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Abstract - We propose an unsupervised learning algorithm 
for anomaly detection in time series data, based on 
clustering techniques, using the Mahalanobis distance 
function. After a brief review of the main and recent 
contributions made in this research field, a formal and 
detailed description of the algorithm is presented, followed 
by a discussion on how to set its parameters. In order to 
evaluate its effectiveness, it was applied to a real case, and 
its results were compared with another technique that 
targets the same problem. The obtained results suggest that 
this proposal can be successfully applied to detect anomaly 
in time series. 
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1 Introduction 
  Nowadays, many processes, such as industrial plants, 
meteorological monitoring stations or stock markets, 
generate relevant time series data continuously. In general, 
these data are collected and stored by specific hardware, 
and later are analyzed and maintained by specialized 
people, who learn about these processes using the data, but 
are also responsible for verifying its correctness in 
representing the real state of the processes.  

In many situations, it is critical for the process to identify 
unusual patterns that could be generated by unexpected 
behavior. And such unwanted behavior may be due to any 
problem that the related process might be experiencing. 
For example, an industry may monitor some variables of 
its current productive process to diagnose bottlenecks, 
violations of quality requisites, violation of environmental 
requisites such as a specific pollutant emitted to the 
environment over the permitted by law, or any other 
situation that could be harmful to its business. Another 
example is one certain environmental institute or agency, 
whom would need to monitor some meteorological or air 

quality parameters in order to evaluate the air quality of an 
urban area, might experience that some equipment were 
presenting failure, which could lead to misunderstand data 
monitoring. Either, a credit card company may monitor 
each user transaction to look for unusual behaviors that 
could point to fraudulent operations. These unusual, 
unwanted behaviors are often called as anomalous 
behaviors, and might be induced in the data due to a 
variety of reasons, all of them presenting a certain degree 
of importance to the analyst. And it is important that this 
analysis could take into account any changes in the 
parameter’s behavior to identify opportunities to improve, 
prevent or correct any situation. 

In this context we present an unsupervised learning 
algorithm based in clustering techniques using the 
Mahalanobis distance as its distance function targeting the 
problem of anomaly detection in time series, here called as 
C-AMDATS, which stands for Cluster-based Algorithm 
using Mahalanobis distance for Detection of Anomalies in 
Time Series. The paper is organized as follows: the 
remainder of this section presents a brief review of the 
recent research regarding anomaly detection in time series. 
Section 2 presents the foundations of the algorithm, and a 
detailed and formal description of the algorithm. Section 3 
presents a real case with anomalous patterns that was 
evaluated in order to assess the ability of the C-AMDATS 
approach to detect these anomalies, in conjunction with a 
comparison with other technique targeting the same 
problem, i.e., the detection of anomalies in time series. 
Section 4 presents a conclusion and recommendations for 
future works. And in Section 5 we acknowledge our main 
contributors. 

1.1 Related Work 
 Several works have been developed to identify 
patterns in time series data, and some of them were 
specialized to detect anomalous patterns in time series. We 
will briefly present a review about the most recent works in 
anomaly detection in time series in order to identify 
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whether our proposed technique is introducing a new 
contribution to the community.  

Some works uses distance-based techniques, like in 
[2,3,4,5,6,7,8] to detect outliers or anomalies in time 
series. Other works uses sliding windows and 
discretization techniques. In some cases, a single time 
series is converted to a time series database through the use 
of a sliding window incrementally [9,10,11,12,17] or in 
discrete steps according to a known period [13,14]. 
Specifically in [17], the authors present a technique, called 
SAX, which addresses anomaly detection using time series 
discords, and applies it to real cases. We chose to compare 
our technique with this one because there is a graphic 
visualization tool and user interface, called VizTree [18], 
which implements the technique. Unlike methods that seek 
anomalies of a pre-specified length, the method presented 
in [15] looks for anomalies at varying levels of granularity 
(i.e., day, month, year), using a tree structure called TSA-
Tree that contains pre-computed trend and anomaly 
information in each node. The InfoMiner technique [13, 
14] detects “surprising” patterns on periodic event 
sequence data. Thus, the data is already discretized, and 
the known period allows the authors to treat a single 
continuous time series as a set of smaller one period time 
series. The work presented in [1] introduces a technique to 
identify patterns in time series data using an algorithm 
called by them as PCAD – Periodic Curve Anomaly 
Detection, which is a clustering-based algorithm built 
above the basis of the k-means algorithm, that outputs a 
ranked list of both global and local anomalies. The 
technique developed in [16] proposes an approach that 
employs a kernel matrix alignment method to capture the 
dependence relationships among variables in the time 
series in order to detect anomalies. 

