
A Cluster-based Algorithm for Anomaly Detection in
Time Series Using Mahalanobis Distance

Erick Giovani Sperandio Nascimento1a, Orivaldo de Lira Tavares1, and Alberto Ferreira De Souza1

Erick@lcad.inf.ufes.br, tavares@inf.ufes.br, alberto@lcad.inf.ufes.br
1 Department of Informatics, Federal University of Espirito Santo, Vitória, ES, Brazil

a Corresponding Author

Abstract - We propose an unsupervised learning algorithm
for anomaly detection in time series data, based on
clustering techniques, using the Mahalanobis distance
function. After a brief review of the main and recent
contributions made in this research field, a formal and
detailed description of the algorithm is presented, followed
by a discussion on how to set its parameters. In order to
evaluate its effectiveness, it was applied to a real case, and
its results were compared with another technique that
targets the same problem. The obtained results suggest that
this proposal can be successfully applied to detect anomaly
in time series.

Keywords: time series, anomaly detection, clustering,
unsupervised learning, mahalanobis distance, pattern
recognition

1 Introduction
 Nowadays, many processes, such as industrial plants,
meteorological monitoring stations or stock markets,
generate relevant time series data continuously. In general,
these data are collected and stored by specific hardware,
and later are analyzed and maintained by specialized
people, who learn about these processes using the data, but
are also responsible for verifying its correctness in
representing the real state of the processes.

In many situations, it is critical for the process to identify
unusual patterns that could be generated by unexpected
behavior. And such unwanted behavior may be due to any
problem that the related process might be experiencing.
For example, an industry may monitor some variables of
its current productive process to diagnose bottlenecks,
violations of quality requisites, violation of environmental
requisites such as a specific pollutant emitted to the
environment over the permitted by law, or any other
situation that could be harmful to its business. Another
example is one certain environmental institute or agency,
whom would need to monitor some meteorological or air

quality parameters in order to evaluate the air quality of an
urban area, might experience that some equipment were
presenting failure, which could lead to misunderstand data
monitoring. Either, a credit card company may monitor
each user transaction to look for unusual behaviors that
could point to fraudulent operations. These unusual,
unwanted behaviors are often called as anomalous
behaviors, and might be induced in the data due to a
variety of reasons, all of them presenting a certain degree
of importance to the analyst. And it is important that this
analysis could take into account any changes in the
parameter’s behavior to identify opportunities to improve,
prevent or correct any situation.

In this context we present an unsupervised learning
algorithm based in clustering techniques using the
Mahalanobis distance as its distance function targeting the
problem of anomaly detection in time series, here called as
C-AMDATS, which stands for Cluster-based Algorithm
using Mahalanobis distance for Detection of Anomalies in
Time Series. The paper is organized as follows: the
remainder of this section presents a brief review of the
recent research regarding anomaly detection in time series.
Section 2 presents the foundations of the algorithm, and a
detailed and formal description of the algorithm. Section 3
presents a real case with anomalous patterns that was
evaluated in order to assess the ability of the C-AMDATS
approach to detect these anomalies, in conjunction with a
comparison with other technique targeting the same
problem, i.e., the detection of anomalies in time series.
Section 4 presents a conclusion and recommendations for
future works. And in Section 5 we acknowledge our main
contributors.

1.1 Related Work
 Several works have been developed to identify
patterns in time series data, and some of them were
specialized to detect anomalous patterns in time series. We
will briefly present a review about the most recent works in
anomaly detection in time series in order to identify

622 Int'l Conf. Artificial Intelligence | ICAI'15 |

whether our proposed technique is introducing a new
contribution to the community.

