
Autonomous Wheelchair Navigation Prototype with an Arduino
Robot

Anna Shafer, Michael Turney, Francisco Ruiz, Justin Mabon, Michael Nooner, Yu Sun, Vamsi Paruchuri

Dept. of Computer Science, University of Central Arkansas, Conway, AR 72034, USA

Abstract - Navigating through a large and complicated
hospital can be difficult to most people, especially to those
elderly and/or disabled patients. To help patients more
efficiently while reducing the manpower, in this research, we
have proposed and developed an Autonomous Wheelchair
Navigation Prototype with an Arduino robot for hospital
navigation. With a user-friend interface, the proposed
prototype is able to determine the optimal path to find
locations accurately and can successfully control robots’
movement during the navigation. Thus, it can remove the
need to learn the ins and outs of hospitals and improve the
quality of life for its users. Our prototype for this system has
shown good preliminary results and is looking towards a
bright future.

Keywords: Arduino, Robot, Wheelchair, Autonomous,
Navigation

1. Introduction

1.1 Background

The United States Census Bureau released the status of
people with disabilities in July of 2012. Over 3.5 million
people use a wheelchair to assist with mobility throughout
their daily lives. Depending upon the severity and type of
disability, mobility and independence can be a challenge.
This issue is compounded by the aging population of the
United States. The post World II baby boom of 1946-1964
flooded the United States alone with 75 million births. The
Baby Boomers are beginning to hit the 65 and older mark
which will cause an influx of patients being admitted into
hospitals. As such health care resources in the US are not
prepared to meet such a rapid increase in elderly patients.
These patients will require more and more medical care. The
situation is already taking a toll on health care resources,
requiring more health care personnel to accommodate the
rising number of elderly patients [1].

The draw on human resources in the US as a result of
this population imbalance is uneconomical. In comparison,
Japan is ageing faster than any other country in history, with
vast consequences for its economy and society [2]. They
have, however, proposed a solution to some of the issues
that we are now beginning to face. One such problem is the
navigation of hospitals by elderly patients.

Navigating large hospitals can be difficult for patients
and arduous for the caretakers of elderly patients. Without
assistance, hospital navigation can be difficult or impossible
for them. The Autonomous Wheelchair Prototype is the
solution to this problem.

1.2 Related Work

Todays technological advances have opened many
doors for those with physical impairments. However, current
technologies are still lacking. Manual wheelchairs are still
the standard in hospital settings, requiring a patient to be in
good physical condition and have knowledge of the layout in
order to navigate or have assistance from health care
personnel. Several solutions to this problem have been
proposed.

1.2.1 MICA

The Mobile Internet Connected Assistant (MICA),
developed by the Lulea University of Technology in Sweden,
allows users to operate a wheelchair with movement of the
head, voice commands, or fully autonomously [3]. It is
designed to be controlled remotely, over the internet, or by
the user himself. Where the MICA suffers though, is its lack
of pathfinding. The only autonomous navigation the MICA
is capable of voice recognition which requires a user to
dictate very specific commands. A user is required to be able
to speak or make head movements to navigate this device
and to have a knowledge of the environment in order to
direct it.

1.2.2 RobChair

The RobChair navigation system was developed at the
University of Coimbra, Portugal. The system is designed to
assist quadriplegic or simultaneously blind and paraplegic
people with their mobility and navigation in domestic
environments [4]. The system is voice activated and is
equipped with obstacle avoidance to allow for general
navigation commands to go right or go left. However, this
system lacks any knowledge about its surroundings. It
requires the user to have a thorough knowledge of their
environment and be able to navigate to their destination.

1.2.3 Aviator

The Aviator is a wheelchair designed by Hung Nguyen
and his team at the Centre for Health Technologies at the
University of Technology, Sydney. This hands-free

Int'l Conf. Health Informatics and Medical Systems | HIMS'15 | 73

wheelchair uses an electroencephalography (EEG) to read
and translate brain signals into navigational commands for
the wheelchair [5]. While the wheelchair can navigate by
thoughts alone and uses cameras to avoid obstacles, it is very
expensive and made only for patients who are severely
physically handicapped. It also requires the user to have a
prior knowledge of their environment.

1.3 Motivation and Solution

Hospitals are huge and difficult to navigate. The long
hallways and labyrinthine passageways are problematic for
patients regardless of how many times they may have visited.
Patients often have to rely on others to help them navigate,
either by physically pushing them in a wheelchair or by
guiding them to their destination.

