
Place Recognition and Topological Map Learning in a Virtual
Cognitive Robot

Paul R. Smart1 and Katia Sycara2
1Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ UK

ps02v@ecs.soton.ac.uk
2Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

katia@cs.cmu.edu

Abstract— An ACT-R cognitive model is used to control
the spatial behavior of a virtual robot that is embedded in
a three-dimensional virtual environment, implemented using
the Unity game engine. The environment features a simple
maze that the robot is required to navigate. Communication
between ACT-R and Unity is established using a network-
based inter-operability framework. The ability of the robot
to learn about the spatial structure of its environment and
navigate to designated goal locations serves as a test of the
ability of the framework to support the integrative use of
cognitive architectures and virtual environments in a range
of research and development contexts.

Keywords: virtual robotics; virtual environment; cognitive archi-

tecture; spatial cognition; spatial memory

1. Introduction
In the effort to develop computational models of cognitive

behavior, it often helps to draw on the resources of a reusable

framework that incorporates some of the representational

structures and computational mechanisms that are assumed

to be invariant across multiple cognitive tasks. Cognitive

architectures are examples of such frameworks [1]. They

can be used to develop models that test ideas relating

to the cognitive mechanisms associated with aspects of

human performance. In addition, they are sometimes used to

implement agents that are capable of performing cognitive

tasks or exhibiting signs of behavioral intelligence [2].

Work using cognitive architectures has typically involved

the use of computational models that are highly limited with

respect to the kinds of agent-world interaction they support.

The perceptual inputs to cognitive models are typically very

simple, as are the motor outputs. In addition, it is sometimes

difficult to precisely simulate the effects that motor outputs

have on subsequent sensory input, thereby limiting the extent

to which cognitive models can productively incorporate mo-

tor actions into ongoing problem-solving processes (see [3]).

One way to address these issues involves the use of virtual

environments, such as those encountered in contemporary

video games. These can be used to create dynamic and

perceptually-rich environments that serve as virtual surro-

gates of the real world. The cognitive models that are

implemented using cognitive architectures can then be used

to control the behavior of one or more virtual agents that

inhabit these environments. By supporting the exchange of

rich bodies of information between the virtual environment

and the cognitive model, and by linking the cognitive model

to the perceptuo-motor system of a particular virtual agent,

it becomes possible to think of cognitive models as being

effectively embedded and embodied within a virtual world.

In this paper, we describe a study that combines the use of

a cognitive architecture with a virtual environment in order

to study the maze learning and place recognition abilities of

a virtual cognitive robot. The cognitive architecture used in

the study is the ACT-R cognitive architecture [4]. This is

one of the most widely used cognitive architectures within

the cognitive scientific community. Although the design of

ACT-R is inspired by the features of the human cognitive

system (e.g., ACT-R consists of a number of modules that

are associated with specific cognitive capabilities, such as

the memorization and recall of declarative knowledge), it

is possible to use ACT-R in the context of research efforts

where the aim is not so much the modeling of human

cognitive processes as the real-time control of a variety

of intelligent systems. This is evidenced by recent work

concerning the use of ACT-R in the design of real-world

cognitive robots [5]. It is also possible to extend the core

functionality of ACT-R in a variety of ways (e.g., via the

addition of new modules).

Aside from ACT-R, the focus of the current integration

effort is centered on the Unity game engine. This is a game

engine, developed by Unity Technologies, that has been used

to create a broad range of interactive 2D and 3D virtual

environments. Despite its use as a research tool, as well

as a platform for game development, the current attempt

to integrate ACT-R with Unity is entirely novel: to our

knowledge there have been no previous attempts to combine

the use of Unity and ACT-R in the context of cognitive

agent simulations. The closest approximation to the current

integration effort is work by Best and Lebiere [6]. They

used ACT-R to control the behavior of humanoid virtual

characters in an environment implemented on top of the

Unreal Tournament game engine. Our work differs from this

previous work in the sense that we are targeting a different

Int'l Conf. Artificial Intelligence | ICAI'15 | 3

(a) (b)

