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Abstract— Providing processing for intelligence operations 
requires collecting, sorting, and fusing data from a variety of 
sources to produce coherent and correlated intelligence 
“information” (Multi-Sensor Data Fusion). Multi-sensor data 
fusion is an evolving technology, concerning the problem of 
how to fuse data from multiple sensors in order to make a more 
accurate assessment of a given situation or environment. 
Applications of data fusion cross a wide spectrum, including 
automatic target detection and tracking, battlefield surveillance, 
remote sensing, etc. They are usually time-critical, cover a 
large geographical area, and require reliable delivery of 
accurate information for their completion. One of the big 
problems with multi-sensor fusion is the Level 0 processing: A 
new approach to fusion is the joint Mutual Information 
between the features and the class labels. It can be shown that 
Mutual Information minimizes the lower bound of the 
classification error. However, according to Shannon’s 
definition this is computationally expensive.  

 
Evaluation of the joint Mutual Information of a number of 
variables is plausible through histograms, but only for a few 
variables. If we look toward a different definition of Mutual 
Information we find a different result. Using Renyi’s entropy 
instead of Shannon’s, combined with Parzen density 
estimation, leads to expression of Mutual Information with 
significant computational savings. Here, we will extended 
Renyi’s method for Mutual Information to multiple continuous 
variables and discrete class labels to learn linear dimension-
reducing linear feature transforms for data fusion and 
parameter estimation utilizing competing parameter measures.  
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1. INTRODUCTION: MULTI-SENSOR FUSION 
Multi-sensor data fusion/integration is an evolving technology, 
concerning the problem of how to fuse data from multiple 
sensors in order to make a more accurate measurement of the 
environment.  Applications of data fusion cross a wide 
spectrum, including automatic target detection and tracking, 
battlefield surveillance, remote sensing, etc.  They are usually 
time-critical, cover a large geographical area, and require 
reliable delivery of accurate information for their completion 
[9]. According to the Office of Naval Research: 
"Sensor integration is concerned with the synergistic use of 
multiple sources of information. In warfare, no one piece of 
information can be accepted as complete truth. The 
combination of information from every possible source is of 
primary importance." 

Sensor fusion/integration is divided into three classes: 
complimentary sensors, competitive sensors, and cooperative 
sensors [8]: 

 
Complimentary sensors do not depend on each other directly 
but can be merged to form a more complete picture of the 
environment, for example, a set of radar stations covering non-
overlapping geographic regions. Complementary fusion is 
easily implemented since no conflicting information is present.  
 
Competitive sensors each provide equivalent information 
about the environment. A typical competitive sensing 
configuration is a form of N-modular redundancy. For 
example, a configuration with three identical radar units can 
tolerate the failure of one unit. This is a general problem that is 
challenging, since it involves interpreting conflicting readings.  
 
Cooperative sensors work together to drive information that 
neither sensor alone could provide. An example of cooperative 
sensing would be using two video cameras in stereo for 3D 
vision. This type of fusion is dependent on details of the 
physical devices involved and cannot be approached as a 
general problem.  

 
Here we attack the problem of real-time, distributed, 
competitive sensor fusion for time-critical sensor readings. 
Figures 1 and 2 depict sensor fusion scenarios for this study. It 
is assumed that each sensor platform has some local 
intelligence and memory [3]. We also assume that every sensor 
has limited accuracy and that a limited number of readings may 
be arbitrarily faulty, each mi uses possibly different logic to 
deduce the position, velocity, and parametric measurements of 
the object under surveillance."  Once the information is 
transmitted to the central processing system, fusion and 
situational awareness software are used to provide an overall 
picture of the battlefield to the war fighter.  Figure 3 below 
illustrates a block diagram of an overall fusion and situational 
awareness processing system.  One of the big problems with 
multi-sensor fusion is the Level 0 processing shown below.  
This involves putting the various sensors into a classification 
system where the sensors can be evaluated against each other.  
i.e., how to eliminate the differences between the sensors so the 
information content of each can be fused into intelligent 
information with error bounds consistent with the various 
information sources [13].   
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Figure 1 - Competitive Ground Sensors 

 
Figure 2 - Competitive Air and Space Sensors 

 

 
Figure 3 - Data/information flow for situational awareness 

 
The process of data fusion requires a large number of disciplines 
including signal and image processing, control theory, database 
design, networks, data standards, as well as human computer 
interface.  Military research applicable to data fusion is in the areas 
of Intelligence Surveillance and Reconnaissance (IRS) sensors, 
Command and Control (C2), Communications (C), and 
Computers, which collectively make up C4ISR. This paper is 
concerned with Level 0 (Data Refinement) for Competitive 
Sensors; how to provide a normalization environment to fuse 
various sensor information so that the overall intelligence and 
situational awareness processing system can ingest, process, and 
report on large volumes of disparate intelligence information. 

