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Abstract - The Snake in the Box problem is an NP-Hard 
problem. The goal is to find the longest maximal snakes (a 
certain kind of path satisfying particular constraints described 
as “spread”) in an n-dimensional hypercube [8]. With 
increasing dimensions the search space grows exponentially 
and the search for snakes becomes more and more difficult. 
This article identifies an underlying pattern among the known 
longest snakes in previously searched dimensions, which 
resembles the DNA of living cells in many ways. Surprisingly, 
these generic structures are fundamentally different for the 
four combinations of odd and even dimension and spread. It 
briefly explains the reason why they have different underlying 
structures. In odd dimensions with odd spread, there is one 
symmetric point and a unique mapping of complementary 
transition pairs and are discussed in detail in this paper. This 
article focusses only on one of these – odd dimension with odd 
spread. Later, it also reports three new lower bounds that are 
established using these generic structures from previously 
known longest maximal snakes. Another known longest snake 
in another odd dimension with odd spread is also found using 
this approach. 

Keywords: Snake-in-the-box, Generalization, DNA of snake, 
new lower bound, higher spread, longest maximal snake 

 

1 Introduction 
A snake is a special type of path in a graph (an n-

dimensional hypercube) which does not violate its distance 
constraint described using the concept of “spread”. Spread, 
being a concept of distance, is a non-negative number, and 
generally starts for spread k equal to 2. For spread 0, it has no 
meaning as technically it makes no contribution to the 
constraint. For spread 1, it simply requires a non-overlapping 
path traversing the n-dimensional hypercube and could be 
seen very similar to a Traveling Salesman Problem (often used 
as a standard problem in current AI literature). For spread 2 
onwards it starts getting trickier and more computationally 
intensive to find such paths. The snake refers to the specific 
sequence of nodes in a graph and the edges joining these 
nodes form the path. While traversing it maintains the 
constraint that if the distance between any two nodes along the 
path is less than or equal to the spread then the shortest 
distance (Hamming distance) between them is equal to this 
distance along the path. For example, if node 0 and node x are 
placed like 0, _, x (where “_” could be any other node and 
node “x” is constrained) in a spread 2 or higher spread snake, 

then node x has to be a node which is exactly 2 Hamming 
distance away from node 0 (i.e. node x differs from node 0 in 
exactly 2 bits). If the distance between the two nodes along the 
path is greater than the spread then the shortest distance 
between these two nodes is greater than or equal to the spread. 
For example, if node 0 and node x are placed like 0, _, _, _, x 
in a spread k snake (for spread k ≤ 3) then node x has to be a 
node which is at least k Hamming distance from node 0 (i.e. 
node x differs with node 0 in at least k bits). The maximally 
longest snake refers to the longest snake that can be found in a 
particular dimension-spread and cannot be grown further. So a 
path through nodes 0, 1, 3, 7, 6 would be the longest maximal 
snake of length 4 (distance between first node and last node in 
the path) in dimension 3 with spread 2. 

 
 

Figure 1: A spread 2 snake in a 3-dimensional 
hypercube - Snake (3, 2) 

 
 