Fig. 1: Different views of the ‘H’ Maze environment. The robot is located on the right-hand side of the maze in both

images. (a) View from a first-person camera situated external to the maze. (b) View from a top-down tracking camera

situated directly above the maze. The tracking camera produces a simplified rendering of the scene in order to support the

analysis and visualization of simulation results. The white cross represents the starting location of the robot on all training

and testing trials. The grey circles within the maze represent goal locations for the robot during testing trials.

game engine (i.e., Unity) and we do not attempt to control

a humanoid virtual character. Instead, we focus on a virtual

robotic system that comes equipped with a set of (distinctly

non-human) sensor and effector elements. These serve to

make the perceptual and behavioral capabilities of the robot

unlike those seen in the case of humanoid virtual characters.

Another factor that differentiates our work from previous

attempts to integrate cognitive architectures with virtual

environments concerns our approach to sensor processing.

While it is possible to rely on explicit knowledge about

the features of virtual world objects (e.g., their position and

geometry) as a means of directly calculating important per-

ceptual information (e.g., distance and shape information),

the robot in the current study is required to engage in the

processing of low-level sensor data as a means of extracting

cognitively-useful information from its environment.

As a means of testing the integrity of the ACT-R/Unity in-

tegration solution, we rely on the use of a spatial navigation

task that requires an ability to (1) recognize spatial locations,

(2) learn about the structure of a spatial environment and (3)

navigate to specific goal locations. There are a number of

factors that motivate the choice of this task in the context

of the current work. Firstly, the topic of spatial cognition

has been the focus of extensive research efforts in both the

robotics and neuroscience communities [7], [8], [9]. This

provides a wealth of data and knowledge that can be used

to support the development of spatially-relevant cognitive

models and associated cognitive processing capabilities.

Secondly, spatial navigation is a task that is recognizably

cognitive in nature, and it is one that may therefore benefit

from the use of a cognitive architecture, such as ACT-R. In

addition, the task is of sufficient complexity to require more

than just the trivial involvement of the cognitive architecture.

In fact, as will be seen below, the task requires the use

of multiple existing ACT-R modules, the development of

a new custom module, and the exploitation of over 100

production rules. Thirdly, the place recognition component

of the task places demands on the perceptual processing

capabilities of the robot. This helps to test the mechanisms

used for the processing and interpretation of sensor data.

Finally, the task requires the continuous real-time exchange

of information between ACT-R and Unity in order to ensure

that the behavior of the virtual robot is coordinated with

respect to its local sensory environment. This serves as a

test of the real-time information exchange capabilities of the

proposed integration solution.

2. Method
2.1 Environment Design

A simple virtual maze was constructed from a com-

bination of simple geometric shapes, such as blocks and

cylinders. The design of the maze is based on that described

by Barrera and Weitzenfeld [7] as part of their effort to

evaluate bio-inspired spatial cognitive capabilities in a real-

world robot. The maze consists of a number of vertically-

and horizontally-aligned corridors that are shaped like the

letter ‘H’. An additional vertically-aligned corridor is used

as a common departure point for the robot during training

and testing trials (see Figure 1).

A number of brightly colored blocks and cylinders were

placed around the walls of the maze to function as visual

landmarks. These objects are used by the virtual robot to

identify its location within the maze.

2.2 Virtual Robot
The virtual robot used in the current study is based on

a pre-existing 3D model available as part of the Robot Lab

4 Int'l Conf. Artificial Intelligence | ICAI'15 |

project from Unity Technologies. The 3D structure of the

virtual robot is defined by a conventional polygonal mesh

of the sort typically used in game development. The robot

was equipped with three types of sensors in order to support

the processing of visual, tactile and directional information.

