
Implementing Elliptic Curve Cryptography

Leonidas Deligiannidis
Wentworth Institute of Technology

Dept. of Computer Science and Networking
Boston, MA 02115, USA
deligiannidisl@wit.edu

Abstract—The strength of public key cryptography utilizing

Elliptic Curves relies on the difficulty of computing discrete
logarithms in a finite field. Diffie-Hellman key exchange algorithm
also relies on the same fact. There are two flavors of this
algorithm, one using Elliptic Curves and another without using
Elliptic Curves. Both flavors of the algorithm rely on the difficulty
of computing discrete logarithms in a finite field. Other public key
cryptographic algorithms, such as RSA, rely on the difficulty of
integer factorization. Both flavors of Diffie-Hellman key exchange
algorithm will be discussed in this paper, and we will show
implementation details of both of them. Additionally, we will
describe what Elliptic Curve Cryptography (ECC) is, and how we
can implement different cryptographic algorithms in java, such as
digital signatures, encryption / decryption and Key exchange. We
will not utilize the java built-in implementations of ECC. Instead,
we will use the java programming language as a platform to
implement several cryptographic algorithms from the ground up,
thus revealing the details of each algorithm and the proofs and
reasons these algorithms work. We will describe the theory of
ECC and show implementation details that would help students,
practitioners, and researchers understand, implement and
experiment with such algorithms.

Keywords—Elliptic Curve Cryptography, Implementation,

Network Security.

I. INTRODUCTION
The strength of public key cryptography utilizing Elliptic

Curves relies on the difficulty of computing discrete logarithms
in a finite field. Diffie-Hellman key exchange algorithm also
relies on the same fact. There are two flavors of this algorithm,
one using Elliptic Curves [1] and another without using Elliptic
Curves [2]. Both flavors of the algorithm rely on the difficulty
of computing discrete logarithms in a finite field. Other public
key cryptographic algorithms, such as RSA [3], rely on the
difficulty of integer factorization. Both flavors of Diffie-
Hellman key exchange algorithm will be discussed in this
paper, and we will show implementation details of both of
them. Additionally, we will describe what Elliptic Curve
Cryptography (ECC) is, and how we can implement different
cryptographic algorithms in java, such as digital signatures,
encryption / decryption and Key exchange. Many [4][5][6][7]
implemented these algorithms in Java utilizing java’s built-in
libraries and they focus more on performance. We will not
utilize the java built-in implementations of ECC and we will
focus more on functionality instead of performance. Instead,
we will use the java programming language as a platform to
implement several cryptographic algorithms from the ground
up, thus revealing the details of each algorithm and the proofs

and reasons these algorithms work. We will describe the theory
of ECC and show implementation details that would help
students, practitioners, and researchers understand, implement
and experiment with such algorithms. We will not evaluate the
strengths of each algorithm and the technologies using ECC. A
great resource for comparing these algorithms and technologies
and discusses their vulnerabilities can be found in [8].

Elliptic Curves (EC) are curves that are also naturally
groups. They can be used to form a group that is defined by
custom arithmetic operations on its elements. We will first
describe these operations geometrically and then algebraically
over real numbers. Since ECs will be used to explain
cryptographic algorithms, we will focus on ECs over an
underlined field p (where p is a prime number); working only
with whole numbers. The Elliptic Curve Discrete Logarithm
Problem (ECDLP) is the discrete logarithm problem for the
group of points on an EC over a finite field. The best known
algorithm to solve ECDLP is exponential (or at least sub-
exponential since it is faster than exponential in log(p), but
slower than polynomial), and that is why EC groups are used
for cryptography. In simple terms, the Discrete Logarithm
Problem (DLP) is: given an element n in the subgroup
generated by a point g, find an integer m satisfying n = gm or
else m=logg(n). If we are working over a large finite field and
are given points P and kP, it is very difficult to determine the
value of k. This is called the Discrete Logarithm Problem for
elliptic curves and is the basis for the cryptographic
applications we will see in this paper.

An Elliptic Curve over real numbers consists of the points
on the curve, along with a special point Ѻ, which is called the
point at infinity and is the identity element under the addition
operation. The EC can be based on Weierstrass's equation [9]
which is of the form y2=x3+ax+b where x, y, a and b are real
numbers. The only constraint for the values of a and b is that
we do not want the curve to have repeated factors, or else
multiple roots; we want the curve to have distinct roots. In other
words, the discriminant of E, 4a3+27b2 must not equal to zero,
which guaranties that the curve is regular and there are no points
where the first derivatives of the curve are cancelled out; there
are no points with two or more different tangents [10]. The
number of Points (or else the order of the curve) on an EC mod
p denoted by #E(p) is given by the Scoof’s algorithm [11] and
provides the range of the number of points which is:

.