Some works uses distance-based techniques, like in
[2,3,4,5,6,7,8] to detect outliers or anomalies in time
series. Other works uses sliding windows and
discretization techniques. In some cases, a single time
series is converted to a time series database through the use
of a sliding window incrementally [9,10,11,12,17] or in
discrete steps according to a known period [13,14].
Specifically in [17], the authors present a technique, called
SAX, which addresses anomaly detection using time series
discords, and applies it to real cases. We chose to compare
our technique with this one because there is a graphic
visualization tool and user interface, called VizTree [18],
which implements the technique. Unlike methods that seek
anomalies of a pre-specified length, the method presented
in [15] looks for anomalies at varying levels of granularity
(i.e., day, month, year), using a tree structure called TSA-
Tree that contains pre-computed trend and anomaly
information in each node. The InfoMiner technique [13,
14] detects “surprising” patterns on periodic event
sequence data. Thus, the data is already discretized, and
the known period allows the authors to treat a single
continuous time series as a set of smaller one period time
series. The work presented in [1] introduces a technique to
identify patterns in time series data using an algorithm
called by them as PCAD – Periodic Curve Anomaly
Detection, which is a clustering-based algorithm built
above the basis of the k-means algorithm, that outputs a
ranked list of both global and local anomalies. The
technique developed in [16] proposes an approach that
employs a kernel matrix alignment method to capture the
dependence relationships among variables in the time
series in order to detect anomalies.

Some of these works have been extracted from [19], which
brings a literature survey about clustering time series data
stream that we recommend to be read as a supplementary
reference about the related work. We chose some of the
most recent researches regarding anomaly detection in
time series data. In the next section we present our
proposal of an algorithm based in clustering techniques
with some enhancements built to let it recognize anomalies
in a single time series data. The results of its application
will be further evaluated in this paper.

2 The Proposed Algorithm
 Our algorithm, presented in Box 1, is a dynamic
clustering procedure that, given (i) a time series T = {t1, t2,
…, t|T|} of real-valued, time-indexed variables sampled at a
certain frequency and ordered by time, (ii) the initial
clusters’ size τ, and (iii) the clustering factor φ, computes a

set of anomalous patterns in T, P = {P1, P2, …, P|P|},
where Pj = {C1, C2, ..., C|Pj|} is an anomalous pattern of T,
which is composed of a set of disjoint clusters Ck = {ta,
ta+1, …, tb}, 1 ≤ a ≤ b ≤ |T|, that are ordered subsets of T.

C-AMDATS (T, τ, φ)
1. C ← ComputeInitialClusters(T, τ);
2. while changes in C happen do
3. C’ ← C
4. for i ← 1 to |T| do
5. Move ti from its cluster in C to the
6. nearest cluster in C according to

f(C’)
7. endfor
8. endwhile
9. repeat
10. Add C1 to P;
11. Remove C1 from C;
12. k ← 1;
13. while k <= |C| do
14. for j ← 1 to |P| do
15. if Pj is similar to Ck then
16. Add Ck to Pi;
17. Remove Ck from C;
18. else
19. k ← k + 1;
20. endif
21. endfor
22. endwhile
23. until |C|=0
24. for i ← 1 to |P| do
25. Compute the Anomaly Rank r(Pi)
26. endfor
27. SortByAnomalyRank(P);
28. return P;

Box 1 – C-AMDATS Pseudo-Algorithm

The algorithm starts in line 1 by computing the set of equal
sized initial clusters, C. In this step, the set T is split into a
set of sets, C, where each subset Ck = {ta, ta+1, …, tb} has
size |Ck| = τ, i.e., b - a = τ (except the last cluster, in cases
where |T| is not divisible by τ). After that, in lines 2-8, the
algorithm rebuilds C iteratively using its copy, C’,
computed before the iteration (line 3). For that, in lines 5-
6, the algorithm uses f(C’) to determine which cluster in C
is the nearest to ti. In the algorithm, f(C’) computes the
average of the time series segments within each cluster C’k,
or the centroid of each C’k, mk = (ta + ta+1 + … + tb) / (b –
a) (see Fig. 1), and the distance, d(ti, mk), from ti to each
mk, for 1 ≤ k ≤ |C’|. Using these distances, in lines 5-6 the
algorithm moves ti from its current cluster in C to the
cluster Ck, where k is the index of the cluster C’k whose
centroid mk is the nearest to ti according to d(., .). Our
choice of distance function d(., .) is the Mahalanobis
distance [20]. We explain this choice below but, in our

Int'l Conf. Artificial Intelligence | ICAI'15 | 623

experiments, we also use the Euclidian distance for
comparison.