Our proposed autonomous wheelchair navigation
system will be able to transport a patient to their destination
with only the push of a few buttons. This system will use
RFID tags strategically embedded throughout the hospital to
provide orientation information to the wheelchair
device. Our system takes advantage of the static nature of
hospitals by allowing previously populated floor maps of
hospitals to be downloaded to the device at any time,
allowing the device to navigate to any destination choice
without requiring prior knowledge of the environment’s
layout from the user. RFID tags will be used because they
are cheap, readily available, and will provide more accurate
feedback than a GPS in this indoor setting.

Any patient will be able to use this system. It is
designed to remove the need of learning hospital layouts. By
allowing technology to assist in this way, better management
of human and monetary resources will be possible. This
wheelchair navigation system will save money for health
care administrations while accommodating the needs of a
wider range of patients than is possible with only a manual
wheelchair.

The rest of this paper is organized as follows. Section 2
describes the overall system structure. Section 3 details the
prototype’s components. Section 4 discusses the initial
results and Section 5 concludes the paper.

2. System Overview and Description
Fig. 1 illustrates the system overview. It starts with the

Administrative UI (AUI), where a hospital administrator can
create maps of a hospital. He can build maps to mimic floor
plans and save them to an online repository, which contains
all the floors and buildings of a hospital along with a
database that links room locations and room numbers
together. The database also links RFID values and tag
numbers, so the admin only has to memorize tag numbers
but not the 12 digit hexadecimal RFID values.

When a user sits in their wheelchair, the map of the
floor is downloaded to the device. When the user inputs the
room number they wish to go to, the wheelchair will then

scan their current location and generate the optimal path to
their destination. It will then send directions to the
wheelchair’s motors directing the wheelchair. When the
wheelchair drives over an RFID card, it will compare the
value with the virtual map. If the RFID card matches then
the wheelchair is in the correct location and is given another
direction. If the values don’t match the wheelchair will
update the path with the new location. Once the wheelchair
reads the RFID card of its destination the chair will stop.

Fig. 1: Diagram of robotic wheelchair simulation

3. Proposed Prototype Components
 The prototype wheelchair navigation system is broken
up into four modules (Fig.2): the Administrative UI, the
Software Keypad, the Navigational algorithm, and the Robot.
The Administrative UI is used to create the maps of hospital
floors. The Software Keypad is used to retrieve the room
locations from the database. The location is sent to the
Navigational Algorithm which determines the optimal path.
The algorithm sends instructions to the Robot. The Robot
moves according to the instructions and sends feedback to
the algorithm to update its position.

Fig. 2: Prototype wheelchair system flow

3.1 Administrative UI
The Administrative UI is designed in three stages:

generate, build, and save. The administrator must first
generate a map of a set size. Once the map is generated, the

74 Int'l Conf. Health Informatics and Medical Systems | HIMS'15 |

administrator can then start to build the map. By using a
toolbar of pre-defined shapes, the admin can reconstruct
most floor plans. The admin is able to click the shape in the
toolbar and place it in the map space. Doors and RFID-
embedded tiles require the admin to input an RFID tag,
which is a simple number assigned to each tag. During and
after the building stage, the admin can save their work. The
admin can then load the map at any time to continue work.
When the map is finished and saved, it will then be in the
online repository and it is ready to be used.

The AUI (Fig. 3) is created using JavaScript, PhP and
HTML. The HTML is used to create a canvas for the map
and toolbar to be drawn in. The JavaScript populates the
canvases with the map and toolbar. The JavaScript is then
used to draw the map by the admin clicking the tile in the
toolbar and then clicking a location in the map. The load
function uses JavaScript to open up a text file and parse the
contents to find the value of each position in the map. The
PhP is used to save the map. It also converts the RFID tag
the admin inputted into the 12 digit hexadecimal RFID code.
The PhP also finds the rooms in the map and stores the
location of the room in a database. This database is used
later by the software keypad to retrieve end-point locations.

Fig. 3: GUI example map

From the Administrative UI Web Page, the admin can
generate a map and start drawing. Fig. 4 shows the three
main functions and how they are called. The Generate
function will create an empty map for the admin to draw in.
At this point the admin can then click around on the web
page. Depending on where the admin clicks will determine
which function is called. If the admin clicks in the toolbar,
selectShape() is called to load a function into a variable. If
the admin clicks inside the map space, drawShape() will be
called.