Elliptic Curve Cryptography (ECC) [12] has been
incorporated in a number of frequently used protocols. ECC is

68 Int'l Conf. Frontiers in Education: CS and CE | FECS'15 |

appealing to implementers because it requires smaller key sizes
[13] [10] than other public key crypto systems such as RSA [3],
while offering the same level of security. This leads to faster
and more efficient implementations of algorithms in software
and in hardware, and more importantly it enables the design of
more energy efficient processors for mobile devices. SSH [14]
is a protocol that enables secure remote logins. Key exchange
between the server and the clients is implemented using Diffie-
Hellman on ECs (ECDH) [1]. Each SSH server has a host key
and it is used to authenticate itself to the clients. The clients
need to accept and save this key the first time they connect to
the server. After the first time, they verify this server host key
with the saved host key. The server and the clients, then
authenticates themselves by signing a transcript of the key
exchange using ECDSA [15] [16] that we will talk about later.

Bitcoin is a distributed peer-to-peer digital crypto currency.
It enables users to make online payments directly to other
parties without going through a financial institution [17]. To
make a payment, a user transfers ownership of bitcoins to
another user by attaching his/her ECDSA signature and the
public key of the payee at the end of the new transaction.

II. ECC OPERATIONS

A. ECC Operations - geometrically
To add two distinct points P and Q on an EC where P ≠ -Q,

we draw a line through both points. This line intersects the EC
in a third point called -R. Reflecting this -R point on the x-axis
yields the point R which is R=P+Q, as shown in Figure 1.

If P = -Q, then P+Q= Ѻ, as shown in Figure 2. The cubic
curves used in ECC are depressed, which means that the square
component of the equation is eliminated. The solutions (r1, r2,
r3) to such cubic equations is given by (x-r1)(x-r2)(x-r3).
Performing the multiplications we get x3-(r1+r2+r3)x2+number.
Because the ECC curve does not have the x2 term, this implies
that the sum of its roots is equal to zero. Having the equation
of a line y=mx+d, we set the two equations equal to find their
intersection points. So, x3+px+q = mx+d which becomes:
x3+(p-m)x+(q-d) = 0 and the solutions are a,b,c. Since the sum
of these roots equals zero, a+b must equal to –c. Thus, the
reflection of the –c is our third point on the curve; and this is
the reason we need to reflect the resulting point when we
perform additions in ECs.

Fig. 1. Adding distinct points P and Q on an Elliptic Curve over . The result
is point R.

Based on addition, we can define multiplication of a point
P by a scalar as 2P=P+P, and 3P=2P+P, and 4P=3P+P or 4P =
2P+2P, etc, as shown in Figure 3. Note that when we add a
point P to itself, we take the tangent on that point, which
intersects the EC on another point, then we reflect that point to
get 2P.

Fig. 2. Adding points P and Q where point P is equal to –Q. The result is the
point at infinity Ѻ.

Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 69

Fig. 3. Doubling the point P produces the point 2P. Adding to that P, produces
3P, etc.

B. ECC Operations - algebraically
Adding two points P,Q EC with coordinates P=(x1,y1) and

Q=(x2,y2), we get point R=(x3,y3). Here we have 3 cases to
consider [18]:

1. x1 ≠ x2

2. x1=x2 and y1= -y2

3. x1=x2 and y1=y2

Case 1. The first case involves the addition of two points P
and Q that are not negative of each other (Q ≠ -P). The slope
of the line passing through both points is defined as: L=(y2-
y1)/(x2-x1). The coordinates of point R(x3,y3) = P+Q are: x3 =
L2-x1-x2 and y3 =L(x1-x3)-y1.

Case 2. The second case involves the addition of two points
P=(x1,y1) and Q=(x1,-y1); Q is the reflexion of point P on the
x-axis. We can write this as P + (-P) = Ѻ, where Ѻ is the special
point at infinity (the line passing through P and Q intersects the
EC at infinity. Therefore, (x,y) and (x,-y) are inverses with
respect to the elliptic curve addition operation. Here we can
also see how we can subtract a point P=(x1,y1) from point
Q=(x2,y2) to produce a point R. We simply reverse the sign of
the y-coordinate of point P and we perform addition as it is
described earlier.