2. JOINT ENTROPY 
Since the information coming into a given processing system 
may have from 1-to-n inputs at any given time, and each sensor 
that provides input will have random errors associated with any 
given measurement.  The data streams coming into the 
processing systems may be seen as systems of random data, or 
each data stream represents a random variable to the system.  
We will start with a random pair of variables, (X,Y). Another 
way of thinking of this is as a vector of random variables.  

 
Definition 1:  If X and Y are jointly distributed according to 
p(X, Y), then the Joint Entropy H(X, Y) is (EQ 1): 
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Definition 2: if (X, Y) ~ p(x, y), then the conditional entropy 
H(Y|X) is (EQ 2): 
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 This can also be written in the following equivalent ways: 
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Theorem 1: (Chain Rule) 

 ( ) )|()(| XYHXHYXH +=  

The uncertainty (entropy) about both X and Y is equal to the 
uncertainty (entropy) we have about X, plus whatever we have 
about Y, given that we know X. This can also be done in the 
following streamlined manner:  Write (EQ 3 Joint Entropy) 

 ( ) ( ) ( )XYpXpYXp |loglog,log +=  

 and take the expectation of both sides.  We can also have a 
joint entropy with a conditioning on it, as how below: 
Corollary 1: 

 ( ) ),|()|(|, ZXYHZXHZYXH +=  

 

2.1 Relative Entorpy and Mutual Informaiton 

Suppose there is a random variable with true distribution p. 
Then (as we will see) we could represent that random variable 
with a code that has average length H(p). However, due to 
incomplete information we do not know p; instead we assume 
that the distribution of the random variable is q. Then (as we 
will see) the code would need more bits to represent the 
random variable. The difference in the number of bits is 
denoted as D(p|q). The quantity D(p|q) comes up often enough 
that it has a name: it is known as the relative entropy.  

 
Definition 3:The relative entropy or Kullback-Leibler 
distance between two probability mass functions p(x) and q(x) 
is defined as (EQ 4): 
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It should be noted that this is not symmetric, and that q (second 
argument) appears only in the denominator.   

 
Another important concept is Mutual Information [2].  This 
describes how much information on random variable tells 
about another one.  This is, perhaps, the central idea in 
information theory.  When we look at the output of a sensor, 
we see the information as a random variable.  What we want to 
know is what was sent, and the only information we have is 
what cam out of the sensor.  Or, we have two sensors that are 
each random variables, both providing information about the 
same thing. We know that the information should be the same, 
but it is not because of a host of errors that the sensors and the 
transport medium introduced into the measurements.  What we 
want is to extract the exact information from the sensor 
readings.  Or, in other words, we want to find the mutual 
information between the sensor two different sensor readings. 

 
Definition 4: Let X and Y be random variables with joint 
distribution p(X,Y) and marginal distributions p(x) and p(y).  
The Mutual Information I(X;Y) is the relative entropy 
between the joint distribution and the product distribution (EQ 
5): 

( ) ( )( )

( )
( )

( ) ( )ypxp

yxp
yxp

ypxpyxpDYXI

x y

,
log,

)()(||,;

=

=

 

Note that if X and Y are truly independent then p(x,y) = 
p(x)p(y) so I(X;Y) = 0.  However, if they are sensing the same 
thing, then they should not truly be independent.  An important 
interpretation from Mutual Information comes from the 
following theorem: 

 
Theorem 2: 

( ) ( ) ( )YXHXHYXI |; −=  

 
The interpretation of this is that the information that Y tells us 
about X is the reduction in uncertainty about X due to the 
knowledge of Y.  The information X tells about Y is the 
uncertainty in X plus the uncertainty about Y minus the 
uncertainty in both X and Y.  We can summarize a bunch of 
statements about entropy as follows [10]: 
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3. FUZZY DATA NORMALIZATION AND FUSION 