Visual information is processed by the robot’s eyes, which

are implemented using Unity Camera components. For

convenience, we refer to these components as ‘eye cameras’.

The eyes are positioned around the edge of the robot and

are oriented at 0°, 90°, 180° and 270° relative to the Y or

‘up’ axis of the robot in the local coordinate system. This

provides the robot with a view of the environment to its

front, back, left and right. Given the elevated position of the

visual landmarks in the maze (see Figure 1), the eyes were

oriented slightly upwards at an angle of 15°. This enabled

the robot to see the landmarks, even when it was positioned

close to one of the walls of the maze.

In order to keep the visual processing routines as simple as

possible, the eye cameras were configured so as to enhance

the visibility of the visual landmarks within the scene. In

particular, the far clipping plane of each eye camera’s view

frustum was set to 10 meters. This limited the range of

the camera within the scene (although the range was still

sufficient to encompass the entire extent of the ‘H’ Maze,

irrespective of the robot’s actual position in the maze). The

culling mask of each eye camera was also configured so as

to limit the rendering of scene objects that were external

to the maze environment. Finally, a self-illuminated shader

was used for the rendering of visual landmarks by the eye

cameras. This shader used the alpha channel of a secondary

texture to define the areas of the landmark that should

emit light of a particular color. By simply omitting this

secondary texture, the visual landmarks had the appearance

of objects that emitted light uniformly across their surface.

This served to enhance the contrast of the objects (from the

robot’s perspective) and reduced color variations resulting

from different viewing angles. The result of applying these

adjustments is shown in the four image insets at the top of

Figure 2. These show the view of the maze environment

from the perspective of each of the robot’s eye cameras.

During the training and testing phases of the experiment

(see Section 2.5), the output of each eye camera was peri-

odically rendered to what is known as a RenderTexture
asset. This is a special type of 2D image asset that captures

a view of the virtual environment from the perspective of a

particular camera. In essence, each RenderTexture asset

effectively represents the state of one of the robot’s ‘retinas’

at a particular point in time. The pixel data associated

with these images can be processed in order to extract

visual features, some of which may indicate the presence

of particular objects in the scene. The visual processing

routines used in the current study were relatively lightweight

and focused on the attempt to detect the brightly colored

objects (i.e., the visual landmarks) arrayed around the walls

Fig. 2: View of the ‘H’ Maze from a forward-facing camera

situated onboard the robot. The four image insets at the top

of the image correspond to the views the robot has of the

virtual environment via its eye cameras.

of the maze. These objects were detected by matching the

luminance levels of image pixels in the red, green and

blue (RGB) color channels to the colors of the objects

as they appeared in the robot’s eye cameras. A custom

RobotEye component was developed to support the design-

time configuration of the eye cameras with respect to the

detection of the visual landmarks. This component supports

the specification of target colors that should be detected

by each eye camera during the post-rendering analysis of

each RenderTexture asset. The component also pro-

vides access to two properties that control the sensitivity

of the robot’s eye cameras. These are the ‘tolerance’ and

‘threshold’ values. The tolerance value represents the range

of luminance levels in each color channel that is recognized

as a match to the target luminance level. A value of 0.01,

for example, means that deviations of ±0.01 from a target

luminance level (in each color channel) will be recognized as

a match to the target color1. The threshold value specifies the

minimum number of matching pixels that must be present

in the image in order for the RobotEye component to

signal the detection of a particular color. For the purposes of

the current study, the tolerance value was set to a value of

0.01 and the threshold value was set to a value of 1500. In

addition, each retina was sized to 200×200 pixels to give a

total of 40,000 pixels per eye camera on each render cycle.

In addition to the eye cameras, the robot was also

equipped with ‘whiskers’ that functioned as tactile (or

proximity) sensors. The aim of these sensors was to detect

the presence of maze walls in the forward, left, right and

backwards directions. The whiskers extended outwards from

the robot’s body in the same directions as the eye cameras

and were of sufficient length to detect when the robot was

adjacent to a maze wall. This enabled the robot to detect

1In Unity, the values of RGB channels range from 0 to 1, so a value of
0.01 represents 1% of the total value range.

