
The DNA of Snakes

Md. Shahnawaz Khan1 and Walter D. Potter2
1,2Institute of Artificial Intelligence, University of Georgia, Athens, Ga, United States

Abstract - The Snake in the Box problem is an NP-Hard
problem. The goal is to find the longest maximal snakes (a
certain kind of path satisfying particular constraints described
as “spread”) in an n-dimensional hypercube [8]. With
increasing dimensions the search space grows exponentially
and the search for snakes becomes more and more difficult.
This article identifies an underlying pattern among the known
longest snakes in previously searched dimensions, which
resembles the DNA of living cells in many ways. Surprisingly,
these generic structures are fundamentally different for the
four combinations of odd and even dimension and spread. It
briefly explains the reason why they have different underlying
structures. In odd dimensions with odd spread, there is one
symmetric point and a unique mapping of complementary
transition pairs and are discussed in detail in this paper. This
article focusses only on one of these – odd dimension with odd
spread. Later, it also reports three new lower bounds that are
established using these generic structures from previously
known longest maximal snakes. Another known longest snake
in another odd dimension with odd spread is also found using
this approach.

Keywords: Snake-in-the-box, Generalization, DNA of snake,
new lower bound, higher spread, longest maximal snake

1 Introduction
A snake is a special type of path in a graph (an n-

dimensional hypercube) which does not violate its distance
constraint described using the concept of “spread”. Spread,
being a concept of distance, is a non-negative number, and
generally starts for spread k equal to 2. For spread 0, it has no
meaning as technically it makes no contribution to the
constraint. For spread 1, it simply requires a non-overlapping
path traversing the n-dimensional hypercube and could be
seen very similar to a Traveling Salesman Problem (often used
as a standard problem in current AI literature). For spread 2
onwards it starts getting trickier and more computationally
intensive to find such paths. The snake refers to the specific
sequence of nodes in a graph and the edges joining these
nodes form the path. While traversing it maintains the
constraint that if the distance between any two nodes along the
path is less than or equal to the spread then the shortest
distance (Hamming distance) between them is equal to this
distance along the path. For example, if node 0 and node x are
placed like 0, _, x (where “_” could be any other node and
node “x” is constrained) in a spread 2 or higher spread snake,

then node x has to be a node which is exactly 2 Hamming
distance away from node 0 (i.e. node x differs from node 0 in
exactly 2 bits). If the distance between the two nodes along the
path is greater than the spread then the shortest distance
between these two nodes is greater than or equal to the spread.
For example, if node 0 and node x are placed like 0, _, _, _, x
in a spread k snake (for spread k ≤ 3) then node x has to be a
node which is at least k Hamming distance from node 0 (i.e.
node x differs with node 0 in at least k bits). The maximally
longest snake refers to the longest snake that can be found in a
particular dimension-spread and cannot be grown further. So a
path through nodes 0, 1, 3, 7, 6 would be the longest maximal
snake of length 4 (distance between first node and last node in
the path) in dimension 3 with spread 2.

Figure 1: A spread 2 snake in a 3-dimensional
hypercube - Snake (3, 2)

Snakes have been represented in various forms. Node-
sequence representation, being the most naive and primary
form of representation, is nothing but the ordered sequence of
nodes that are traversed in an n-dimensional hypercube along
the path (previously mentioned 0, 1, 3, 7, 6 is one such node-
sequence representation). Among various other
representations of snakes, transition sequence is a simple and
parsimonious representation. For a 0-based transition
sequence representation, it is a non-negative integer describing
the transition of nodes (the position of change of the bit
between the previous node and current node when the nodes
are represented in a binary code) to build a snake. The change
of node 0 to node 1 can be represented by transition “0” (node
000 changes to node 001 by changing the bit at position 0).
Likewise, the traversal of node 1 to node 3 can be represented