Snakes have been represented in various forms. Node-
sequence representation, being the most naive and primary 
form of representation, is nothing but the ordered sequence of 
nodes that are traversed in an n-dimensional hypercube along 
the path (previously mentioned 0, 1, 3, 7, 6 is one such node-
sequence representation). Among various other 
representations of snakes, transition sequence is a simple and 
parsimonious representation. For a 0-based transition 
sequence representation, it is a non-negative integer describing 
the transition of nodes (the position of change of the bit 
between the previous node and current node when the nodes 
are represented in a binary code) to build a snake. The change 
of node 0 to node 1 can be represented by transition “0” (node 
000 changes to node 001 by changing the bit at position 0). 
Likewise, the traversal of node 1 to node 3 can be represented 
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by transition 1 (node 001 changes to node 011 by changing the 
bit at position 1). In short, the node sequence 0, 1, 3, 7, 6 can 
be written as 0, 1, 2, 0 in transition sequence. For any 
transition sequence, only the first node needs to be chosen but 
due to the symmetric nature of a hypercube any node would 
serve the purpose by naming it as node 0. A canonical snake, 
in a transition sequence representation, is a snake transition 
sequence such that the first occurrence of any transition 
precedes the first occurrence of any other transition that is 
bigger than it. For example, a snake starting as 0, 1, 2, 3, 1, 0, 
4 would be a canonical snake, since the first occurrence of 
transition “0” precedes the first occurrence of all other 
transitions that are bigger than it and so on and so forth for all 
the other transitions in it. While a snake starting as 0, 1, 2, 4, 
0, 3 would not be a canonical snake since the first occurrence 
of transition “3” does not precede the first occurrence of 
transition “4”. This transition sequence (transition sequence 0, 
1, 2, 4, 0, 3) can be represented in its canonical form by using 
the smallest unused transition for the first occurrence of every 
new transition while rewriting it (and using this replacement 
elsewhere). So for 0, 1, 2, it would still be 0, 1, 2 in its 
canonical form. When we encounter transition “4” we use the 
next smallest unused transition “3” for it (and replace “4” with 
“3” everywhere else). So the sequence 0, 1, 2, 4, 0 would 
become 0, 1, 2, 3, 0. Later when we encounter a new transition 
“3” we have to use the next unused smallest transition i.e. 
transition “4” (and replace transition “3” in the old sequence 
with transition “4” in its canonical form). So its canonical 
form would be 0, 1, 2, 3, 0, 4. Also previous works have 
shown that a canonical representation of transition sequence 
can be used to represent any snake [4]. 

 
The snake in the box (SIB) problem has been an 

interesting and challenging problem for both mathematicians 
and computer scientists [8]. The challenge has been taken to 
another level every time a particular dimension’s longest 
maximal snake(s) are found, as the search space grows 
exponentially. As the search space grows exponentially, it gets 
more and more difficult to do an exhaustive search and some 
kind of heuristic is required. David Kinny mentions some 
complete search techniques and illustrates the role of 
branching factor while backtracking [1]. He mentions the 
crucial pruning of the search space by using a canonical form 
[2]. 
 

2 DNA Basics 
In this section, some basic and generic information 

about DNA is discussed which will help the reader to follow 
and appreciate the similarities discussed in the latter sections. 
Deoxyribonucleic acid or DNA is a double-stranded helix, 
with the two strands connected by hydrogen bonds [2] [3]. Its 
structure is shown in Figure 2. 

 
 
 
  

 
 
Figure 2: A double helix structure of DNA* [9] 
 

Courtesy: 
http://www.nature.com/scitable/topicpage/discovery-of-dna-
structure-and-function-watson-397 
 
*The referenced web page was visited on November 2, 2014 
 
 

It is found in every living cell and encodes the genetic 
instructions used in various aspects of development and 
functioning of living organisms. DNA controls the growth, 
functioning and reproduction of cells in the living organisms. 
The information in DNA is stored as a code which is made up 
of four chemical bases: adenine (A), cytosine (C), guanine 
(G), and thymine (T). The order, or sequence, of these bases 
determines the information available for building and 
maintaining an organism. These DNA bases pair up with each 
other, A with T and C with G, to form units called base pairs. 
The base pairs are constant, i.e. base A would always pair up 
with base T and base C with base G. It is beyond the scope of 
this article to discuss the reason why these bases always pair 
up with each other. 
 
3 Building Canonical Snakes 

The canonical snakes are representative of all the 
snakes in the search space or in other words all the snakes in 
the search space can be represented using one of the canonical 
snakes. We first introduced an exhaustive search algorithm to 
build canonical snakes in transition sequence as shown in 
Table 1. This algorithm is the first known algorithm to 
validate a snake in transition sequence representation without 
converting it into any other form. The validating algorithm is 
based on the idea of number of unpaired transitions that helps 
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 Initialize an ordered list (for transition sequence), call it 
the Primary List (PL) and 2 auxiliary sets (Paired and 
Unpaired Transition Set – PTS and UTS, which are 
mutually exclusive) 

 Initialize PTS with transitions 0 to n-1   // 0 based 
transition sequence 

 Add transitions 0 to k in the PL and in the UTS and 
remove these transitions from PTS 

 Set a flag isValid to true 
While (number of elements in UTS >= k and flag 

isValid) 
{ 
o Add an element i to PL which is different from last k 

transitions* and is a member of {0,..,n-1}  
o Flip the membership of this element i between PTS 

and UTS // mutually exclusive 
o If (number of elements in UTS >= k) 