Fig. 1. A time series T split into equal-sized clusters C’k,
each of which of size t. The red dots are the centroids, mk,

of each cluster C’k.

The loop of lines 2-8 terminates when no sample ti is
moved in lines 4-7. After this loop, we have the set of sets,
C (see Fig. 1), composed of clusters of samples, Ck, that
better group the samples according to their sample values
distributed over time (please compare Fig. 1 with Fig. 3;
note that the size of each cluster Ck in Fig. 3 is not the
same). This happens because of our choice of distance
function. In clustering problems, it is common to use the
Euclidean distance function. Its use leads to clusters with
circular format, due to the fact it does not take into account
the variance of each dimension of the data set. However, it
is possible that this circular shape may not be suitable to
represent the cluster’s shape. To solve this problem,
another distance function should be used to build clusters
that take in consideration variances in the x and y axes.
The Mahalanobis distance differs from the Euclidean
distance in that it takes into account the variances of each
dimension (see Fig. 2). The Equation (1) presents the
formulation of the Mahalanobis distance [20]:

(1)

In Equation (1), x = (x1, x2, …, xn)T is a specific variable
in the data set, where n is the number of dimensions of the
variables, μ = (μ1, μ2, …, μn) T is a certain cluster centroid
and S is the covariance matrix relative to that cluster.

Fig. 2. A sample of a time series illustrating the differences

between the application of the Euclidean (forming the
circle) and Mahalanobis (forming the ellipse) distance

functions.

In Fig. 2, τ is the initial clusters’ size, re is the radius of the
circle that fits the cluster, and r1 and r2 correspond to the
radii of the ellipse that fits the same cluster as well. The re
value is the Euclidean distance of farthest point in the
cluster to its centroid, being big enough to embrace all the
points in the cluster, while the r1 and r2 values are obtained
by the application of the Mahalanobis distance. As we can
note, the shape that best fits the cluster is the ellipse, while
the circle is grouping regions that do not fall into the
cluster. It is due to the fact that the Mahalanobis distance
function takes into account both dimensions
simultaneously, not separately. In order to show the real
impact of using this distance function rather than the
Euclidean distance, we will present the results of applying
both to a real case in the Section 3.

Fig. 3. A time series T split into clusters C’k, each of which
of variable size. The red dots are the centroids at the initial
state of the algorithm, and the black dots are the centroids

after the iterative process at lines 2-8

The following step (lines 9-23) performs the task of
finding the final patterns P in the time series T. After all
clusters have been found, the algorithm verifies which

τ

624 Int'l Conf. Artificial Intelligence | ICAI'15 |

clusters are similar. This similarity is calculated using the
standard deviation σy of the real-values of the variables in
T, the y-coordinate of each cluster and the clustering factor
φ. If the modulus of the difference between the y-
coordinate of the centroids of two clusters is less than or
equal to σy times φ, then these clusters can be merged,
meaning that they will represent the same pattern P. This
task is performed till all the clusters have been analyzed.

In the last step (lines 24-27), the algorithm performs the
detection of the anomalies. An anomaly is a pattern that
does not conform to an expected behavior in T, i.e. an
anomalous pattern. This detection is done by computing
the anomaly score r for each pattern P found in the
previous step, which is calculated as the ratio of the size of
the entire time series by the summation of the sizes of the
clusters present in P. The anomaly score (or rank) r is a
measure of how much P is interesting in terms of being an
anomaly. Following, the entire set P is ordered by r in
descending order, and the anomalous patterns will be those
with the highest anomaly score values. The higher the
anomaly score value for a pattern P, the greater is its
chance to be an anomaly in T. In Fig. 4 we present the
final state of the algorithm: all similar clusters have been
merged into a pattern, as stated by the criteria described
above. Three patterns have been found, and according to
their anomaly score, the most anomalous are those
highlighted in red and green color, while the blue pattern
is the least.