Int'l Conf. Artificial Intelligence | ICAI'15 | 497

by transition 1 (node 001 changes to node 011 by changing the
bit at position 1). In short, the node sequence 0, 1, 3, 7, 6 can
be written as 0, 1, 2, 0 in transition sequence. For any
transition sequence, only the first node needs to be chosen but
due to the symmetric nature of a hypercube any node would
serve the purpose by naming it as node 0. A canonical snake,
in a transition sequence representation, is a snake transition
sequence such that the first occurrence of any transition
precedes the first occurrence of any other transition that is
bigger than it. For example, a snake starting as 0, 1, 2, 3, 1, 0,
4 would be a canonical snake, since the first occurrence of
transition “0” precedes the first occurrence of all other
transitions that are bigger than it and so on and so forth for all
the other transitions in it. While a snake starting as 0, 1, 2, 4,
0, 3 would not be a canonical snake since the first occurrence
of transition “3” does not precede the first occurrence of
transition “4”. This transition sequence (transition sequence 0,
1, 2, 4, 0, 3) can be represented in its canonical form by using
the smallest unused transition for the first occurrence of every
new transition while rewriting it (and using this replacement
elsewhere). So for 0, 1, 2, it would still be 0, 1, 2 in its
canonical form. When we encounter transition “4” we use the
next smallest unused transition “3” for it (and replace “4” with
“3” everywhere else). So the sequence 0, 1, 2, 4, 0 would
become 0, 1, 2, 3, 0. Later when we encounter a new transition
“3” we have to use the next unused smallest transition i.e.
transition “4” (and replace transition “3” in the old sequence
with transition “4” in its canonical form). So its canonical
form would be 0, 1, 2, 3, 0, 4. Also previous works have
shown that a canonical representation of transition sequence
can be used to represent any snake [4].

The snake in the box (SIB) problem has been an

interesting and challenging problem for both mathematicians
and computer scientists [8]. The challenge has been taken to
another level every time a particular dimension’s longest
maximal snake(s) are found, as the search space grows
exponentially. As the search space grows exponentially, it gets
more and more difficult to do an exhaustive search and some
kind of heuristic is required. David Kinny mentions some
complete search techniques and illustrates the role of
branching factor while backtracking [1]. He mentions the
crucial pruning of the search space by using a canonical form
[2].

2 DNA Basics
In this section, some basic and generic information

about DNA is discussed which will help the reader to follow
and appreciate the similarities discussed in the latter sections.
Deoxyribonucleic acid or DNA is a double-stranded helix,
with the two strands connected by hydrogen bonds [2] [3]. Its
structure is shown in Figure 2.

Figure 2: A double helix structure of DNA* [9]

Courtesy:
http://www.nature.com/scitable/topicpage/discovery-of-dna-
structure-and-function-watson-397

*The referenced web page was visited on November 2, 2014

It is found in every living cell and encodes the genetic
instructions used in various aspects of development and
functioning of living organisms. DNA controls the growth,
functioning and reproduction of cells in the living organisms.
The information in DNA is stored as a code which is made up
of four chemical bases: adenine (A), cytosine (C), guanine
(G), and thymine (T). The order, or sequence, of these bases
determines the information available for building and
maintaining an organism. These DNA bases pair up with each
other, A with T and C with G, to form units called base pairs.
The base pairs are constant, i.e. base A would always pair up
with base T and base C with base G. It is beyond the scope of
this article to discuss the reason why these bases always pair
up with each other.

3 Building Canonical Snakes

The canonical snakes are representative of all the
snakes in the search space or in other words all the snakes in
the search space can be represented using one of the canonical
snakes. We first introduced an exhaustive search algorithm to
build canonical snakes in transition sequence as shown in
Table 1. This algorithm is the first known algorithm to
validate a snake in transition sequence representation without
converting it into any other form. The validating algorithm is
based on the idea of number of unpaired transitions that helps

498 Int'l Conf. Artificial Intelligence | ICAI'15 |

 Initialize an ordered list (for transition sequence), call it
the Primary List (PL) and 2 auxiliary sets (Paired and
Unpaired Transition Set – PTS and UTS, which are
mutually exclusive)

 Initialize PTS with transitions 0 to n-1 // 0 based
transition sequence

 Add transitions 0 to k in the PL and in the UTS and
remove these transitions from PTS

 Set a flag isValid to true
While (number of elements in UTS >= k and flag

isValid)
{
o Add an element i to PL which is different from last k

transitions* and is a member of {0,..,n-1}
o Flip the membership of this element i between PTS

and UTS // mutually exclusive
o If (number of elements in UTS >= k)

{
 Copy the PTS and UTS to new temporary sets

Temporary PTS (T-PTS) and Temporary
UTS (T-UTS)