Int'l Conf. Artificial Intelligence | ICAI'15 | 5

the presence of particular situations, such as when it was

in a corridor (e.g., the left and right whiskers were both

in contact with maze walls) or when it had reached the

end of one of the maze arms (e.g., the forward, left and

right whiskers were all in contact with maze walls). The

information provided by the whiskers assists in helping the

robot to localize itself within the maze. The whiskers also

function to provide affordances for action, helping the robot

to decide when it needs to turn and what directions it can

move in. From an implementation perspective, the whiskers

were implemented using ray casting techniques: each time

the robot was required to report sensory information to

ACT-R, rays were projected from the robot’s body and any

collisions of the rays with the walls of the maze were

recorded.

The final sensor used by the robot was a directional sensor.

This functioned as an onboard compass. The sensor reading

was based on the rotation of the robot’s transform in the

world coordinate system. A rotation of 0° thus corresponded

to a heading value of ‘NORTH’; a rotation of 90°, in

contrast, corresponded to a heading value of ‘EAST’.

For the purposes of this work, the directional movement

of the robot was restricted to the north, south, east and

west directions: these are the only directions that are needed

to fully explore the ‘H’ Maze environment. The robot

was also capable of making rotational movements to orient

itself in the north, south, east, and west directions. Turning

movements were implemented by progressively rotating the

robot’s transform across multiple update cycles using spher-

ical linear interpolation techniques. Linear movements, in

contrast, were implemented by specifying the velocity of the

robot’s Rigidbody component, a component that enabled

the robot to participate in the physics calculations made

by Unity’s physics engine. Both movements occurred in

response to the instructions received from an ACT-R model,

and in the absence of this input, the robot was behaviorally

quiescent.

2.3 Cognitive Modeling
The cognitive modeling effort involved the development of

an ACT-R model that could support the initial exploration of

the maze and the subsequent navigation to target locations.

The requirements of the model were the following:

1) Motor Control: The model was required to issue

motor instructions to the robot in response to sensory

information in order to orient and move the robot

within the maze.

2) Maze Learning: The model was required to detect

novel locations within the maze and memorize the

sensory information associated with these locations.

3) Route Planning: The model was required to use the

memorized locations in order to construct a route to a

target location.

4) Maze Navigation: The model was required to use

route-related information in conjunction with sensory

feedback in order to monitor its progress towards a

target location.

In addition, in order to analyze the structure of the robot’s

spatial memories and compare navigational performance

under different test conditions, it was important for the

model to be able to serialize and deserialize memorized

information to a persistent medium.

The ACT-R model developed for the current study consists

of 126 production rules in addition to ancillary functions that

control the communication with Unity (see Section 2.4). A

key goal of the model is to memorize spatial locations that

are distinguished with respect to their sensory properties

(i.e., unique combinations of visual and tactile information).

These locations are referred to as ‘place fields’ in the

context of the model. Each place field is created as a chunk

in ACT-R’s declarative memory, and retrieval operations

against declarative memory are used to recall the information

encoded by the place field as the robot moves through the

maze. The collection of place fields constitutes the robot’s

‘cognitive map’ of the maze (see [9]). This map is structured

as a directed graph in which the place fields act as nodes

and the connections between the nodes are established based

on the directional information that is recorded by the robot

as it explores the maze. Any two place fields that are

created in succession will be linked via a connection that

records the direction the robot was moving in when the

connection was made. For example, if the robot creates a

place field (PF1) at the start of the simulation and then

creates a second place field (PF2) while heading north

from the start location, a connection will be established

between PF1 and PF2 that records PF1 as the source of

the connection, PF2 as the target of the connection and

‘NORTH’ as the direction of the connection. The cognitive

map, as the term is used in the current study, is thus a

representational structure that encodes information about the

topological relationships between place fields based on the

exploration-related movements of the virtual robot.