Figure 4 represents a processing flow for intelligence 
information.  The process involves two main layers, the 
deductive process and the investigative process.  The deductive 
process goes after assembling information that has been 
previously known while the inductive process (data mining) 
looks for patterns and associations that have not been seen 
before.  The model illustrated in Figure 3-1 is the deductive 
process used to detect previously known patterns in many 
sources of data by searching for specific information signatures 
and templates in data streams to understand the state of the 
intelligence knowledge [16]. As the systems continues to 
evolve in complexity, the number of objects, situations, threats, 
sensors and data streams dramatically increase, presenting a 
very complex challenge for advanced fusion system designers.  
In order to keep the system “on-top” of its data environment is 
to have data mining operations going on in the background at 
all times, finding new associations and evolving the templates 
and information correlations [6]. 

  
Data Mining is an off-line knowledge creating process where 
large sets of previously collected data is filtered, transformed, 
and organized into information sets. This information is used to 
discover hidden but previously undetected intrusion patterns. 
Data mining is called knowledge/pattern discovery and is 
distinguished from the data fusion process by two important 
characteristics, inference method and temporal perspective [7]. 
Data fusion uses known templates and pattern recognition. 
Data mining processes search for hidden patterns based on 
previously undetected intrusions to help develop new detection 
templates. In addition, data fusion focuses on the current state 
of information and knowledge; data mining focuses on new or 
hidden patterns in old data to create previously unknown 
knowledge, illustrated in Figure 4 [11]. 

 
In both data mining and data fusion, feature selection or feature 
transforms are important aspects of any system.  Optimal 
feature selection coupled with pattern recognition leads to a 
combinatorial problem since all combinations of available 
features must be evaluated before deciding how to fuse the 
information available.   

 
Figure 4 - Data/Information Flow for Data Mining Operations 
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Another such criterion is the joint Mutual Information 
between the features and the class labels.  It can be shown that 
Mutual Information minimizes the lower bound of the 
classification error.  However, according to Shannon’s 
definition this is computationally expensive.  Evaluation of the 
joint Mutual Information of a number of variables is plausible 
through histograms, but only for a few variables.  If we look 
toward a different definition of Mutual Information we find a 
different result.  Using Renyi’s entropy instead of Shannon’s, 
combined with Parzen density estimation, leads to expression 
of Mutual Information with significant computational savings.  
As a part of this study, we extended Renyi’s method for 
Mutual Information to multiple continuous variables and 
discrete class labels to learn linear dimension-reducing linear 
feature transforms for data fusion and parameter estimation 
utilizing competing parameter measures [5]. 

 
We applied Renyi’s entropy-based Mutual Information 
measure to create fuzzy membership functions that can be used 
to rapidly asses the Mutual Information content between 
multiple measurements of a given parameter from different 
sensors [1].  We introduce the Mutual Information measure 
based on Renyi’s entropy, and describe its application to Fuzzy 
Membership Functions that were used transform multiple 
parameter measures and error estimates into a single parameter 
and error bound estimate for the parameter.   

3.1 Shannon’s Definition of Mutual Informaiton 

We denote labeled samples of continuous-valued random variable 

Y as pairs {yi, ci}, where d
i Ry ∈ , and class labels are samples of 

a discrete-valued random variable C, 

{ } [ ]NiNc ci ,1,,...,2,1 ∈∈ .  If we draw one sample of Y at 

random, the entropy or uncertainty of the class label, making use 
of Shannon’s definition, is defined in terms of class prior 
probabilities (EQ 6 – Shannon’s Entropy Theory) [4]: 
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After having observed the feature vector y, our uncertainty of the 
class identity is the conditional entropy is (EQ 7): 
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The amount by which the class uncertainty is reduced after having 
observed the feature vector y is called the Mutual Information,

( ) ( ) ( )YCHCHYCI /, −= , which can be written as (EQ 
8): 
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Mutual information also measures independence between two or 
more variables, in this case between C and Y.  It equals zero when 

( ) ( ) ( )ypCPycp =, , i.e., when the joint density of C and Y 

factors (the condition for independence).  Mutual Information can 
thus be also viewed as the divergence between the joint densities 
of the variables, and the product of the marginal densities. 
Connection between Mutual Information and Data Fusion is given 
by Fanno’s inequality.   