Case 3: The third case involves the addition of a P=(x1,y1)
with itself: P+P=R; this is also referred to “point doubling”. In
this case we assume that y1 ≠ 0, otherwise we would be looking
at case 2 above. In this case, the slope of the line (the tangent
here) is calculated as: L=(3x1

2+a) / 2y1 , where a is the variable
a from the equation of the Elliptic Curve. The coordinates of
the point R=(x3,y3) are calculated the same way as in case 1.
Since we are adding a point to itself the calculations can be
simplified to: x3 = L2-2x1 and y3 = L(x1-x3)-y1.

III. ELLIPTIC CURVES OVER A FINITE FIELD
To implement cryptographic algorithms we need to work

with whole numbers over a finite field, which is an essential
property in cryptography; floating point arithmetic is slow and
inaccurate due to round off errors. Elliptic Curves over p can
be defined the same way as over where p is a prime greater
that 3 (in practice p is a large prime number). The equation of
the Elliptic Curve now becomes: y2 = x3+ax+b (mod p) where
4a3+27b2 (mod p) ≠ 0, and a, b are in the finite field p.

The coordinates (x3,y3) of the point R=P+Q are calculated
the same way as it is shown in case 1 above, but performed with
(mod p): x3 = L2-x1-x2 (mod p) and y3 =L(x1-x3)-y1 (mod p).
The slope L is calculated as follows: If P ≠ Q then L=(y2-y1)(x2-
x1)-1 (mod p). If P=Q then the slope L is calculated as follows:
L=(3x1

2+a)(2y1)-1 (mod p), where a is the variable a from the
equation of the Elliptic Curve; we can rewrite the calculation of
the x-coordinate as: x3 = L2-2x1 (mod p), and y3 stays the same
as y3 =L(x1-x3)-y1 (mod p).

We explained how we can add two distinct points and how
to double a point (adding a point to itself). In other words, P+P
= 2P. And 2P+P = 3P, 3P+P = 4P, and we can add 3P to 4P to
get 7P, etc. We can think of it as the scalar multiplication
operation under the additive notation of a point where 7P =
P+P+P+P+P+P+P, adding 7 copies of the point P to itself. The
strength of Elliptic Curve Cryptography relies on the fact that
given points P and Q such that P = kQ is computationally
infeasible to find k, and this is the Elliptic Curve Discrete
Logarithm Problem (ECDLP).

A. Properties of Addition on ECs
It can be shown [19] that the curve E(p) under point

addition is a commutative / abelian group because of the
following properties [20]:

 P + Ѻ = Ѻ + P = P for all P E(p), which
makes the point Ѻ be the identity under point addition.

 P + (-P) = Ѻ for all P E(p), which
makes the reflection of a point the inverse of the point.

 P + (Q+R) = (P+Q) + R for all P,Q,R E(p),
which is the associativity law.

 P + Q = Q+P for all P,Q E(p), which
is the commutative law.

 P + Q = R for all P,Q E(p), P + Q
produces result R E(p), thus the addition operation is
closed on the curve E(p).

The fact that the points on an elliptic curve form an abelian
group is behind most of the interesting properties and
applications utilizing ECs.

IV. JAVA IMPLEMENTATION DETAILS
The algorithms presented here are well known and standardized.

We will not present the entire implementation of these algorithms
(because of space limitations), instead we will provide implementation
hints on how one can implement them. For each algorithm we will
provide hints on how some of the important steps of the algorithms can
be implemented. Full source code is provided for free upon request.

70 Int'l Conf. Frontiers in Education: CS and CE | FECS'15 |

We do not claim that our implementations outperform any other
implementations. We simply provide implementation hints in Java in
this paper. The source code can be used as a vehicle to deepen our
understanding of the inner workings of such security algorithms.

Java’s BigInteger object is used almost exclusively for
implementing these algorithms. This object contains methods
that can operate on large numbers (primes or not) needed for all
cryptographic algorithms. Its probablePrime() method
generates prime numbers of specified number of bits. Other
methods allow you to add, subtract, multiply, etc. BigInteger
objects. One of the important methods that is used frequently
is the modPow() method which allows you to raise a number to
a power and then perform the mod operation, all in this single
call. Another method that is used as frequently is the
modInverse() which allows you to perform a mod operation on
the inverse of a number. Based on the BigInteger object, we
created an ECC_Point object. This object allows us to perform
additions of Points based on the properties of EC discussed
earlier. This object enables us to perform numerical operations
considering the point at infinity as well. There are two main
functions is this object, one to add two points, and the second
to multiply a Point by a scalar. We will be using variable names
that begin with BI to indicated that the data type of a variable
is of BigInteger, and ECP to indicate that the datatype of a
variable is of ECC_Point; the complete object is provided in the
URL mentioned above.