The UI contains an array of functions. These functions
are used to draw the many different shapes. When the user
clicks in the toolbar, that function from the array is loaded
into a variable. When the user clicks inside the map, the
function in the variable is called. This lets the user draw
many shapes in the map without having a large if-else chain
to slow it down. The map is a 2d array that contains strings.
The value of the string can range from “0” to “16” which
represent the possible shapes. Values of “2”, “3”, and “16”

all contain extra information. “2” and “3” are doors and must
contain the RFID value in the floor tile and the room number.
“16” is the RFID embedded tile and as such contains the
RFID value. An example of a door tile is “3;2;101” which
means a door to room 101 has the RFID tag 2. An RFID
embedded tile would look like “16;4” which means the tile
has the RFID tag 4.

Fig. 4: Three Main Functions

When the user is done and wants to save, the save
function is called. This function sends the 2D array
representing the map to a php script. This script will go
through the array and write to a text file the contents. It will
place the location of the tile and its value. A value of ‘w’
means wall, a value of ‘e’ means empty, no value represents
an empty space, and anything else is the 12 digit
hexadecimal value. When the program detects there will be a
12 digit hexadecimal value, it will connect to a database that
pairs the hexadecimal value with the RFID tag number. This
allows the user to not have to memorize so much. An
example of an entry in the text file is “2 2 45DCA0112385”
which means that position 2,2 has that RFID value while “2
3 w” means there is a wall at 2,3. When the text file is
completed, the user can then operate the software keypad to
find room locations.

Fig. 5: Software Keypad example

3.2 Software Keypad
Our keypad (Fig.5), programmed in HTML and

Javascript, contains mostly numbers and has twelve buttons,
which is easy for users. When a patient uses our
Autonomous Wheelchair Prototype, they would press on the
keypad the room number they wish to go to. The keypad
sends the room number to the remote map server. That room

Int'l Conf. Health Informatics and Medical Systems | HIMS'15 | 75

number is looked up in the database and the database returns
the location and saves that location into a text file. The robot
then navigates to the destination that the patient wanted to
go to.

3.3 A star Algorithm

The A star (A*) algorithm is standard in navigation. It
finds the optimal path between two points in a known map
which consist of points or nodes. These nodes are spread out
in the map and serve as start and end points as well as all
points in between. Each node also contains priority and level
values. The priority value is equal to the distance it is from
the end point added to its level. The level of a node is how
far away the node is from the starting point. So a priority of
15 means that the node is 15 units away from the end point,
while a level of 11 means this node is 11 units away from
the start point.

The standard A* algorithm is not suitable for our project,
so we had to make some revisions. One of those revisions is
on the node structure. The node structure used in our A*
algorithm contains six properties. These properties are: the X
and Y coordinates of the node; the level and priority of the
node; the RFID value of the node, and the direction that the
node is pointing in. The direction is a value between zero
and seven. Zero represents map east and each increment
represents another direction in a clockwise direction such
that seven will represent map north-east (see Fig. 6). This
value is updated to show where the next node in the path is
located. The major steps of the revised A* algorithm are: (1)
Begin with the starting Node; (2) Search each neighbor node
of the selected node. Start to the east of the node and
continue clockwise until all eight directions are checked; (3)
For each neighboring node, check to see if they are a wall
node or have been visited before; (4) If the node is not a wall
node and has not been visited before, place the node in a
possible path queue; (5) If the node in the queue has been
considered before, compare the two priorities of the paths; (6)
Update the nodes priority and direction based on the lowest
priority; (7) Place the nodes in a stack; (8) Select a node
from the stack and go back to step 2; (9) Once the stack is
empty or the end node is found backtrack using the direction
on the nodes; (10) This will give the correct path.

Fig. 6: Eight directions & numbers

The text file from the Administrative UI is required for
the A* algorithm. Before the path can be generated, the
program has to load the map into memory. It will parse

through the text file and generate nodes based on the map
information. When the path is found, the algorithm will
return a string of directions. It will then send one direction at
a time to the robot. These directions will indicate which way
the robot should be heading. It follows the same numbering
pattern from before where zero is map east. When a
direction is sent to the robot it will wait for the robot to send
back a 12 digit hexadecimal value. The program will take
this value and check to see if the robot is in the correct spot.
If it is, the program will send the next instruction. If the
robot is off course, the program will update the path with the
new starting location and send instructions to the robot.