 Starting from the first transition in PL, flip the
membership of each transitions between the
current T-PTS and T-UTS and in each step
check the number of elements in T-UTS>=k
else set the flag isValid to false and break
from this loop

}
o Else

{
 Set the flag isValid to false

}
}

 If (not isValid)
o Remove the last added transition

*Pruning the search space by removing certain invalid snakes

in maintaining the snake spread-k constraints. The exhaustive
search makes no assumption about its search space. It tries a
transition by adding it to a snake and validating the sequence.
If it succeeds it moves to search for the next transition else it
tries another transition until all the transitions available have
been tried, after which it backtracks to its last successful
transition and tries another transition from it. This is repeated
until all the transitions at the first position have been tried and
there is no other backtracking possibility.

Table 1: Building Snakes for Dimension n Spread k

In an n-dimensional hypercube, for a 0-based transition
sequence, the transition sequence consists of numbers between
0 to n-1. The unpaired number of transitions maintains the
spread in the path. So, if we are looking at a sequence 0, 1, 2,
3, 1, we see that there are two transition “1” (in other words
paired), while 0, 2, 3 are unpaired. As the number of unpaired
transitions drops below k, the k-spread constraint is violated.

For any transition chunk of length greater than or equal to k, it
should hold that there are at least k unpaired transitions. And
for any transition chunk of length d less than k there should be
at least d unpaired transitions. So, {0, 1, 2, 3, 1}, {1, 2, 3, 1},
{2, 3, 1} and {0, 1, 2} are some of the examples of such
transition chunks.

Figure 3: A transition chunk

As shown in Table 1 for a spread k snake, choosing a
transition different from the last k transitions prunes the search
space by removing the invalid snakes. An extra pruning step
that is added is that if the next element that is being added to
the list matches with the element which is at the last (k+1)th
position in the list then the transition at the last (k+2)th
position should not be there in the last k-transitions. For
example, consider a transition sequence as {ak+2, ak+1, ak, ak-1,
…, a1} consisting of k+2 transitions. If we want to add
transition “ak+1” as the next transition in this transition
sequence then we can add it only if transition “ak+2” is not
there in the subsequence {ak, ak-1, …, a1}.

4 The DNA
Snake 1 (11, 5): [0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 5, 9, 7, 0, 10, 8,
1, 4, 5, 7, 6, 10, 8, 3, 4, 2, 5, 10, 9, 6, 4, 1, 5, 7, 0, 9, 6, 3]

Snake 2 (6, 2): [0, 1, 2, 3, 1, 0, 4, 3, 0, 5, 4, 0, 1, 3, 4, 0, 2,
4, 1, 0, 4, 3, 1, 5, 3, 4]

Snake 3 (7, 3): [0, 1, 2, 3, 0, 4, 5, 1, 0, 3, 6, 4, 0, 1, 2, 3, 0,
4, 5, 1, 0]

4.1 The Underlying Structure

The three snakes shown above have a few things in
common. Apart from being the longest maximal snake in a
particular dimension-spread, they also share a particular
underlying structure upon which it is built. Snake 1 is a spread
5 snake in dimension 11. Snake 2 is a spread 2 snake while
Snake 3 is a spread 3 snake. All these snakes are the longest
maximal snakes and are canonical palindromes (a canonical
snake whose reverse when expressed in a canonical form is
equal to the original canonical snake). They have one or two
points of symmetry based on if they have an even spread or an
odd spread. Let us look at the same snakes again with the
highlighting.

Snake 1 (11, 5): [0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 5, 9, 7, 0, 10, 8,
1, 4, 5, 7, 6, 10, 8, 3, 4, 2, 5, 10, 9, 6, 4, 1, 5, 7, 0, 9, 6, 3]

chunk

Int'l Conf. Artificial Intelligence | ICAI'15 | 499

Snake 2 (6, 2): [0, 1, 2, 3, 1, 0, 4, 3, 0, 5, 4, 0, 1, 3, 4, 0, 2,
4, 1, 0, 4, 3, 1, 5, 3, 4]

Snake 3 (7, 3): [0, 1, 2, 3, 0, 4, 5, 1, 0, 3, 6, 4, 0, 1, 2, 3, 0,
4, 5, 1, 0]

The shaded region highlights the basic structure of the
snake which lays the foundation of a particular snake, similar
to specific sequencing of genes in DNA which later decides
everything for the organism. This shaded region, which is
termed as the DNA, is defined as “DNA of a valid snake is the
smallest portion of the snake (approximately at the center of
the snake) that contains all the possible transition sequences
for the snake and has one or more points of symmetry. It also
defines the complementary pairs of the transitions that should
be used in the remaining parts of the snake.” There is one or
more than one point of symmetry in the DNA. In the simplest
case, where there is only one point of symmetry, the
equidistant transitions to the left and right of this symmetric
point occur in pairs and are called complementary pairs
henceforth in the paper. These complementary pairs always
occur in pairs to the left and right of the DNA throughout the
snake.