V. DIFFIE-HELLMAN KEY EXCHANGE ALGORITHMUSING THE
TEMPLATE

The Diffie-Hellman key exchange algorithm is used
between two parties to exchange keys securely over a public
unsecured communication line. Its strength is based on the fact
that while it is easy to calculate exponentials modulo a prime
number, it is very hard to calculate discrete logarithms. The
Diffie-Hellman Key Exchange algorithm between two parties
works as follows:

 Both users agree on a number q that is a large prime
number.

 Both users also agree on a number a that is a primitive root
of q and a<q.

 User A selects a private key XA that is XA<q.
 User B selects a private key XB that is XB<q.
 User A calculates her public key YA = aXA mod q.
 User B calculates her public key YB = aXB mod q.
 At this point the two users exchange their public keys.
 User A Calculates the Secret key K=YBXA mod q.
 User B Calculates the Secret key K=YAXB mod q.

Both users exchanged publicly the q, a, and their public
keys YA and YB. However, it is very difficult for an eaves
dropper to calculate the discrete logarithm and find either XA or
XB knowing YA, YB, a, and q. In actuality, the two parties
exchanged information in a public domain to securely calculate
the shared secret key K, which can then be used in other
symmetric algorithms.

Implementation hint: To perform the operation K=YAXB
mod q in Java, we can do:

BI_K =BI_YA.modPow(BI_XB, BI_q);

VI. DIFFIE-HELLMAN ON ELLIPTIC CURVES (ECDH)
The Diffie-Hellman algorithm can also be used over Elliptic

Curves between two parties to exchange keys. The algorithm
works as follows:

 Both users agree on an elliptic curve E over a finite field
 such that the discrete logarithm problem is hard in

E(). This implies that both users agree on the Elliptic
curve (i.e. y2=x3+ax+b (mod q)) which includes the
values of a and b, as well as the prime q.

 Both users also agree on a base point G E() so that
its order is a large prime.

 n is the smallest integer such that nG=Ѻ (where Ѻ is the
point at infinity).

 User A selects a private key na < n.
 User A calculates his public key Pa = naG.
 User B selects a private key nb < n.
 User B calculates his public key Pb = nbG.
 Both users exchange their public keys Pa and Pb.
 User A calculates her Secret key ka = na * Pb.
 User B calculates her Secret key kb = nb * Pa.

At this point ka = kb because ka = na * Pb = na * (nb
* G) = nb * (na * G) = nb * Pa = kb.

An eavesdropper only sees the curve E, the finite field
and the points G, naG and nbG. If the eavesdropper was capable
of solving discrete logarithms in E(), she could then find na
from the points G and naG.

Implementation hint: To perform the operation Pb = nbG
in Java, we can do: ECP_Pb = ECP_G.multiply(BI_nb);

VII. TRIPARTITE DIFFIE-HELLMAN
The Diffie-Hellman algorithm on Elliptic Curves can be

extended so that three participants are involved to derive a
shared key, but we will not discuss this algorithm and its
implementation in this paper. This technique requires a single
exchange of messages between them [21]. It uses the Weil
pairing, but a better approach is to use the Tate pairing, to define
the function F. Let E be the super singular curve y2=x3+1 over
Eq where q ≡ 2 (mod 3). Let S be a point on the curve of order
n. The three users choose a secret number: a, b, c (mod n)
respectively. They then calculate their public key as: Pa=aS,
Pb=bS, Pc=cS respectively, and they broadcast them. Then
each of the three participants computes the shared key as
follows, which is the same as F(S,S)abc : User A: F(Pb, Pc)a ,
User B: F(Pa, Pc)b and User C: F(Pa, Pb)c .

VIII. ELGAMAL DIGITAL SIGNATURES
A Digital signature is a mathematical operation on a given

data where anyone can verify the entity that signed a message.
The verification process should be relatively easy to compute
but very hard to forge someone else’s signature. If one verifies
that the signature is valid, this implies that the entity who claims
to have signed the document is the one who actually performed

Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 71

the signage of the document. The following solution relies on
the difficulty of computing discrete logarithms over a finite
field. Below is the algorithm where User A signs a message
and sends it User B. User B then can verify or reject the
signature.