Fig. 4. A time series T divided into three patterns, at the

final of the execution of the algorithm. The green and red
are the most anomalous.

The complexity of the C-AMDATS is O(nkz), where n is
the number of variables, k is the number of initial clusters,
and z is the number of iterations till the convergence state.
Since it is a derivation of the k-means algorithm, it can
also be classified as a NP-Hard problem [21], meaning that
the algorithm will stop at the z iteration due to its stop
criterion, but there is no guarantee that the absolute
minimum of the objective function can be reached.

In Section 1.1 we presented a review of the related work.
To the best of our knowledge, it was not possible to find
any other clustering algorithm for anomaly detection in
time series data that could be even similar to this technique
here presented.

3 C-AMDATS – Applications and Results
 To verify its ability to analyze real time series data,
this technique was applied to real cases. Hence, a real case
episode was selected. It will be further presented and
discussed, as well as the results of the application of the C-
AMDATS algorithm. During the tests, two versions of the
algorithm were developed: one using the Euclidean
distance (C-AMDATSE) and the other using the
Mahalanobis distance (C-AMDATSM). The experiments
showed that the application of the Mahalanobis distance
led to better results, but it took more CPU time than the
application of the Euclidean distance function due to the
need to compute the inverse of the covariance matrix for
each cluster, at each iteration step. We will present results
using both distance functions.

To assess the algorithm’s performance with respect to its
ability to identify the same anomalous patterns identified
by the human specialists, its results were compared to
those patterns using the precision, recall and accuracy
methodologies [22]. Also, a confusion matrix was built to
show the differences between each approach.

3.1 Real Case – Carbon Monoxide
 This case refers to the measurement of carbon
monoxide during two months in the year of 2002. The data
is hourly sampled, and was collected in a metropolitan
area, by an automated monitoring system maintained. For
reference, we will use its chemical representation, CO. Its
cycle’s length is of 24 hours.

The Fig. 5 shows the result of the C-AMDATSM approach
for this case. Three major patterns are highlighted: the red,
green and blue, in order of anomaly score, which led us to
select the patterns highlighted with red and green color as
the anomalous patterns. In Table 1 we present the
confusion matrix for this case. The patterns are also
delimited by vertical lines.

Int'l Conf. Artificial Intelligence | ICAI'15 | 625

Fig. 5. Time plot for CO highlighting the anomalous
patterns found by C-AMDATSM

Table 1. Confusion matrix for this case

Anomalous

Pattern Precision Recall Accuracy

C-
AMDATSM

82 2
0.9762 0.9111 0.9931

1 348 8

C-
AMDATSE

66 7
0.9041 0.7333 0.9785

1 343 24

SAX
40 8

0.8333 0.4444 0.9597
1 342 50

The values of the parameters for C-AMDATS were: initial
clusters’ size of 24 hours and clustering factor of 1.2. For
SAX, we spent about 2 hours looking for a best
combination of its parameters, and we found that a window
length of 24h, number of symbols per window of 3 and
alphabet size of 4 performed the best. Moreover, we also
had to set one advanced option in the VizTree tool, called
“No Overlapping Windows”, which led to the best results
we could experiment.

Similarly, both approaches were able to find, some
partially, the region of the anomaly subsequence. However,
the SAX approach was just able to give a clue about the
second anomaly, as we can see in Fig. 6, and the C-
AMDATSM could give a good result in comparison with the
others.

For SAX, we extracted the most meaningful branches
regarding these anomalous patterns, which corresponded
to “ccc” and “acc”.