{ 
 Copy the PTS and UTS to new temporary sets 

Temporary PTS (T-PTS) and Temporary 
UTS (T-UTS) 

 Starting from the first transition in PL, flip the 
membership of each transitions between the 
current T-PTS and T-UTS and in each step 
check the number of elements in T-UTS>=k 
else set the flag isValid to false and break 
from this loop 

} 
o Else 

{  
 Set the flag isValid to false 

} 
} 

 If (not isValid) 
o Remove the last added transition 

 
*Pruning the search space by removing certain invalid snakes 

in maintaining the snake spread-k constraints. The exhaustive 
search makes no assumption about its search space. It tries a 
transition by adding it to a snake and validating the sequence. 
If it succeeds it moves to search for the next transition else it 
tries another transition until all the transitions available have 
been tried, after which it backtracks to its last successful 
transition and tries another transition from it. This is repeated 
until all the transitions at the first position have been tried and 
there is no other backtracking possibility. 

Table 1: Building Snakes for Dimension n Spread k 
 

In an n-dimensional hypercube, for a 0-based transition 
sequence, the transition sequence consists of numbers between 
0 to n-1. The unpaired number of transitions maintains the 
spread in the path. So, if we are looking at a sequence 0, 1, 2, 
3, 1, we see that there are two transition “1” (in other words 
paired), while 0, 2, 3 are unpaired. As the number of unpaired 
transitions drops below k, the k-spread constraint is violated. 

For any transition chunk of length greater than or equal to k, it 
should hold that there are at least k unpaired transitions. And 
for any transition chunk of length d less than k there should be 
at least d unpaired transitions. So, {0, 1, 2, 3, 1}, {1, 2, 3, 1}, 
{2, 3, 1} and {0, 1, 2} are some of the examples of such 
transition chunks. 

 
 

 

 
Figure 3: A transition chunk 

 
 

As shown in Table 1 for a spread k snake, choosing a 
transition different from the last k transitions prunes the search 
space by removing the invalid snakes. An extra pruning step 
that is added is that if the next element that is being added to 
the list matches with the element which is at the last (k+1)th 
position in the list then the transition at the last (k+2)th 
position should not be there in the last k-transitions. For 
example, consider a transition sequence as {ak+2, ak+1, ak, ak-1, 
…, a1} consisting of k+2 transitions. If we want to add 
transition “ak+1” as the next transition in this transition 
sequence then we can add it only if transition “ak+2” is not 
there in the subsequence {ak, ak-1, …, a1}. 
 
4 The DNA 
Snake 1 (11, 5): [0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 5, 9, 7, 0, 10, 8, 
1, 4, 5, 7, 6, 10, 8, 3, 4, 2, 5, 10, 9, 6, 4, 1, 5, 7, 0, 9, 6, 3] 
 
Snake 2 (6, 2):  [0, 1, 2, 3, 1, 0, 4, 3, 0, 5, 4, 0, 1, 3, 4, 0, 2, 
4, 1, 0, 4, 3, 1, 5, 3, 4] 
 
Snake 3 (7, 3):  [0, 1, 2, 3, 0, 4, 5, 1, 0, 3, 6, 4, 0, 1, 2, 3, 0, 
4, 5, 1, 0] 
 
4.1 The Underlying Structure 

The three snakes shown above have a few things in 
common. Apart from being the longest maximal snake in a 
particular dimension-spread, they also share a particular 
underlying structure upon which it is built. Snake 1 is a spread 
5 snake in dimension 11. Snake 2 is a spread 2 snake while 
Snake 3 is a spread 3 snake. All these snakes are the longest 
maximal snakes and are canonical palindromes (a canonical 
snake whose reverse when expressed in a canonical form is 
equal to the original canonical snake). They have one or two 
points of symmetry based on if they have an even spread or an 
odd spread. Let us look at the same snakes again with the 
highlighting. 
 