 User A selects a generator point G E().
 User A selects a secret key d (a random number).
 User A computes his public key PUA= dG.

Public information: E, , G, PUA.

Message Signature

 User A signs the message M by first calculating its hash
value: e=H(M)

 User A chooses a random number k (and keeps it secret)
where gcd(k,N) = 1, and N=#E()

 User A calculates P = k G
 User A stores the x-coordinate of point P in x
 User A calculates s ≡ k−1 (e – d x) (mod N).
 User A transmits the signature (e, P, s) followed by the

message M (User A does not try to keep the message M a
secret!)
Signature Verification (needs 3 Point multiplications)

 User B stores the x-coordinate of point P in x
 User B calculates V1 = x PUA + s P
 User B calculates V2 = e G
 User B accepts the signature as valid if and only if V1 is

equal to V2.
This algorithm works because:

V1 = x PUA+s P = x d G + s k G = x d G + k−1 (e – d x) k G = G
((d x) + e – (d x))= e G = V2.

Implementation hint: To perform the operation s ≡ k−1 (e – d
x) (mod N) in Java, we can do:

BI_s = BI_k.modInverse(BI_N).multiply(
BI_e.subract(BI_d.multiply(BI_x))).mod(BI_N);

IX. THE DIGITAL SIGNATURE ALGORITHM (DSA) BASED ON
ELLIPTICAL CURVES (ECDSA)

The Digital Signature Standard [15] is based on the Digital
Signature Algorithm [16]. Recently, the ECDSA [22]
algorithm emerged that uses Elliptic Curves. ECDSA is similar
to ElGamal’s signature scheme but it uses a slightly different
signature verification method which makes verification of
signatures faster [19]. The main difference between ECDSA
and ElGamal’s digital signature system is that in ElGamal’s
system the verification process requires three multiplications of
an integer times a point, whereas in ECDSA only two
multiplications of an integer times a point are required. These
multiplications are the most expensive parts of these
algorithms.

 User_A wants to sign a message m, which is an integer or
most likely the hash of the document to be signed.

 User_A chooses an elliptic curve E over a finite field
where q is a prime number

 User_A chooses a base point G E() of order n; n is the
smallest positive integer that nG= Ѻ, which is also the
number of points on the curve.

Key Generation

 User_A select a random d [1...n-1].
 User_A computes PUa = dG, which is a point on the curve.

d is the private Key and PUa is the public key of User_A.
Public Information: E, , n, G, PUa.

Signature Generation of message m

 User_A select a random number k, (1 ≤ k < n)
 User_A computes P=(x,y)=kG and r = x mod n. If r is

zero restart
 User_A computes e = H(m) H is SHA-1 (160 bit hash)
 User_A computes s ≡ k-1 (e+dr) mod n. If s is zero restart

The Signature is the pair (r,s)
Signature Verification

 User_B verifies that r and s are in [1...n-1]
 User_B computes e=H(m)
 User_B computes w ≡ s-1 mod n
 User_B computes u1 = ew and u2=rw
 User_B computes X=(x,y) = u1G+u2PUa
 If X is the infinity point, User_B rejects the signature, else

she computes: v = x mod n

User_B accepts the signature iff v is equal to r, since

r = x mod n from P=(x,y), that User A computes, and

v = x mod n from X=(x,y), that User B computes.

This algorithm works because:

X=u1G+u2PUa = ewG+rwPUa=es-1G+rs-1PUa = es-1G+rs-1dG =
s-1(e+rd)G = kG=P

Implementation hint: To perform the operation s ≡ k-1 (e+dr)
mod n in Java, we can do:

BI_s = BI_k.modInverse(BI_N).multiply(
BI_e.add(BI_d.multiply(BI_x))).mod(BI_N);

X. ELGAMAL PUBLIC KEY ENCRYPTION
Public Key Encryption is the mathematical operation to a

message that enables only the recipient to decrypt the message.
There are two families of encryption algorithms: symmetric and
asymmetric. In symmetric algorithms, the same key that
encrypts can also decrypt a message. In asymmetric
encryption, or else public key encryption, one key encrypts and
the other decrypts – one key is kept secret and the other is made
public. Generally, public key crypto-systems are slower than
symmetric crypto-systems. Therefore, it is common to use
public key systems, such Diffie-Hellman, to negotiate and
establish a key that is then used in a symmetric crypto-system.