Some of these works have been extracted from [19], which 
brings a literature survey about clustering time series data 
stream that we recommend to be read as a supplementary 
reference about the related work. We chose some of the 
most recent researches regarding anomaly detection in 
time series data. In the next section we present our 
proposal of an algorithm based in clustering techniques 
with some enhancements built to let it recognize anomalies 
in a single time series data. The results of its application 
will be further evaluated in this paper. 

 

2 The Proposed Algorithm 
 Our algorithm, presented in Box 1, is a dynamic 
clustering procedure that, given (i) a time series T = {t1, t2, 
…, t|T|} of real-valued, time-indexed variables sampled at a 
certain frequency and ordered by time, (ii) the initial 
clusters’ size τ, and (iii) the clustering factor φ, computes a 

set of anomalous patterns in T, P = {P1, P2, …, P|P|}, 
where Pj = {C1, C2, ..., C|Pj|} is an anomalous pattern of T, 
which is composed of a set of disjoint clusters Ck = {ta, 
ta+1, …, tb}, 1 ≤ a ≤ b ≤ |T|, that are ordered subsets of T.   

 
C-AMDATS (T, τ, φ) 
1. C ← ComputeInitialClusters(T, τ); 
2. while changes in C happen do 
3.   C’ ← C 
4.   for i ← 1 to |T| do 
5.     Move ti from its cluster in C to the  
6.     nearest cluster in C according to 

f(C’) 
7.   endfor 
8. endwhile 
9. repeat  
10.     Add C1 to P; 
11.     Remove C1 from C; 
12.     k ← 1; 
13.     while k <= |C| do 
14.         for j ← 1 to |P| do 
15.             if Pj is similar to Ck then 
16.                 Add Ck to Pi; 
17.                 Remove Ck from C; 
18.             else 
19.                 k ← k + 1; 
20.             endif 
21.         endfor 
22.     endwhile 
23. until |C|=0  
24. for i ← 1 to |P| do 
25.     Compute the Anomaly Rank r(Pi) 
26. endfor 
27. SortByAnomalyRank(P); 
28. return P; 
 

Box 1 – C-AMDATS Pseudo-Algorithm 
 

The algorithm starts in line 1 by computing the set of equal 
sized initial clusters, C. In this step, the set T is split into a 
set of sets, C, where each subset Ck = {ta, ta+1, …, tb} has 
size |Ck| = τ, i.e., b - a = τ (except the last cluster, in cases 
where |T| is not divisible by τ). After that, in lines 2-8, the 
algorithm rebuilds C iteratively using its copy, C’, 
computed before the iteration (line 3).  For that, in lines 5-
6, the algorithm uses f(C’) to determine which cluster in C 
is the nearest to ti. In the algorithm, f(C’) computes the 
average of the time series segments within each cluster C’k, 
or the centroid of each C’k, mk = (ta + ta+1 + … + tb ) / (b – 
a) (see Fig. 1), and the distance, d(ti, mk), from ti to each 
mk, for 1 ≤ k ≤ |C’|. Using these distances, in lines 5-6 the 
algorithm moves ti from its current cluster in C to the 
cluster Ck, where k is the index of the cluster C’k whose 
centroid mk is the nearest to ti according to d(., .). Our 
choice of distance function d(., .) is the Mahalanobis 
distance [20]. We explain this choice below but, in our 
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experiments, we also use the Euclidian distance for 
comparison. 

 
Fig. 1. A time series T split into equal-sized clusters C’k, 
each of which of size t. The red dots are the centroids, mk, 

of each cluster C’k. 
 
The loop of lines 2-8 terminates when no sample ti is 
moved in lines 4-7. After this loop, we have the set of sets, 
C (see Fig. 1), composed of clusters of samples, Ck, that 
better group the samples according to their sample values 
distributed over time (please compare Fig. 1 with Fig. 3; 
note that the size of each cluster Ck in Fig. 3 is not the 
same). This happens because of our choice of distance 
function. In clustering problems, it is common to use the 
Euclidean distance function. Its use leads to clusters with 
circular format, due to the fact it does not take into account 
the variance of each dimension of the data set. However, it 
is possible that this circular shape may not be suitable to 
represent the cluster’s shape. To solve this problem, 
another distance function should be used to build clusters 
that take in consideration variances in the x and y axes. 
The Mahalanobis distance differs from the Euclidean 
distance in that it takes into account the variances of each 
dimension (see Fig. 2). The Equation (1) presents the 
formulation of the Mahalanobis distance [20]: 

 

 
(1) 

 
In Equation (1), x = (x1, x2, …, xn)T is a specific variable 
in the data set, where n is the number of dimensions of the 
variables, μ = (μ1, μ2, …, μn) T is a certain cluster centroid 
and S is the covariance matrix relative to that cluster.