Snake 1 (11, 5): [0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 5, 9, 7, 0, 10, 8, 
1, 4, 5, 7, 6, 10, 8, 3, 4, 2, 5, 10, 9, 6, 4, 1, 5, 7, 0, 9, 6, 3] 

chunk 
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Snake 2 (6, 2):  [0, 1, 2, 3, 1, 0, 4, 3, 0, 5, 4, 0, 1, 3, 4, 0, 2, 
4, 1, 0, 4, 3, 1, 5, 3, 4] 
 
Snake 3 (7, 3):  [0, 1, 2, 3, 0, 4, 5, 1, 0, 3, 6, 4, 0, 1, 2, 3, 0, 
4, 5, 1, 0] 
 

The shaded region highlights the basic structure of the 
snake which lays the foundation of a particular snake, similar 
to specific sequencing of genes in DNA which later decides 
everything for the organism. This shaded region, which is 
termed as the DNA, is defined as “DNA of a valid snake is the 
smallest portion of the snake (approximately at the center of 
the snake) that contains all the possible transition sequences 
for the snake and has one or more points of symmetry. It also 
defines the complementary pairs of the transitions that should 
be used in the remaining parts of the snake.” There is one or 
more than one point of symmetry in the DNA. In the simplest 
case, where there is only one point of symmetry, the 
equidistant transitions to the left and right of this symmetric 
point occur in pairs and are called complementary pairs 
henceforth in the paper. These complementary pairs always 
occur in pairs to the left and right of the DNA throughout the 
snake. 
 
4.2 Odd and Even Dimensions 

Odd and even dimensions have different DNA in their 
longest snakes, primarily because the number of possible 
transitions in the two types of dimensions is different, i.e. for 
odd dimensions it is odd, while for the other it is even. In an 
odd dimension, the arrangement of a possible odd number of 
transitions for pairing in the underlying structure (similar to 
the base pairing in DNA) will be different than the even 
transitions where the number of possible transitions is even. 
The spread of the snake also plays a role in defining the 
structure of the DNA. The number of initial transitions that are 
used in the DNA (shown in red color) is equal to its spread 
(since no k transitions can be the same in a spread k snake). 
These initial transitions form the core of the DNA. For odd 
spread, an odd number of transitions is already used in the 
DNA to form its core. Now, for odd spread snakes in an odd 
dimension, the remaining transitions that have to be paired 
uniquely, after forming the core, are even in number and can 
be uniquely paired. But for such snakes (snakes with odd 
spread) in even dimensions, the remaining transitions are odd 
in number and cannot be uniquely paired. Let us take an 
example of snake (7, 2) to illustrate more on the pairing of 
complementary pairs and symmetric points in DNA. 
 
Snake (7, 2) :  0, 1, 2, 0, 3, 1, 0, 4, 2, 1, 0, 3, 5, 0, 1, 2, 4, 0, 6, 
5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 4, 0, 3, 5, 0, 4, 2, 0, 3, 4, 0, 1, 2, 0, 6, 
1, 0, 4, 2, 1, 0 
 

The snake shown above is the longest maximal snake 
in dimension-spread (7, 2) [7]. Since for spread 2 snakes no 
two consecutive transitions can be the same, transitions 3 and 

4 appear in the middle as shown using red color. The 
remaining 5 transitions have been paired but not uniquely, 
most of the transitions have been paired with more than 1 
transition in the DNA (shown as the highlighted grey area). 
Also since there is more than one point of symmetry their 
pairing varies for three ways of finding the point of symmetry, 
i.e. {(3, 4), (3), (4)}. Say for example “5” can be paired with 
“0” if “3, 4” is the point of symmetry as both are equidistant 
from this point of symmetry. “5” can be paired with transition 
“3” if “4” is the point of symmetry. “5” can also be paired 
with “4” if “3” is the point of symmetry. The DNA for even 
spreads is difficult to create and we will restrict ourselves to 
the odd spreads. As explained earlier, for odd spreads in even 
dimensions the remaining transition options for creating the 
DNA would be odd which again would create non-unique 
pairing. To simplify our task we will confine ourselves to odd 
dimensions with odd spread. The remaining dimension and 
spread combinations are intended to be pursued as future 
work. 