The productions of the ACT-R model were used to realize

the motor control, maze learning and navigation functions

mentioned above; the route planning function, however, was

implemented using separate Lisp routines. In order to plan a

route, the robot first needs to be given a target location. This

was specified at the beginning of trials that tested naviga-

tional performance (see Section 2.5). The robot then needs

to identify its current location within the maze. The robot

achieved this by comparing current sensory information with

that stored in memory (in the form of place field repre-

sentations). Finally, the robot needs to compute a sequence

of place fields that encode the path from the start location

to the target location. This was achieved via the use of a

spreading activation solution that operated over all the place

fields in the robot’s cognitive map (i.e., the contents of the

6 Int'l Conf. Artificial Intelligence | ICAI'15 |

robot’s spatial memory). The spreading activation solution

involved the initial activation of the place field corresponding

to the robot’s start location, and this activation was then

propagated to neighboring place fields across successive

processing cycles until the place field representing the target

location was finally reached. The chain of activated place

fields from the start location to the target location specifies

the sequence of place fields (identified by combinations of

sensory information) that must be detected by the robot as

it navigates towards the target. Importantly, the connections

between adjacent place fields in the computed route serves to

inform the robot about the desired direction of travel as each

place field is encountered. For example, if the connection

between the first and second place fields in the route has

an associated value of ‘NORTH’ and the robot is currently

facing north, then the model can simply instruct the robot

to move forward. If the robot is facing south, then the robot

needs to implement a 180° turn before moving forward.
In order to avoid situations where the robot failed to detect

successive place fields in the planned route (either as a

result of delays in sensor feedback or the close proximity of

topologically-adjacent place fields), the robot attempted to

match received sensor information to all route-related place

fields every time new sensor information was received. This

enabled the robot to continually monitor its progress against

the planned route and avoid confusion if some locations in

the route were over-looked.
An initial pilot study using an earlier ACT-R model

(see [10]) revealed a tendency for errors to sometimes occur

in navigation-related decisions. Although this did not affect

the ability of the robot in the pilot study to ultimately reach

a particular goal destination, it did lead to inefficiencies

in navigational behavior. An analysis of the structure of

the robot’s spatial memory in the context of this earlier

study revealed that the problem originated from a failure to

adequately discriminate between spatially-distinct locations

during maze learning. Given the robot’s perceptual capabili-

ties, some of the locations in the maze can appear identical,

and this can lead to situations where erroneous linkages are

created between non-adjacent place fields. The result is a

breakdown in the extent to which the cognitive map provides

a faithful representation of the actual topological structure

of the environment. In order to address this shortcoming, the

current cognitive model attempted to categorize visual inputs

based on the number of pixels of a particular color that were

contained in the image generated by each eye camera. Pixel

counts between 1500 and 6000 (for a particular color) were

thus categorized as indicating the presence of ‘small’ colored

objects, and pixel counts above 6000 were categorized as

indicating the presence of ‘large’ colored objects2. The

addition of this admittedly simple categorization scheme was

sufficient to yield adequate discriminative capabilities in the

2The detection threshold of the eye cameras was equal to 1500, so pixel
counts below this value were treated as equal to zero.

context of the ‘H’ Maze; it is likely, however, that more

refined schemes will be required in the case of more complex

spatial environments.

2.4 ACT-R/Unity Integration Solution
In order for the ACT-R model to control the movements

of the virtual robot in response to sensory information, it is

necessary for the ACT-R environment and the Unity game

engine to engage in bidirectional modes of communication.

This is problematic because Unity is implemented in C++,

while ACT-R is implemented in Lisp. In addition, the need

to run Unity and ACT-R in parallel can place significant

demands on the processing and memory resources of the

host machine, and this can undermine the real-time respon-

siveness of both systems.