3.4 Hardware

The hardware platform used in this initial prototype is
based on the DFRobotshop Rover shown in Fig. 7. This
robotic kit is constructed around an Arduino Uno
microprocessor and its printed circuit board (PCB) which
supports the control of the robot’s motors, sensors, input and
output ports, as well as communication with an external
computer via mini USB. Our application takes advantage of
the motor controller electronics as well as multiple serial
lines. The Arduino microprocessor can be programmed
using open source Arduino libraries adapted with C++.

Fig.7: Assembled DFRobotshop Rover

The embedded motor controller chip on the PCB board
is used to send alternating signals to the motors
corresponding to the desired speed and direction. The robot
is directed using a relative positioning algorithm that
translates directional navigation commands from the
computer into right and left turns relative to the robot’s
current position. After the command is translated, it is
amplified by a factor determined by the robot’s terrain and
other variables such as the currently supplied power.

The prototype also utilizes a radio-frequency
identification (RFID) reader (Fig. 8) as position feedback for
the navigational algorithm. This RFID reader operates on a
125 kHz frequency allowing it to read standard
electromagnetic card tags (Fig. 9). All communication with
the RFID reader is performed through a serial line connected
to the microprocessor. The tag numbers are read from the
serial stream when they are detected. The tags consist of 16
total bytes in the format shown below. The RFID reader is
connected to the PCB as shown in Fig. 10.

[start of text] – [12 bytes of hex] – [new line] – [carriage
return] – [end of text]

76 Int'l Conf. Health Informatics and Medical Systems | HIMS'15 |

Fig.8: RFID reader

Fig.9: RFID reader on robot

 Fig.10: Wiring between RFID reader& Arduino

The robot is only capable of communicating through

one serial line at a time. In addition, the USB cable is the
communication line for navigational commands to be sent to
the robot and the RFID numbers to be sent back to the
computer. Our program uses the Windows API to open a
COM (communication) port on the computer to receive the
information from the microprocessor. All sending and
receiving serial pairs must use the same baud rate throughout
the communication process. The serial stream read by the
program is error prone; therefore, it is necessary to add error
correction to the serial processing. We implemented a basic
error correction into our prototype; however, it is still
possible for enough data to be lost that the only recovery
option is an error message.

Fig. 11 illustrates the communication flow throughout
the program. A communication handshake is performed at
the beginning to verify that the synchronization has taken

place. It lights up an LED to confirm that the handshake was
successful and the robot is ready to begin communication
with the computer. Then, RFID numbers are sent to the
computer for position feedback and they receive direction
commands in return until the destination is reached.

Fig. 11: Communication between robot & computer

4. Experimental Results
We tested our prototype of the autonomous wheelchair

system according to two metrics. In order for the system to
be successful, it must be able to quickly and accurately
deliver the patients to their destinations. Thus, the
navigational algorithm must be able to generate the path in a
timely manner, and the robot must be able to reach the
destination accurately 100% of the time.

We performed a worst case scenario test to determine
whether the navigational implementation was timely. We
created a random map with 5600 nodes. Considering
hospitals can be as large as 500,000 square feet and can
contain up to ten floors. Each floor would be around 50,000
square feet. Since a single node can represent a doorway
which is about three feet standard. This would bring a
representation of a hospital floor to a 75 nodes by 75 nodes
map. Based on estimations of real world applications, RFID
tags accounted for 24% of those nodes and 25% of them
were designated as walls. The algorithm to generate the path
was timed by subtracting the total milliseconds at the time
that it started calculating the path from the total milliseconds
that had occurred when the path was done generating. The
path was generated, on average, in 840 milliseconds. The
average human reaction time to change is around 240
milliseconds. So very shortly after the average human would
react to entering their destination, the chair will already have
the path generated.

Since the map generated is randomized, it is
disorganized and contains many more possible paths than in
reality. There are very few intersections in hospitals where
there are eight possible ways to go, but since the map is
randomized this situation shows up much more often. In a
map of a real hospital with optimized RFID placement, the
time to traverse the map and find the optimal path will be
greatly lowered. Even in the worst case, it still takes less

Int'l Conf. Health Informatics and Medical Systems | HIMS'15 | 77

than one second for the path to be generated and the
wheelchair to start moving. When tested on more suitable
rooms for the prototype, the path finding time was greatly
reduced. For a 7x7 room the path was found in less than 16
milliseconds every run.