 
4.3 Similarity with DNA 

So how is the underlying structure similar to DNA? 
And what role do these subsequences play in building snakes? 
If we observe closely we will find that all the transitions {0… 
n-1} have been used in creating this shaded part. Similar to the 
DNA in living cells, it contains all the information/ingredients 
that could be used later. Apart from having all the transitions it 
also defines two more interesting features, the base-pairing 
and the length of the longest snake possible that can be grown 
using this underlying structure. The first feature is easier to 
explain and demonstrate while the second feature can only be 
explained from the results obtained as is the case with 
mapping of particular genes to a particular characteristic in a 
living organism (i.e. mapping genotype with phenotype). 
Similar to the base pairing in DNA, i.e. base A always occurs 
with base T and base C always occurs with base G, the 
transition sequences also always occur in pairs defined using 
this underlying structure. In other words this underlying 
structure decides the transition that would appear with its 
complementary transition at any two equal distances from the 
symmetric point. Let us take the example of Snake 1, we see 
that the distance of transition “7” on the left side of transition 
“5” (the symmetric point), is always the same as the distance 
of transition “4” on the right side of transition “5” and vice 
versa. This is what also makes it a canonical palindrome (a 
canonical snake whose reverse when expressed in a canonical 
form is equal to the original canonical snake). 
 
4.4 Building the DNA 

Let us start from scratch while rebuilding these 
underlying structures for snakes. Building upon the idea from 
the previous section (Section 2.3), which described basic rules 
for a canonical snake in a transition sequence representation, 
we have the following mandatory guidelines: 
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1.  No k subsequent transitions can be the same in a spread k 
snake. 

2.  In the snake, for all subsequences of size greater than the 
spread, the number of unpaired transitions is greater than 
or equal to the spread. 
 

Let us build the DNA of Snake 1, the DNA of the 
longest snake in dimension 11 with spread 5. Let us start from 
the symmetric point (for odd spreads there is one symmetric 
point). So for keeping it simple, let us use “0” as the 
symmetric point. Now since no adjacent k (k is 5 in this case) 
sequences can be the same we can put four other transitions in 
this structure as shown below. 

 
3, 1, 0, 2, 4 

 
The order of transitions does not matter as this is the 

defining stage where the pairs are being defined and whatever 
transition we decide to put would form the definition of 
pairing. We could have used {3, 1, 0, 2, 4} or {0, 1, 2, 3, 4}. 
We built the first sequence by adding “1” to the left of 
transition “0” and “2” to the right of “0”. Then we added “3” 
to the left and “4” to its right. From the above sequences we 
have defined that transition “1” is paired with transition “2” 
and transition “3” is paired with transition “4” as they are at 
equal distance from “0” on the left and right side. So far, for 
spread k, if the dimension n is equal to k then putting all the 
transitions like this would make the longest snake of length k. 
But as we increase the dimension, we need to decide where the 
other extra transition sequences would be placed. In our 
example the next two transitions (say transition “5” and 
transition “6”) we can have the following sequences where 
either each of these transitions is placed in the same way to 
each side of the structure or switched on the other side as 
shown: 

 
6, 5, 3, 1, 0, 2, 4, 5, 6   or  6, 5, 3, 1, 0, 2, 4, 6, 5 
 

Both of these would be the longest snakes for 
dimension-spread (7, 5). As we go higher in the dimensions, 
we start adding new transitions or reusing the previous used 
transitions to left and right (if these transitions do not make the 
snake invalid). Based on the structure of the longest snake 
found so far, the second one containing {6, 5,…., 6, 5} is 
more common in odd dimensions with odd spread. So, let us 
add the next two transitions to this sequence, as shown: 

 
7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8 

 
After adding these, we can re-use the pair of transitions 

2 and 1. One of the common patterns that have been found is 
that during reusing the transitions the transition that was 
placed on the left side last time is preferred on the right side 
and vice versa. So the new structure would look like: 

 
2, 7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8, 1 

 

At this point adding the remaining transitions (transitions 9 
and 10) would look like: 
 

9, 2, 7, 6, 5, 3, 1, 0, 2, 4, 6, 5, 8, 1, 10 
 

This is all we need for the longest snake. This is the 
DNA of the longest snake in dimension-spread (11, 5). This is 
the same structure as that of Snake 1. In fact, when we used 
this underlying structure to build the longest snake, we found 
the following snake whose canonical form is Snake 1. 
 