Fig. 6. Time plot for CO highlighting, in red, the

anomalous region found by the SAX technique

4 Conclusions and Future Work
Recommendations

 In this work we presented a proposal of an algorithm
for anomaly detection in time series. We showed that there
is a plenty of applications, and also many contributions
made to this research field. We identified the main
contributions presented recently and analysed them to
identify whether the algorithm proposed by these authors is
indeed a new contribution to the community. We verified
that there is no similar technique. We presented the
concepts behind this work, and then we described our
proposal. Finally, we applied the algorithm to a real data
case, and have identified that it performed good results in
comparison with the other approach, which shows that it
can be applied as a tool to leverage the specialists‘ job in
analyzing and identifying anomalies in time series data.

There are several future works to be developed in the
following:

a) to write a full paper of this work, describing in more
details some issues regarding the review of the related
work, the description of the algorithm and the methods
for assessing its performance, applying the algorithm to
other real cases and compare with the same technique
(SAX);

b) to use C-AMDATS in an operational environment,
where the algorithm would be set up to work
continuously, with the jobs of analysing time series
data, finding patterns, and sending status report to
specialists. Then, these specialists would be able to
verify the results of the algorithm at real time;

c) to implement a function to analyze correlated
parameters at once to find anomalies between them,
e.g. ozone and solar radiation, which are different
parameters but have an intrinsic correlation. This
recommendation would demand creating a derivation
of the C-AMDATS algorithm to be applied to analyze
various time series data at the same execution;

d) to design a learning module to learn from the user
what are the best values computed at a certain
moment, based upon past applications of the algorithm
that have been validated by the user.

626 Int'l Conf. Artificial Intelligence | ICAI'15 |

Based on the results here presented, we think this work
could be successfully applied in several areas of this
research field to improve the way time series data are
analyzed in order to detect anomalies.

5 Acknowledgements
 We acknowledge the Espirito Santo Research Support
Foundation (FAPES), which partially funded this work.
We also acknowledge our contributors, who gave us access
to real data and let us publish the results. Namely, we
thanks the Environmental Institute of the state of Espirito
Santo, Brazil – IEMA for the data that is related to the real
case.

6 References
[1] Umaa Rebbapragada, Pavlos Protopapas, Carla
Brodley, Charles Alcock. “Finding Anomalous Periodic
Time Series: An Application to Catalogs of Periodic
Variable Stars”, Spring Machine Learning Journal
(Springer), Vol. 74, Issue 3, 281-313, Mar 2009. DOI:
10.1007/s10994-008-5093-3;

[2] Edwin Knorr, Raymond Ng. “Algorithms for Mining
Distance-Based Outliers in Large Datasets”, In:
Proceedings of the 24th International Conference on Very
Large Data Bases – VLDB, VLDB International
Conference, pp. 392–403, 1998;

[3] Sridhar Ramaswamy, Rajeev Rastogi, Kyuseok Shim.
“Efficient Algorithms for Mining Outliers from Large
Datasets”, In: SIGMOD ’00: Proceedings of the 2000
ACM SIGMOD International Conference on Management
of Data, SIGMOD, pp. 427–438, 2000;

[4] Fabricio Angiulli, Carla Pizzuti. “Fast Outlier
Detection in High Dimensional Spaces”, In: Proceedings of
the 6th European Conference on Principles of Data Mining
and Knowledge Discovery, pp. 15–26, 2002;

[5] Mingxi Wu, Christopher Jermaine. “Outlier
Detection by Sampling with Accuracy Guarantees”, In:
Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp.
767–772, 2006;

[6] Markus Breunig, Hans-Peter Kriegel, Raymond Ng,
Jörg Sander. “LOF: Identifying Density-Based Local
Outliers”, In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, pp. 93–
104, 2000;

[7] Wen Jin, Anthony Tung, Jiawei Han. “Mining Top-N
Local Outliers In Large Databases”, In: Proceedings of the
7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 293–298,
2001;