As a means of addressing these concerns, we developed a

network-based solution to support the integration of ACT-R

with the Unity game engine. The solution is based on an

existing approach to integrating ACT-R with external envi-

ronments that goes under the heading of the JSON Network

Interface (JNI) [11]. The JNI enables ACT-R to exchange

information with a variety of external environments using a

combination of a TCP/IP connectivity solution and messages

formatted using the JavaScript Object Notation (JSON) data

interchange format. In order to make use of this approach

in the context of environments built on top of the Unity

game engine, we developed a set of components collectively

referred to as the ACT-R Unity Interface Framework [10].

These components provide support for the automatic han-

dling of connection requests made by ACT-R models using

the JNI. They also enable Unity-based virtual characters to

send information to specific ACT-R models and respond

to ACT-R commands. The result is a generic solution for

enabling ACT-R models to control the behavior of virtual

characters in any Unity-based virtual environment (either 2D

or 3D). By combining the framework with the JNI, we were

able to run ACT-R and Unity on different machines (thus

addressing performance issues) and establish bidirectional

forms of communication between the two systems using a

client-server model (with the ACT-R model acting as the

client and Unity acting as the server). Further details of the

integration solution can be found in Smart et al. [10].

At runtime, sensor information from the virtual envi-

ronment was periodically posted to ACT-R as part of a

‘sensor processing cycle’. For performance reasons, this was

constrained to run at a frequency much lower than that of the

game engine’s main update loop (a frequency of 2Hz was

used in the current study). During each sensor processing

cycle, information from all of the robot’s sensors was posted

to ACT-R using a single JSON-formatted message. The

ACT-R model received this information and responded to

it by issuing motor commands that were posted back to

Unity (again as JSON-formatted messages). These motor

commands were themselves generated by a sequence of

Int'l Conf. Artificial Intelligence | ICAI'15 | 7

Fig. 3: A cognitive map of the environment formed during

one of the training trials of the experiment. Each white circle

symbolizes a place field that was created by the robot as it

explored the maze. The place fields correspond to nodes in

a topological map of the environment.

production firings corresponding to the cognitive processing

steps implemented by the ACT-R model. On receipt of

the motor commands, the Unity game engine dispatched

the commands to the virtual robot, which then assumed

responsibility for the actual implementation of motor actions.

2.5 Procedure
In order to test the integrity of the ACT-R/Unity inte-

gration solution, as well as the performance of the cognitive

model, we performed a simple experiment involving a series

of simulations. Each simulation consisted of two phases: a

training phase and a testing phase. In the training phase, the

robot was allowed to move around the maze and form a

cognitive map based on its experiences. Once the robot had

explored all of the maze, the training phase was terminated

and the robot’s cognitive map was saved to disk. In the

subsequent testing phase, the cognitive map was loaded into

declarative memory and the robot was given a series of

target locations to navigate towards. These target locations

were situated at the ends of each of the vertical corridors

comprising the long arms of the ‘H’ Maze. The starting

location of the robot was the same in all testing and training

trials (see Figure 1b).

The simulation was repeated a total of five times in order

to test the reliability of the model and the integrity of the

ACT-R integration solution. This resulted in a total of five

cognitive maps that were acquired on five separate training

trials. It also resulted in data from (4 × 5) 20 testing trials

that highlighted the navigational performance of the robot.

3. Results
The structure of one of the cognitive maps formed during

one of the training phases of the experiment is shown in

Figure 3. The white circles in this figure indicate the position

of the place fields that were formed by the robot as it moved

Table 1: Table showing mean and standard deviation values

for key dependent variables. Data was obtained from 5

simulations using identical conditions and parameters.