Found:  [7, 3, 10, 8, 1, 0, 4, 2, 3, 10, 5, 0, 9, 2, 7, 6, 5, 3, 1, 
0, 2, 4, 6, 5, 8, 1, 10, 0, 6, 9, 4, 1, 3, 0, 2, 7, 9, 4, 8] 
 
Canonical: [0, 1, 2, 3, 4, 5, 6, 7, 1, 2, 8, 5, 9, 7, 0, 10, 8, 1, 4, 
5, 7, 6, 10, 8, 3, 4, 2, 5, 10, 9, 6, 4, 1, 5, 7, 0, 9, 6, 3] 
 

The above snake is the longest known snake in (11, 5) 
and is of length 39. This is also the maximally longest snake in 
this dimension-spread and is confirmed through exhaustive 
search in dimension-spread (11, 5). 
 
4.5 Working -Skin Nodes and Shadows 
  

 
Figure 4: The longest snake and its shadows in dimension-

spread (5, 3). 
 

No hypothesis is ever complete without an attempt to 
explain its workings. In this section we will attempt to explain 
why this works. When a node is used in the path of a spread k 
snake, it makes all of its neighbors, at a Hamming distance of 
k or less, unusable for future path options (except the k-nodes 
in the path). These unusable nodes are called skin nodes. 
These skin nodes when joined in the sequence of being created 
by the snakes are termed as “shadows” in a smaller hypercube. 
Figure 4 shows a dimension 5 spread 3 longest snake and the 
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shadows (connection of skin nodes) it casts upon its composite 
smaller hypercube (i.e. Hamming distance = 1). In an n-
dimensional hypercube, for spread k, when we traverse an 
edge of the hypercube, this edge casts its shadow in all the 
adjoining smaller hypercubes and is resonated until spread k. 
These shadows inhibit the growth of snakes in the future. But 
if an algorithm can strategically place the edges considering 
our future moves such that our paths are less and less affected 
by these shadows then a long snake would be possible. The 
pairing of transitions helps us in maintaining and strategically 
placing the shadows. Of course, choosing the correct pair is 
decided by both of the factors, the past transitions that have 
been used and the future transitions that are left unused. The 
complementary shadows pave the way for a snake to move 
inside these tightly packed shadows. 

 
5 Results and Discussion 

Once the DNA is chosen, we start assembling the pairs 
to the left and right side of the structure (DNA) while 
following the pairing rule (using complementary pairs on the 
left and right side of the DNA). After adding the 
complementary pairs on both sides the snake is validated. For 
validating the snakes faster, we store a map of unpaired 
transitions from each position for the current snake and update 
it when new pairs are added on both sides (following the same 
fundamentals described in Section 2.3). Picking up the 
complementary pair is done as an exhaustive search and we 
can call it an exhaustive complementary pair search. Though 
the DNA occupies a very small part of the snake and 
intuitively it seems that the search for the snake is still the 
same old difficult job, the reality is quite the contrary. First of 
all, by only allowing a unique pair of transitions from the 
DNA (rather than an arbitrarily large combination of transition 
pairs) we restrict the search space to a much smaller area. The 
second and the most important contribution of the DNA is that 
the right DNA lays the required foundational structure that can 
only grow to be the longest snake in the hypercube. One of the 
current limitations of this approach is that these structures are 
very simple only for odd dimensions with odd spread. For the 
other three combinations of odd and even dimension-spread, 
these structures are far more complex and become less 
analogous to the helical structure of DNA with unique base-
pairing. We intend to pursue the research in the remaining 
types of dimension-spread combinations, but for now we 
confine ourselves to odd dimensions with odd spread. 

 
Using this DNA structure we were able to find new 

lower bounds for the snakes in (13, 5), (15, 7) and (17, 7). The 
previous best known results are from [5] [6].The longest snake 
known so far for (9, 3), of length 63, was also found using this 
approach. The results are summarized in Table 2. The value in 
the parentheses in the right hand column is the previously 
known lower bound. The search in dimension-spread (15, 7) 
was completed by exhausting the complete search space 
defined by the structure which means no other longer snake is 
possible for the structure. For the other dimension-spreads the 

search could not be completed at present and longer snakes 
are possible for such structures. 

 
Table 2: New Lower Bounds for Snakes 

c - Complete search for the given structure 
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Dimension-spread Lower bound 

(13, 5) 85 (79) 

(15, 7) 57c (55) 

(17, 7) 103 (98) 
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