[8] Dongmei Ren, Baoying Wang, W. Perrizo. “RDF: A
Density-based Outlier Detection Method Using Vertical
Data Representation”, In: Proceedings of the 4th IEEE
International Conference on Data Mining, pp. 503–506,
2004;

[9] Dipankar Dasgupta, Stephanie Forrest. “Novelty
Detection in Time Series Data Using Ideas from
Immunology”, In: Proceedings of the International
Conference on Intelligent Systems, pp. 82–87, 1996. DOI:
10.1.1.57.3894;

[10] Eamonn Keogh, Stefano Lonardi, Bill Yuan-chi
Chiu. “Finding Surprising Patterns in a Time Series
Database in Linear Time and Space”, In: Proceedings of
the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 550–556,
2002;

[11] Junshui Ma, Simon Perkins. “Online Novelty
Detection on Temporal Sequences”, In: Proceedings of the
9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 613–618,
2003;

[12] Li Wei, Nitin Kumar, Venkata Lolla, Eamonn
Keogh, Stefano Lonardi, Chotirat Ratanamahatana.
“Assumption-Free Anomaly Detection in Time Series”, In:
SSDBM’2005: Proceedings of the 17th International
Conference on Scientific and Statistical Database
Management, pp. 237–240, 2005;

[13] Jiong Yang, Wei Wang, Philip Yu. “Infominer:
Mining Surprising Periodic Patterns”, In: Proceedings of
the 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 395–400,
2001;

[14] J. Yang, W. Wang, P. S. Yu. “Mining Surprising
Periodic Patterns, Data Mining and Knowledge
Discovery”, Data Mining and Knowledge Discovery
(ACM), Vol. 9, Issue 2, 189–216, Sep 2004;

[15] Cyrus Shahabi, Xiaoming Tian, Wugang Zhao.
“TSA-Tree: A Wavelet-Based Approach to Improve the
Efficiency of Multilevel Surprise and Trend Queries on
Time-Series Data”, In: Proceedings of the 12th

Int'l Conf. Artificial Intelligence | ICAI'15 | 627

International Conference on Statistical and Scientific
Database Management, pp. 55–68, 2000;

[16] Haibin Cheng, Pang-Ning Tan, Christopher Potter,
Steven Klooster. “Detection and Characterization of
Anomalies in Multivariate Time Series”, In: Proceedings
of the 9th SIAM International Conference on Data Mining,
pp. 413–424, 2009;

[17] Eamonn Keogh, Jessica Lin, Ada Fu. “HOT SAX:
Efficiently Finding the Most Unusual Time Series
Subsequence”, In: Proceedings of the 5th IEEE
International Conference on Data Mining (ICDM), pp.
226–233, 2005;

[18] Jessica Lin, Eamonn Keogh, Stefano Lonardi, Jeffrey
Lankford, Daonna Nystrom. “VizTree: a Tool for Visually
Mining and Monitoring Massive Time Series Databases”,
In: Proceedings of the 30th International Conference in
Very Large Data Bases, pp. 1269-1272, 2004;

[19] V. Kavitha, M. Punithavalli. “Clustering Time Series
Data Stream – A Literature Survey”, International Journal
of Computer Science and Information Security (IJCSIS),
Vol. 8, Issue 1, pp. 289-294, Apr 2010;

[20] Julius T. Tou, Rafael C. Gonzalez. “Pattern
Recognition Principles”, Addison-Wesley, 1974;

[21] Meena Mahajan, Prajakta Nimbhorkar, Kasturi
Varadarajan. “The Planar k-Means Problem is NP-Hard”,
In: Proceedings of the 3rd International Workshop on
Algorithms and Computation, Springer-Verlag, pp. 274–
285, 2009. DOI: 10.1007/978-3-642-00202-1_24;

[22] David L. Olson, Dursun Delen. “Advanced Data
Mining Techniques”, Springer, 2008.

628 Int'l Conf. Artificial Intelligence | ICAI'15 |