Dependent Variable X̄ σ

Training phase duration (seconds) 194.80 11.63
place fields 41.00 2.45
place field connections 44.60 3.13
Time to top-left target (seconds) 45.20 1.10
Time to bottom-left target (seconds) 45.40 1.52
Time to top-right target (seconds) 46.40 1.14
Time to bottom-right target (seconds) 46.40 1.95
ACT-R messages (per minute) across all trials 123.66 1.78
Unity messages (per minute) across all trials 274.07 4.69

around the maze. The magenta trail represents the path of

the robot and indicates the extent of the robot’s exploratory

activity.

Figure 4 shows the path followed by the robot as it

navigated to one of the target locations (situated at the

top left of the maze) in one of the testing phases of the

experiment (the cognitive map, in this case, is the same as

that shown in Figure 3). The robot was able to successfully

navigate to each of the target locations in all test-related trials

of the experiment. In addition, unlike the results that were

obtained in an earlier pilot study (see [10]), the navigational

performance of the robot was highly efficient, with no

detours being made by the robot en route to the target

locations. Table 1 summarizes some of the key results of the

study. In addition, a video showing the behavior of the robot

during the training and testing phases of the experiment is

available for viewing from the YouTube website3.

4. Conclusion
This study has shown how the ACT-R cognitive architec-

ture can be used to control the behavior of a virtual robot

that is embedded in a simulated 3D environment. A key aim

of the study was to test the integration of ACT-R (which rep-

resents one of the most widely used cognitive architectures)

with the Unity game engine (which represents one of the

most widely used game creation systems). The integration

solution builds on an existing approach to integrating ACT-

R with external environments [11] in order to support

bidirectional modes of information exchange between an

ACT-R model and a Unity-based virtual environment. The

two systems were hosted on separate machines during the

course of the simulations, a strategy that serves to distribute

the computational overhead associated with running both

systems at the same time.

The task chosen to test the integration solution was a

spatial navigation task that required an ability to learn

about the spatial structure of a virtual 3D environment,

recognize specific locations within the environment based

3See http://youtu.be/IpoReu_PV3M

8 Int'l Conf. Artificial Intelligence | ICAI'15 |

Fig. 4: The path taken by the robot to reach one of four target

locations during one of the testing phases of the experiment.

on local perceptual information, and countenance behavioral

responses based on a combination of local sensory cues,

spatial knowledge and navigation-related goals. The ACT-

R model developed to support these capabilities relied on

a combination of visual, tactile and kinesthetic information

in order to create memorial representations encoding the

topological structure of the spatial environment. This ap-

proach resembles that seen in the case of real-world robotics

research (e.g., [12]), and it is also consistent with the idea

of visual and kinesthetic information being used to construct

cognitive maps that subsequently guide the navigational

behavior of a variety of animal species [9].

One extension of the current work could aim to improve

our understanding of the cognitive mechanisms that are

sufficient to yield adaptive navigational responses in other

kinds of spatial environment. An important focus of atten-

tion, here, concerns the ability of virtual robots to exhibit

navigational competence in the kinds of mazes that are

typically encountered in bio-behavioral research (e.g., the

radial-arm maze [13] and the Morris water maze [14]). This

could establish the basis for cognitive models that attempt

to emulate the spatial behavior of human and non-human

subjects under specific test conditions.

Another potential target for future work concerns the

enrichment of the cognitive representations used by the ACT-

R model to support more sophisticated forms of spatial rea-

soning and behavioral control. One example here concerns

the integration of metric information (e.g., information about

angles and distances) into the topological map representa-

tion. Such information is deemed to be an important element

of the spatial behavior of animals, and it is typically the focus

of perceptual processing in the case of biologically-inspired

robotic models of spatial navigation ability [8].

Future work could also aim to address some of the sensory

and motor limitations of the robot used in the current study

(recall the steps taken to simplify the visual processing

of RenderTexture assets in Section 2.2). This includes

work to improve the sophistication of visual processing

capabilities, perhaps using techniques derived from computer

vision research.