4.2 Odd and Even Dimensions

Odd and even dimensions have different DNA in their
longest snakes, primarily because the number of possible
transitions in the two types of dimensions is different, i.e. for
odd dimensions it is odd, while for the other it is even. In an
odd dimension, the arrangement of a possible odd number of
transitions for pairing in the underlying structure (similar to
the base pairing in DNA) will be different than the even
transitions where the number of possible transitions is even.
The spread of the snake also plays a role in defining the
structure of the DNA. The number of initial transitions that are
used in the DNA (shown in red color) is equal to its spread
(since no k transitions can be the same in a spread k snake).
These initial transitions form the core of the DNA. For odd
spread, an odd number of transitions is already used in the
DNA to form its core. Now, for odd spread snakes in an odd
dimension, the remaining transitions that have to be paired
uniquely, after forming the core, are even in number and can
be uniquely paired. But for such snakes (snakes with odd
spread) in even dimensions, the remaining transitions are odd
in number and cannot be uniquely paired. Let us take an
example of snake (7, 2) to illustrate more on the pairing of
complementary pairs and symmetric points in DNA.

Snake (7, 2) : 0, 1, 2, 0, 3, 1, 0, 4, 2, 1, 0, 3, 5, 0, 1, 2, 4, 0, 6,
5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 4, 0, 3, 5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 0, 6,
1, 0, 4, 2, 1, 0

The snake shown above is the longest maximal snake
in dimension-spread (7, 2) [7]. Since for spread 2 snakes no
two consecutive transitions can be the same, transitions 3 and

4 appear in the middle as shown using red color. The
remaining 5 transitions have been paired but not uniquely,
most of the transitions have been paired with more than 1
transition in the DNA (shown as the highlighted grey area).
Also since there is more than one point of symmetry their
pairing varies for three ways of finding the point of symmetry,
i.e. {(3, 4), (3), (4)}. Say for example “5” can be paired with
“0” if “3, 4” is the point of symmetry as both are equidistant
from this point of symmetry. “5” can be paired with transition
“3” if “4” is the point of symmetry. “5” can also be paired
with “4” if “3” is the point of symmetry. The DNA for even
spreads is difficult to create and we will restrict ourselves to
the odd spreads. As explained earlier, for odd spreads in even
dimensions the remaining transition options for creating the
DNA would be odd which again would create non-unique
pairing. To simplify our task we will confine ourselves to odd
dimensions with odd spread. The remaining dimension and
spread combinations are intended to be pursued as future
work.

4.3 Similarity with DNA

So how is the underlying structure similar to DNA?
And what role do these subsequences play in building snakes?
If we observe closely we will find that all the transitions {0…
n-1} have been used in creating this shaded part. Similar to the
DNA in living cells, it contains all the information/ingredients
that could be used later. Apart from having all the transitions it
also defines two more interesting features, the base-pairing
and the length of the longest snake possible that can be grown
using this underlying structure. The first feature is easier to
explain and demonstrate while the second feature can only be
explained from the results obtained as is the case with
mapping of particular genes to a particular characteristic in a
living organism (i.e. mapping genotype with phenotype).
Similar to the base pairing in DNA, i.e. base A always occurs
with base T and base C always occurs with base G, the
transition sequences also always occur in pairs defined using
this underlying structure. In other words this underlying
structure decides the transition that would appear with its
complementary transition at any two equal distances from the
symmetric point. Let us take the example of Snake 1, we see
that the distance of transition “7” on the left side of transition
“5” (the symmetric point), is always the same as the distance
of transition “4” on the right side of transition “5” and vice
versa. This is what also makes it a canonical palindrome (a
canonical snake whose reverse when expressed in a canonical
form is equal to the original canonical snake).