 
Fig. 2. A sample of a time series illustrating the differences 

between the application of the Euclidean (forming the 
circle) and Mahalanobis (forming the ellipse) distance 

functions.  
 
In Fig. 2, τ is the initial clusters’ size, re is the radius of the 
circle that fits the cluster, and r1 and r2 correspond to the 
radii of the ellipse that fits the same cluster as well. The re 
value is the Euclidean distance of farthest point in the 
cluster to its centroid, being big enough to embrace all the 
points in the cluster, while the r1 and r2 values are obtained 
by the application of the Mahalanobis distance. As we can 
note, the shape that best fits the cluster is the ellipse, while 
the circle is grouping regions that do not fall into the 
cluster. It is due to the fact that the Mahalanobis distance 
function takes into account both dimensions 
simultaneously, not separately. In order to show the real 
impact of using this distance function rather than the 
Euclidean distance, we will present the results of applying 
both to a real case in the Section 3.  

 
Fig. 3. A time series T split into clusters C’k, each of which 
of variable size. The red dots are the centroids at the initial 
state of the algorithm, and the black dots are the centroids 

after the iterative process at lines 2-8 
 

The following step (lines 9-23) performs the task of 
finding the final patterns P in the time series T. After all 
clusters have been found, the algorithm verifies which 

τ 
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clusters are similar. This similarity is calculated using the 
standard deviation σy of the real-values of the variables in 
T, the y-coordinate of each cluster and the clustering factor 
φ. If the modulus of the difference between the y-
coordinate of the centroids of two clusters is less than or 
equal to σy times φ, then these clusters can be merged, 
meaning that they will represent the same pattern P. This 
task is performed till all the clusters have been analyzed.  

In the last step (lines 24-27), the algorithm performs the 
detection of the anomalies. An anomaly is a pattern that 
does not conform to an expected behavior in T, i.e. an 
anomalous pattern.  This detection is done by computing 
the anomaly score r for each pattern P found in the 
previous step, which is calculated as the ratio of the size of 
the entire time series by the summation of the sizes of the 
clusters present in P. The anomaly score (or rank) r is a 
measure of how much P is interesting in terms of being an 
anomaly. Following, the entire set P is ordered by r in 
descending order, and the anomalous patterns will be those 
with the highest anomaly score values. The higher the 
anomaly score value for a pattern P, the greater is its 
chance to be an anomaly in T. In Fig. 4 we present the 
final state of the algorithm: all similar clusters have been 
merged into a pattern, as stated by the criteria described 
above. Three patterns have been found, and according to 
their anomaly score, the most anomalous are those 
highlighted in red and green color, while the blue pattern 
is the least.  

 

 
Fig. 4. A time series T divided into three patterns, at the 

final of the execution of the algorithm. The green and red 
are the most anomalous. 

The complexity of the C-AMDATS is O(nkz), where n is 
the number of variables, k is the number of initial clusters, 
and z is the number of iterations till the convergence state. 
Since it is a derivation of the k-means algorithm, it can 
also be classified as a NP-Hard problem [21], meaning that 
the algorithm will stop at the z iteration due to its stop 
criterion, but there is no guarantee that the absolute 
minimum of the objective function can be reached. 

In Section 1.1 we presented a review of the related work. 
To the best of our knowledge, it was not possible to find 
any other clustering algorithm for anomaly detection in 
time series data that could be even similar to this technique 
here presented.  

3 C-AMDATS – Applications and Results 
 To verify its ability to analyze real time series data, 
this technique was applied to real cases. Hence, a real case 
episode was selected. It will be further presented and 
discussed, as well as the results of the application of the C-
AMDATS algorithm. During the tests, two versions of the 
algorithm were developed: one using the Euclidean 
distance (C-AMDATSE) and the other using the 
Mahalanobis distance (C-AMDATSM). The experiments 
showed that the application of the Mahalanobis distance 
led to better results, but it took more CPU time than the 
application of the Euclidean distance function due to the 
need to compute the inverse of the covariance matrix for 
each cluster, at each iteration step. We will present results 
using both distance functions. 