This result, originally from digital communications, determines a 
lower bound to the probability of error when estimating a discrete 
random variable C from another variable Y (EQ 9): 
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where  is the estimate of C after observing a sample of Y, which 
can be a scalar or multivariate.  Thus the lower bound on error 
probability is minimized when Mutual Information between C and 
Y is maximized, or, finding such features achieves the lowers 
possible bound to the error of the classifier.  Whether this bound 
can be reached or not, depends of the goodness of the classifier. 

3.2 A Definition Based on Renyi’s Entropy 

Instead of Shannon’s entropy, we apply Renyi’s quadratic entropy 
because of its computational advantages.  For a continuous 
variable Y, Renyi’s quadratic entropy is defined as (EQ 10): 

( ) ( ) dyypYH
y

R −=
2log  

It turns out that Renyi’s measure, combined with the Parzen 
density estimation method using Gaussian kernels, provides 
significant computational savings, because a convolution of two 
Gaussians is still a Gaussian. 
 

If the density ( )yp  is estimated as a sum of symmetric 

Gaussians, each centered at a sample iy  as: 
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Thus, Renyi’s quadratic entropy can be computed as a sum of 
local interactions as defined by the kernel, over all pairs of 
samples.  In order to make use of this convenient property, we 
make use of fuzzy membership functions and the natural way they 
demonstrate local interactions to find a function which maximized 
Mutual Information among sensor measurements. 

3.3 A Maximizing Mutual Information 

In any real-time system, data arrives at the input as a random 
variable, since it cannot be known a’ priori what data may or may 
not be received at any given time.  This is particularly true of the 
type of system radar environment represent.  In fact, each 
measurement is a random variable X, with a σ bound determined 
by the system dynamics. Since each of the sensors acts as a 
random variable we are looking to maximize Mutual Information 
in order to find the normalization that produces the best overall 
result.   
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If we assume each sensor measurement to be a random variable x, 
with its associated s bound, we can form a fuzzy membership 
distribution function around each measurement using the 
measurement as the mean (best guess with the information given) 
and the given error bound as the membership function bounds.In 
order to maximize Mutual Information across the measurements, 
we need to find the random variable xi, which minimizes the 
distance between random variables.  We accomplish this by 
mapping the each measurement value onto each of the fuzzy 
membership functions [12].  We compute fuzzy membership 
curves for each sensor, based on measurement and �� populate 
each with measurements from all sensors.  Figure 5 illustrates 12 
sensor measurements on the same system, each reporting a slightly 
different RF.  Each system would have its own measurement 
error, as shown in Figure 6. 
 

 
Figure 5 - Example of Multiple Sensor Measures of the Same 

Frequency 

 
Figure 6 - Examples of Multiple Sensors, each with their own Error 

Bounds 

 
Figure 6 - Examples of Fuzzy Membership Functions for Sensor 

Measurements, Populated with all the Sensor Measurements 

For each sensor, a fuzzy membership normalization function is 
formed and then each sensor measurement is mapped onto each 
membership normalization function (EQ 12): 
 
 
 
 
 
Figure 7 a-c illustrates this process 
 
Once all of the curves have been populated, we compute the mean 
fuzzy membership value for each curve (EQ 14): 
 
 
 
 
 
The normalization function with the highest mean membership 
represents the normalization mapping with the highest Mutual 
Information and is therefore given the highest weighting in 
determining the measurement value to report.  The weighting 
factors are then determined for rolling up the measurements and 
error bounds into a single parametric estimation (EQ 15): 
  
 
 
 
where the Wis are the weighting factors.  Figure 7 illustrates the 
process. 
 

 
Figure 7 - Weighted Fuzzy Parameter Estimation Process 

4. CONCLUSIONS AND DISCUSSION 

Renyi's theory of information is extremely important in 
intelligence work, much more so than its use in cryptography 
would indicate. The theory can be applied by intelligence 
agencies to keep classified information secret, and to discover 
as much information as possible about an adversary. His 
fundamental theorems lead us to believe it is much more 
difficult to keep secrets than it might first appear. In general it 
is not possible to stop the leakage of classified information, 
only to slow it.  
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Furthermore, the more people that have access to the 
information, and the more those people have to work with and 
belabor that information, the greater the redundancy of that 
information becomes. It is extremely hard to contain the flow 
of information that has such a high redundancy. This 
inevitable leakage of classified information is due to the 
psychological fact that what people know does influence their 
behavior somewhat, however subtle that influence might be. 
 