Finally, the availability of the current ACT-R/Unity in-

tegration solution opens up a range of relatively new re-

search opportunities. One of these concerns the use of the

integration solution to perform computational simulation

studies that are relevant to current theoretical and empirical

work in embodied, situated and extended cognitive science.

Crucially, these simulations could serve as an important

adjunct to studies that attempt to evaluate the role that

environmentally-extended processing loops (and issues of

material embodiment) play in the realization of human-level

cognitive capabilities (see [3]).

References
[1] P. Thagard, “Cognitive architectures,” in The Cambridge Handbook of

Cognitive Science, K. Frankish and W. M. Ramsey, Eds. Cambridge,
UK: Cambridge University Press, 2012, pp. 50–70.

[2] J. Rickel and W. Lewis Johnson, “Task-oriented collaboration with
embodied agents in virtual worlds,” in Embodied Conversational
Agents, J. Cassell, J. Sullivan, and S. Prevost, Eds. Cambridge,
Massachusetts, USA: MIT Press, 2000.

[3] A. Clark, Supersizing the Mind: Embodiment, Action, and Cognitive
Extension. New York, New York, USA: Oxford University Press,
2008.

[4] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere,
and Y. Qin, “An integrated theory of the mind,” Psychological Review,
vol. 111, no. 4, pp. 1036–1060, 2004.

[5] U. Kurup and C. Lebiere, “What can cognitive architectures do for
robotics?” Biologically Inspired Cognitive Architectures, vol. 2, pp.
88–99, 2012.

[6] B. J. Best and C. Lebiere, “Cognitive agents interacting in real
and virtual worlds,” in Cognition and Multi-Agent Interaction: From
Cognitive Modeling to Social Interaction, R. Sun, Ed. New York,
New York, USA: Cambridge University Press, 2006.

[7] A. Barrera and A. Weitzenfeld, “Bio-inspired model of robot spatial
cognition: Topological place recognition and target learning,” in
International Symposium on Computational Intelligence in Robotics
and Automation, Jacksonville, Florida, USA, 2007.

[8] N. Burgess, J. G. Donnett, K. J. Jeffery, and J. O’Keefe, “Robotic and
neuronal simulation of the hippocampus and rat navigation,” Philo-
sophical Transactions of the Royal Society B: Biological Sciences,
vol. 352, no. 1360, pp. 1535–1543, 1997.

[9] B. Poucet, “Spatial cognitive maps in animals: New hypotheses on
their structure and neural mechanisms,” Psychological Review, vol.
100, no. 2, pp. 163–192, 1993.

[10] P. R. Smart, T. Scutt, K. Sycara, and N. R. Shadbolt, “Integrating
ACT-R cognitive models with the Unity game engine,” in Integrating
Cognitive Architectures into Virtual Character Design, J. O. Turner,
M. Nixon, U. Bernardet, and S. DiPaola, Eds. Hershey, Pennsylvania,
USA: IGI Global, in press.

[11] R. M. Hope, M. J. Schoelles, and W. D. Gray, “Simplifying the
interaction between cognitive models and task environments with the
JSON network interface,” Behavior Research Methods, vol. 46, no. 4,
pp. 1007–1012, 2014.

[12] M. J. Mataric, “Navigating with a rat brain: A neurobioiogicaliy-
inspired model,” in From Animals to Animats: Proceedings of the
First International Conference on Simulation of Adaptive Behaviour,
J.-A. Meyer and S. W. Wilson, Eds. Boston, Massachusetts, USA:
MIT Press, 1991.

[13] D. S. Olton and R. J. Samuelson, “Remembrance of places passed:
Spatial memory in rats,” Journal of Experimental Psychology: Animal
Behavior Processes, vol. 2, no. 2, pp. 97–116, 1976.

[14] R. G. M. Morris, “Spatial localization does not require the presence
of local cues,” Learning and Motivation, vol. 12, no. 2, pp. 239–260,
1981.

Int'l Conf. Artificial Intelligence | ICAI'15 | 9