4.4 Building the DNA

Let us start from scratch while rebuilding these
underlying structures for snakes. Building upon the idea from
the previous section (Section 2.3), which described basic rules
for a canonical snake in a transition sequence representation,
we have the following mandatory guidelines:

500 Int'l Conf. Artificial Intelligence | ICAI'15 |

1. No k subsequent transitions can be the same in a spread k
snake.

2. In the snake, for all subsequences of size greater than the
spread, the number of unpaired transitions is greater than
or equal to the spread.

Let us build the DNA of Snake 1, the DNA of the
longest snake in dimension 11 with spread 5. Let us start from
the symmetric point (for odd spreads there is one symmetric
point). So for keeping it simple, let us use “0” as the
symmetric point. Now since no adjacent k (k is 5 in this case)
sequences can be the same we can put four other transitions in
this structure as shown below.

3, 1, 0, 2, 4

The order of transitions does not matter as this is the

defining stage where the pairs are being defined and whatever
transition we decide to put would form the definition of
pairing. We could have used {3, 1, 0, 2, 4} or {0, 1, 2, 3, 4}.
We built the first sequence by adding “1” to the left of
transition “0” and “2” to the right of “0”. Then we added “3”
to the left and “4” to its right. From the above sequences we
have defined that transition “1” is paired with transition “2”
and transition “3” is paired with transition “4” as they are at
equal distance from “0” on the left and right side. So far, for
spread k, if the dimension n is equal to k then putting all the
transitions like this would make the longest snake of length k.
But as we increase the dimension, we need to decide where the
other extra transition sequences would be placed. In our
example the next two transitions (say transition “5” and
transition “6”) we can have the following sequences where
either each of these transitions is placed in the same way to
each side of the structure or switched on the other side as
shown:

6, 5, 3, 1, 0, 2, 4, 5, 6 or 6, 5, 3, 1, 0, 2, 4, 6, 5

Both of these would be the longest snakes for
dimension-spread (7, 5). As we go higher in the dimensions,
we start adding new transitions or reusing the previous used
transitions to left and right (if these transitions do not make the
snake invalid). Based on the structure of the longest snake
found so far, the second one containing {6, 5,…., 6, 5} is
more common in odd dimensions with odd spread. So, let us
add the next two transitions to this sequence, as shown:

7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8

After adding these, we can re-use the pair of transitions

2 and 1. One of the common patterns that have been found is
that during reusing the transitions the transition that was
placed on the left side last time is preferred on the right side
and vice versa. So the new structure would look like:

2, 7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8, 1

At this point adding the remaining transitions (transitions 9
and 10) would look like:

9, 2, 7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8, 1, 10

This is all we need for the longest snake. This is the
DNA of the longest snake in dimension-spread (11, 5). This is
the same structure as that of Snake 1. In fact, when we used
this underlying structure to build the longest snake, we found
the following snake whose canonical form is Snake 1.

Found: [7, 3, 10, 8, 1, 0, 4, 2, 3, 10, 5, 0, 9, 2, 7, 6, 5, 3, 1,
0, 2, 4, 6, 5, 8, 1, 10, 0, 6, 9, 4, 1, 3, 0, 2, 7, 9, 4, 8]

Canonical: [0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 5, 9, 7, 0, 10, 8, 1, 4,
5, 7, 6, 10, 8, 3, 4, 2, 5, 10, 9, 6, 4, 1, 5, 7, 0, 9, 6, 3]

The above snake is the longest known snake in (11, 5)
and is of length 39. This is also the maximally longest snake in
this dimension-spread and is confirmed through exhaustive
search in dimension-spread (11, 5).

4.5 Working -Skin Nodes and Shadows

Figure 4: The longest snake and its shadows in dimension-

spread (5, 3).