To assess the algorithm’s performance with respect to its 
ability to identify the same anomalous patterns identified 
by the human specialists, its results were compared to 
those patterns using the precision, recall and accuracy 
methodologies [22]. Also, a confusion matrix was built to 
show the differences between each approach. 
 
3.1 Real Case – Carbon Monoxide 
 This case refers to the measurement of carbon 
monoxide during two months in the year of 2002. The data 
is hourly sampled, and was collected in a metropolitan 
area, by an automated monitoring system maintained. For 
reference, we will use its chemical representation, CO. Its 
cycle’s length is of 24 hours. 

The Fig. 5 shows the result of the C-AMDATSM approach 
for this case. Three major patterns are highlighted: the red, 
green and blue, in order of anomaly score, which led us to 
select the patterns highlighted with red and green color as 
the anomalous patterns. In Table 1 we present the 
confusion matrix for this case. The patterns are also 
delimited by vertical lines. 
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Fig. 5. Time plot for CO highlighting the anomalous 
patterns found by C-AMDATSM 

Table 1. Confusion matrix for this case 

 
Anomalous 

Pattern Precision Recall Accuracy 

C-
AMDATSM 

82 2 
0.9762 0.9111 0.9931 

1 348 8 

C-
AMDATSE 

66 7 
0.9041 0.7333 0.9785 

1 343 24 

SAX 
40 8 

0.8333 0.4444 0.9597 
1 342 50 

 
The values of the parameters for C-AMDATS were: initial 
clusters’ size of 24 hours and clustering factor of 1.2. For 
SAX, we spent about 2 hours looking for a best 
combination of its parameters, and we found that a window 
length of 24h, number of symbols per window of 3 and 
alphabet size of 4 performed the best. Moreover, we also 
had to set one advanced option in the VizTree tool, called 
“No Overlapping Windows”, which led to the best results 
we could experiment. 

Similarly, both approaches were able to find, some 
partially, the region of the anomaly subsequence. However, 
the SAX approach was just able to give a clue about the 
second anomaly, as we can see in Fig. 6, and the C-
AMDATSM could give a good result in comparison with the 
others.  

For SAX, we extracted the most meaningful branches 
regarding these anomalous patterns, which corresponded 
to “ccc” and “acc”. 

 

 

 
Fig. 6. Time plot for CO highlighting, in red, the 

anomalous region found by the SAX technique 
 

4 Conclusions and Future Work 
Recommendations 

 In this work we presented a proposal of an algorithm 
for anomaly detection in time series. We showed that there 
is a plenty of applications, and also many contributions 
made to this research field. We identified the main 
contributions presented recently and analysed them to 
identify whether the algorithm proposed by these authors is 
indeed a new contribution to the community. We verified 
that there is no similar technique. We presented the 
concepts behind this work, and then we described our 
proposal. Finally, we applied the algorithm to a real data 
case, and have identified that it performed good results in 
comparison with the other approach, which shows that it 
can be applied as a tool to leverage the specialists‘ job in 
analyzing and identifying anomalies in time series data. 

There are several future works to be developed in the 
following:  

a) to write a full paper of this work, describing in more 
details some issues regarding the review of the related 
work, the description of the algorithm and the methods 
for assessing its performance, applying the algorithm to 
other real cases and compare with the same technique 
(SAX); 

b) to use C-AMDATS  in an operational environment, 
where the algorithm would be set up to work 
continuously, with the jobs of analysing time series 
data, finding patterns, and sending status report  to 
specialists. Then, these specialists would be able to 
verify the results of the algorithm at real time; 

c) to implement a function to analyze correlated 
parameters at once to find anomalies between them, 
e.g. ozone and solar radiation, which are different 
parameters but have an intrinsic correlation. This 
recommendation would demand creating a derivation 
of the C-AMDATS algorithm to be applied to analyze 
various time series data at the same execution;  

d) to design a learning module to learn from the user 
what are the best values computed at a certain 
moment, based upon past applications of the algorithm 
that have been validated by the user. 
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Based on the results here presented, we think this work 
could be successfully applied in several areas of this 
research field to improve the way time series data are 
analyzed in order to detect anomalies. 
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