The premier example of the application of information theory to 
covert signaling is the design of the Global Positioning System 
signal encoding. The system uses a pseudorandom encoding that 
places the radio signal below the noise floor. Thus, an 
unsuspecting radio listener would not even be aware that there 
was a signal present, as it would be drowned out by atmospheric 
and antenna noise [15].  However, if one integrates the signal over 
long periods of time, using the "secret" (but known to the listener) 
pseudorandom sequence; one can eventually detect a signal, and 
then discern modulations of that signal. In GPS, the C/A signal has 
been publicly disclosed to be a 1023-bit sequence, but the 
pseudorandom sequence used in the P(Y) signal remains a secret. 
The same technique can be used to transmit and receive covert 
intelligence from short-range, extremely low power systems, 
without the enemy even being aware of the existence of a radio 
signal. We believe the use of Renyi’s information theory might 
enhance these capabilities over the original work by Shannon [14]. 
 
The discussion below illustrates one possible use of Renyi’s 
Information theory and the use of Fuzzy Filters to implement 
this theory for asynchronous data fusion for PNT estimations 
for Unmanned Air and Underwater vehicles (UAVs and 
AUVs). The fuzzy estimator performs asynchronous data 
fusion of all sensor measurements based on their relative 
confidence levels, and then nonlinearly combines the fused 
information with the INS estimates via fuzzy implementation 
of Renyi’s mutual information theory. The basis and 
implementation of the estimator is described, and navigation 
results are presented based on the fuzzy estimator.  We believe 
a fuzzy normalization procedure similar to the one outlined 
here provides the best automated, and dynamic way to roll-up 
sensor measurements into a single reported measurement and 
error bound for intelligence reporting and analysis.  Section B 
presents the results of a number of tests for this process.  

4.1 Fuzzy Data Fusion for UAV/AUV PNT Estimates 

Figure 15 illustrates the results of utilizing the Stochastic 
Derivative algorithms on the pulse environments described 
above.  The Higher-Order moments of the 1st 8 Stochastic 
Derivatives were generated and plotted for each of the signal 
environments.  As can be seen from 15, even 15 pulses from a 
pseudorandom-driven, multiply-agile radar signal caused a 
jump in the Stochastic Derivative moments.  And 300 pulses 
out of 10,000 cased a major jump in the Higher Order 
Stochastic Derivative moments.  Clearly the algorithms can 
detect the presence on non-stochastic signals in the 
environment.   
 

With rapid progress in COTS sensors and electronics 
technology, miniaturized Autonomous Underwater Vehicles 
(AUV) and Unmanned Air Vehicles (UAV) have reached an 
acceptable level of maturity and reliability that can be 
capitalized on their use for commercial and military 
applications. Examples include spatio-temporal surveys during 
clandestine oceanographic and air-surveillance environments. 
Without requiring any tethering support, the dynamic stability 
and data sampling quality can be much improved. In addition, 
multiple small AUVs or UAVs can be deployed 
simultaneously to traverse in different regions without 
necessitating one-to-one support contact and allows higher 
data sampling efficiency. To truly characterize four-
dimensional ocean or air dynamics autonomously, high 
precision underwater and air navigation is a technically 
challenging issue because vehicle localization must be done 
onboard. While differential GPS sensor technology provides a 
good solution for surface navigation, underwater and complex 
air navigation still remains a challenging problem especially 
for autonomous vehicles. The main goal here is to present a 
novel fuzzy data fusion that collates different and independent 
asynchronous position sensors together, and nonlinearly gain 
schedules them with the onboard INS system. One important 
objective here is to evaluate the possible use of the fuzzy 
implementation of mutual information theory for autonomous 
navigation and look at the effectiveness of the fuzzy sensor-
based fusion approach with respect to steady-state and 
convergence performance of bias estimation.  
 