No hypothesis is ever complete without an attempt to
explain its workings. In this section we will attempt to explain
why this works. When a node is used in the path of a spread k
snake, it makes all of its neighbors, at a Hamming distance of
k or less, unusable for future path options (except the k-nodes
in the path). These unusable nodes are called skin nodes.
These skin nodes when joined in the sequence of being created
by the snakes are termed as “shadows” in a smaller hypercube.
Figure 4 shows a dimension 5 spread 3 longest snake and the

Int'l Conf. Artificial Intelligence | ICAI'15 | 501

shadows (connection of skin nodes) it casts upon its composite
smaller hypercube (i.e. Hamming distance = 1). In an n-
dimensional hypercube, for spread k, when we traverse an
edge of the hypercube, this edge casts its shadow in all the
adjoining smaller hypercubes and is resonated until spread k.
These shadows inhibit the growth of snakes in the future. But
if an algorithm can strategically place the edges considering
our future moves such that our paths are less and less affected
by these shadows then a long snake would be possible. The
pairing of transitions helps us in maintaining and strategically
placing the shadows. Of course, choosing the correct pair is
decided by both of the factors, the past transitions that have
been used and the future transitions that are left unused. The
complementary shadows pave the way for a snake to move
inside these tightly packed shadows.

5 Results and Discussion

Once the DNA is chosen, we start assembling the pairs
to the left and right side of the structure (DNA) while
following the pairing rule (using complementary pairs on the
left and right side of the DNA). After adding the
complementary pairs on both sides the snake is validated. For
validating the snakes faster, we store a map of unpaired
transitions from each position for the current snake and update
it when new pairs are added on both sides (following the same
fundamentals described in Section 2.3). Picking up the
complementary pair is done as an exhaustive search and we
can call it an exhaustive complementary pair search. Though
the DNA occupies a very small part of the snake and
intuitively it seems that the search for the snake is still the
same old difficult job, the reality is quite the contrary. First of
all, by only allowing a unique pair of transitions from the
DNA (rather than an arbitrarily large combination of transition
pairs) we restrict the search space to a much smaller area. The
second and the most important contribution of the DNA is that
the right DNA lays the required foundational structure that can
only grow to be the longest snake in the hypercube. One of the
current limitations of this approach is that these structures are
very simple only for odd dimensions with odd spread. For the
other three combinations of odd and even dimension-spread,
these structures are far more complex and become less
analogous to the helical structure of DNA with unique base-
pairing. We intend to pursue the research in the remaining
types of dimension-spread combinations, but for now we
confine ourselves to odd dimensions with odd spread.

Using this DNA structure we were able to find new

lower bounds for the snakes in (13, 5), (15, 7) and (17, 7). The
previous best known results are from [5] [6].The longest snake
known so far for (9, 3), of length 63, was also found using this
approach. The results are summarized in Table 2. The value in
the parentheses in the right hand column is the previously
known lower bound. The search in dimension-spread (15, 7)
was completed by exhausting the complete search space
defined by the structure which means no other longer snake is
possible for the structure. For the other dimension-spreads the

search could not be completed at present and longer snakes
are possible for such structures.

Table 2: New Lower Bounds for Snakes

c - Complete search for the given structure

6 References
[1] David Kinny. (2012). “A New Approach to the Snake-In-
The-Box Problem,” Proc. 20th European Conference
Artificial Intelligence, 462–467
[2] F. H. Crick, J. D. Watson. (1954). “The Complementary
Structure of Deoxyribonucleic Acid”, Proceedings of the
Royal Society (London) A223, 80
[3] J. D. Watson, F. H. C. Crick. (1953). “Molecular Structure
of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid”,
Nature 171, 737
[4] Kochut, K. J. (1996). “Snake-In-The-Box Codes for
Dimension 7”. Journal of Combinatorial Mathematics and
Combinatorial Computations 20:175-185
[5] S. Hood, D. Recoskie, J. Sawada, D. Wong. (2011).
Snakes, coils, and single-track circuit codes with spread k,
Journal of Combinatorial Optimization, 1–21
[6] S. Hood, J. Sawada, C.H. Wong, (2010). “Generalized
Snakes and Coils in the Box”
[7] W. D. Potter, R. W. Robinson, J. A. Miller, K. J. Kochut,
D. Z. Redys. (1994). "Using the genetic algorithm to find
snake-in-the-box codes”, Proceedings of the 7th International
Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, 421-426
[8] W.H. Kautz. (1958). “Unit-distance error-checking codes”,
IRE Trans. Electronic Computers, 179–180
[9] http://www.nature.com/scitable/topicpage/discovery-of-
dna-structure-and-function-watson-397

Dimension-spread Lower bound

(13, 5) 85 (79)

(15, 7) 57c (55)

(17, 7) 103 (98)

502 Int'l Conf. Artificial Intelligence | ICAI'15 |

