ(t))[Aix(t) +Adix(t− h(t))] (3)

where pi(θ(t)) denotes the normalized membership function

satisfying

pi(θ(t)) =
wi(θ(t))∑r
i=1 wi(θ(t))

, wi(θ(t)) =

n∏
j=1

Mij(θj(t)),

(4)

where Mij(θi(t)) is the grade of membership of θi(t) in

Mij . For the sake of simplicity, let us define

Ā =

r∑
i=1

hi(θ(t))Ai, Ād =

r∑
i=1

hi(θ(t))Adi. (5)

Now, the system (3) can be rewritten as

ẋ(t) = Āx(t) + Ād(x(t− h(t)). (6)

3. Main results
Let us consider the following Lyapunov-Krasoskii func-

tional candidate

V (t) =

5∑
i=1

Vi, (7)
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where

V1 =

⎡⎢⎣ x(t)∫ t

t−αh
x(s)ds∫ t−αh

t−h
x(s)ds

⎤⎥⎦
T

P

⎡⎢⎣ x(t)∫ t

t−αh
x(s)ds∫ t−αh

t−h
x(s)ds

⎤⎥⎦ ,

V2 =

∫ t

t−h(t)

xT (s)Q1x(s)ds,

V3 =

∫ t

t−αh

xT (s)Q2x(s)ds+

∫ t

t−h

xT (s)Q3x(s)ds,

V4 = αh

∫ 0

−αh

∫ t

t+α

ẋT (s)R1ẋ(s)dsdα,

V5 = (1− α)h

∫ −αh

−h

∫ t

t+α

ẋT (s)R2ẋ(s)dsdαd.

By using above Lyapunov funtional, we can derive a sta-

bility criterion for delayed T-S fuzzy systems, and ei ∈
R10n×n(i = 1, 2, . . . , 10) are defined as block entry ma-

trices(for example e4 = [0 0 0 I 0 0 0 0 0 0]T ). The

other notations are defined as:

Ξ1
1 = Π1

1P[e8 e1 − e2 e2 − e4]
T + (∗),

Ξ2
1 = Π2

1P[e8 e1 − e2 e2 − e4]
T + (∗),

Ξ2 = e1Q1e
T
1 − (1− μ)e3Q1e

T
3 ,

Ξ3 = e1Q2e
T
1 − e2Q2e

T
2 + e1Q3e

T
1 − e4Q3e

T
4 ,

Ξ1
4 = (αh)2e8R1e

T
8 −Π1

2

[
R̄1 S1

∗ R̄1

]
Π1

2
T
,

Ξ2
4 = (αh)2e8R1e

T
8 − [e1 − e2]R1[e1 − e2]

T

−3[e1 + e2 − 2e7]R1[e1 + e2 − 2e7]
T ,

Ξ1
5 = ((1− α)h)2e8R2e

T
8 − [e2 − e4]R2[e2 − e4]

T

−3[e2 + e4 − 2e7]R1[e2 + e4 − 2e7]
T ,

Ξ2
5 = ((1− α)h)2e8R2e

T
8 −Π2

2

[
R̄2 S2

∗ R̄2

]
Π2

2
T
,

Υ1 = Ξ1
1 + Ξ2 + Ξ3 + Ξ1

4 + Ξ1
5,

Υ2 = Ξ2
1 + Ξ2 + Ξ3 + Ξ2

4 + Ξ2
5,

Γ̄ = [Ā 0 Ād 0 0 0 0 − I],

Γi = [Ai 0 Adi 0 0 0 0 − I].

Now we have the following theorem.
Theorem 1 For given scalars h, μ, the system (1) is glob-

ally asymptotically stable if there exist symmetric positive

matrices P ∈ R3n×3n,M ∈ R2n×2n, Q,R1, R2, N1, N2 ∈
Rn×n, a positive scalar ε and any matrix Sj(j = 1, 2, 3, 4) ∈
R2n×2n such that the following LMIs hold for all h(t) ∈
[0, h]

(Γ⊥
i )

TΥΓ⊥
i < 0, i = 1, 2 (8)[

R̄1 S1

∗ R̄1

]
≥ 0,

[
R̄2 S2

∗ R̄2

]
≥ 0, (9)

where R̄1 =

[
R1 0
∗ 3R1

]
, R̄2 =

[
R2 0
∗ 3R2

]
.

Proof The detailed proof is omitted.

4. Numerical example
Consider the system with the following parameters

A1 =

[ −3.2 0.6
0 −2.1

]
, Ad1 =

[
1 0.9
0 2

]
,

A2 =

[ −1 0
1 −3

]
, Ad2 =

[
0.9 0
1 1.6

]
.

The maximum value of upper bound h compared with the

results in [1-3] with different μ u are listed in Table 1.

Table 1: Upper delay bound h for different μ.
μ 0.03 0.1 0.5 0.9
[2] 0.7805 0.5906 0.5392 0.5268
[1] 0.8369 0.7236 0.7154 0.7014
[3] 0.8771 0.7687 0.7584 0.7524

Theorem 1 (α = 0.5) 1.5835 1.2444 1.2216 1.1686
Theorem 1 (α = 0.6) 1.5906 1.2698 1.2445 1.1852

5. Conclusion
The robust stability for T-S fuzzy systems with sampled-

data has been investigated. Less conservative criteria have

been obtained by employing new delay-partitioning tech-

nique, integral inequality and reciprocally convex approach.

Numerical examples have been given to demonstrate the

effectiveness of the proposed method.
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