4.2 Fuzzy PNT Fusion Architecture 

Figure 8 shows a general architecture for setting up a 
navigational. In this architecture, there are arbiters created for 
position sensors, attitude sensors and motion sensors. This set 
up is desirable because many existing AUVs and UAVs 
incorporate multiple sensors performing same functions, and it 
is thus beneficial to fuse all information to obtain the best 
navigation estimates. In cases of sensor failure, these arbiters 
will reconfigure in order to complete time-critical missions. 
Inputs to the position sensor arbiter are absolute position 
measurements, which can be based on (D)GPS and various 
forms of baseline sensors. These measurements are 
particularly valuable because of their drift-free properties over 
a longer time scale, as compared to the dead-reckoning 
position estimate. However, over a shorter time scale, the 
DGPS measurements introduce undesirable position error for 
compensation. It is thus important to carefully sample these so 
that the signal-to-noise ratio is maximized. In addition, 
measurements from all sensors are generally unavailable at 
every time sampling instant, and a strategy is thus needed to 
combine these asynchronous measurements before routing the 
result to the position estimator.  Since the number of sensors 
may not be constant one data point to the next, the real-time 
fuzzy fusion techniques discussed here are applicable to this 
problem. 
 
To combine the position measurements, each sensor is 
assigned a confidence value that characterizes its expected 
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variance in error about the true value. For an example, typical 
DGPS can have 1-5m range error (σ) together with horizontal 
dilution of precision (HDOP) uncertainty due to satellite 
geometry. The total position error introduced in terms of root-
mean-square value is HDOP *σ.  It should be noted that while 
the range error is generally hard to quantify, the HDOP profile 
can be readily obtained from any receiver, and thus it should 
be accounted for in the position estimator otherwise position 
error might be compromised. Once a suitable time sampling 
interval is chosen, the output of the position sensor arbiter is 
given as 
 

= iiCZX  where X is the arbiter output, Zi is the ith 

sensor output, and Ci is its confidence value which has 
accounted for both the range error and baseline geometry of 
satellites or sonar beacons. 

Note that a constraint of 
=

≡
N

i
iC

1

1  is imposed on the 

confidence values and Ci is then loosely interpreted as the 
probability that the ith sensor is correct. 

 
Figure 8 - High-Level Fusion Architecture for PNT Estimation 

 
The use of the fuzzy fusion algorithm discussed here provides 
a practical estimation algorithm that is not computational 
intensive but yet provides theoretically sound approach in 
performing data fusion. Figure 9 below illustrates the GPS X-
Y error evaluation for the test.   

 
Figure 9 – GPS Error Evaluation 

Figure 10 compares the INS way-point navigation 
performance based on 1) doppler returns (dash line) and 2) 
GPS + doppler (solid line). In these figures, `X' and `O' 
represent a differential and regular GPS fix respectively, and 
in both missions the AUV was started at the origin. During 
these missions, the AUV was underwater most of the time, 
and commanded to surface during some specified cornerings 
in order to obtain fixes, and thus position drift due to Doppler 
and attitude sensors can be easily observed, as compared to 
the DGPS fixes as the only source of reference. At the end of 
the last eastward leg in Figure B3, there was a significant 
discrepancy between the position estimator and DGPS 
measurement (approximately 1.5% error based on 50 meters 
after 3300 meters transect). Figure B3 presents results of a 3-
hr mission covering 15km transect. Sporadic fixes can be seen 
in the figure which corresponds to the AUV surfacing 
maneuvers. Among these fixes, maximum discrepancy 
between the position estimator and GPS fixes was found at 
location [-50 east, 150 north], and also it can be seen that the 
position estimator responds less to these GPS fixes, but much 
more to the DGPS fixes obtained immediately afterwards. By 
observation, the discrepancy was approximately 100m since 
the last update (6 legs of transect away _ 3300m), and thus the 
error was approximately 3%. It should be noted that 100m is 
within the limit of the GPS error deviation, and the result 
suggests that accurate navigation does not necessarily require 
frequent surfacing.  The results here demonstrate the 
usefulness of the fuzzy – mutual information algorithms for 
use in real-time sensor fusion.  We believe further 
investigation is required to determine the complete usefulness 
of this approach.  In Figure 10, the solid line represents the 
fuzzy position estimator output and the dashed line represents 
the dead-reckoned output.  ‘X’ and ‘O’ represent differential 
and regular GPS fix, respectively. 
 

 
Figure 10 – Fuzzy PNT Estimation and GPS Outputs 

 

Int'l Conf. Artificial Intelligence |  ICAI'15  | 153



4.3 Results for the Mutual Information Fusion Process 
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