In addition to speed, accuracy of the path that was
generated and the ability of the robot to follow that path was
measured. Measuring how often the robot was able to
correctly navigate to the destination was difficult to quantify
due to the imprecise nature of the hardware used. To account
for these dependencies in our testing, we divided the
measurement of the correctness of the navigational
algorithm’s path generation from the actual hardware’s
response when designing our tests.

We tested our prototype three times on each of three
different maps. The maps were designed to test the ability of
the algorithm to correctly find the most efficient path in
several different situations and the ability of the RFID reader
to provide accurate positioning feedback. For each of the
nine test runs, the number of correctly read RFID tags was
divided by the total number of tags to be read for the
generated path. These ratios are listed in Table 1.

Table 1: Ratio of correctly read to total RFID tags

 Test 1 Test 2 Test 3
Test Map 1 (4 rooms) 0.64 1.00 0.86

Test Map 2 (2 rooms) 1.00 0.89 0.88
Test Map 3 (1 room) 1.00 1.00 0.80

The average for each test map was then found. The

average RFID tag reading accuracy for test maps one, two,
and three was 0.800, 0.913, 0.923, respectively. The robot's
overall RFID tag reading accuracy was calculated by taking
the average of these three numbers, yielding an accuracy rate
of 87.9%.

 The results gathered from our tests so far, support
further investigation into this wheelchair navigation system.
On nine different tests, requiring the navigational algorithm
to calculate different paths, the average run time was less
than 16 ms. The time to generate a path in a worst case
scenario was still less than a second. In the test cases, the
accuracy of the robot was limited only by the hardware. The
robot successfully navigated to its destination every time,
unless the hardware failed, illustrating the potential of the
system.

5. Conclusion

Navigating hospitals is a tedious and demanding task for
patients and caretakers. With an increasing number of people
aging, there will be a greater demand for health care
resources in the near future. To alleviate the burden on

health care, an autonomous wheelchair navigation system is
very crucial.

 We have investigated and developed a prototype for this
system. Our Autonomous Wheelchair Navigation prototype
was a success. It is able to navigate to an end point following
the optimal path. The prototype was built with cheap, off the
shelf components. In addition, it is able to generate an
optimal path to its destination, which can autonomously
traverse to that destination. The prototype successfully
simulates the entire system by supplying the platform for an
administrator to generate floor maps and save them to an
online repository, a user download those maps to the
prototype, and letting the robot travel through the map.

 The core functionality of prototype is in place, but there
are improvements to be made in the future. Bundling floors
together in the administrative UI will reduce load times
between multi-floor navigation. Adding additional sensors to
the robot will help with turning and timing issues along with
collision detection. Our initial prototype simulates an
autonomous wheelchair hospital navigation system and
demonstrates the great potential such a system has to assist
our growing elderly population.

6. Acknowledgements
This research was partially supported by NSF Award#

1062838: "REU Site: HIT@UCA: Applied Research in
Health Information Technology."

7. References
[1] "Chance of Becoming Disabled - Council for Disability

Awareness”,http://www.disabilitycanhappen.org/chance
s_disability/disability_stats.asp.

[2] "Into the unknown | The Economist",
http://www.economist.com/node/17492860

[3] M. Hanlon, “The autonomous wheelchair raises the
promise of assistive mobile robots,” Gizmag New &
Emerging Tech. News.
http://www.gizmag.com/go/6626/, Dec. 16, 2006.

[4] G. Pires, N. Honório, C. Lopes, U. Nunes, A. T
Almeida, “Autonomous Wheelchair for Disabled
People”, Proc. of IEEE International Symposium on
Industrial Electronics, Guimarães, Portugal, July 7-11,
1997, pp. 797-801.

[5] PRETZ, K. (n.d.). Building Smarter Wheelchairs:
Making life a little easier for people who can't walk. The
Institute. http://theinstitute.ieee.org/technology-
focus/technology-topic/building-smarter-wheelchairs

78 Int'l Conf. Health Informatics and Medical Systems | HIMS'15 |