Here is the ElGamal’s encryption algorithm where User A
encrypts a message and sends it to User B. Then only User B
is able to decrypt the recover the original message.

Initialization

 User B chooses a generator point G E().

72 Int'l Conf. Frontiers in Education: CS and CE | FECS'15 |

 User B chooses a secret integer d. (d is user’s B private
key).

 User B computes PUB = dG. (PUB is user’s B public key).
Public Information: E, , G, PUB

Encryption

 User A expresses her message M E().
 User A chooses a secret session random integer k. It is

important that a different k is used each time.
 User A computes M1 = kG
 User A computes M2 = M + kPUB
 User A sends to User B: (M1, M2)

Decryption

 User B computes and recovers M = M2-dM1

This algorithm works because:

M2-dM1 = (M+kPUB) –d(kG) = M + kdG – kdG = M

Implementation hint: To perform the operation M=M2-dM1
in Java, we can do:

ECP_M = ECP_M2.subract(ECP_M1.multiply(
BI_d)).mod(BI_q);

XI. MASSEY-OMURA ENCRYPTION
In Massey-Omura encryption scheme, both users agree on

an elliptic curve E over a finite field such that the discrete
log problem is hard in E(). This algorithm works as follows.
User A places a lock on the message M and sends it to User B.
User B places another lock on the message and sends it back to
User A. User A then removes his lock (leaving the message
with only User B’s lock on, and sends it back to User B. User
B then removes his lock to retrieve the message that User A
sent him. Below is the algorithm. It is important to notice here
that “removing a lock” requires the multiplication of a point
with one’s inverse private key. To do this, both users need to
know N=#E(). If d is the private key, the d’ is the inverse of
d in which d*d’ = 1.

 User A wants to encrypt a message M E().
 User A chooses a secret integer da with gcd(da,N) = 1.
 User A computes M1 = daM and sends it to User B.
 User B chooses a secret integer db, with gcd(db,N) = 1.
 User B computes M2 = dbM1 and sends it back to User A.
 User A computes da

-1 n
 User A calculates M3 = da

-1 M2 and sends it to User B.
 User B computes db-1 n
 User B calculates M4 = db

-1 M3.
M4 = M because: M4 = db

-1 M3 = db
-1 da

-1 M2 = db
-1 da

-1 dbM1 =
db

-1 da
-1 db daM = M

Implementation hint: To find the inverse of a number in
of order N, we perform the following (finding da

-1 knowing da):

BI_daInv = BI_da.modInverse(BI_N);

XII. ELLIPTIC CURVE INTEGRATED ENCRYPTION SCHEME
(ECIES)

ECIES is another encryption scheme. ECIES is the most
extended encryption scheme utilizing ECs. It is defined in

ANSI X9.63 [23], IEEE 1363a [24], ISO/IEC 18033-2 [25] and
SECG SEC 1 [26]. In [27] the authors compare the different
ECIES versions that are implemented by different security
organizations and standards. Both users agree on an elliptic
curve E over a finite field so that the discrete log problem is
hard for E(). Both users also agree on a point G E().
N=#E() is the number of points on the curve; the order of the
curve. We need 2 different hash functions H1 and H2 and a
symmetric encryption algorithm. An advantage of ECIES over
ElGamal’s and the Massey-Omura public key encryption
methods is that the message M is not represented as a point on
the curve, on the contrast it is any sequence of bytes. Here User
B wants to send an encrypted message M to user A.

Initialization

 User A chooses a secret integer d. (this is the secret key).
 User A computes PUA = dG. (this is the public key).

Public Information: (E, , N, G, PUA)

Encryption

 User B chooses a random number k where: 1 ≤ k ≤ N − 1
 User B computes R = kG
 User B computes Z = kPUA
 User B computes the hash of R and Z: Rh=H1(R) and

Zh=H1(Z).
 User B encrypts message M using a symmetric algorithm

and the key Rh : C=ERh(M)
 User B computes the hash of C and Zh: t1=H2(C) and

t2=H2(Zh)
 User B sends to User A: (R, C, t1, t2)

Decryption

 User A computes Z = dR
 User A computes Rh’=H1(R) and Zh’=H1(Z)
 User A computes t1’=H2(C) and t2’=H2(Zh’)
 If t1 is not equal to t1

’ or t2 is not equal to t2
’, reject the

cipher-text C and don’t even try to decrypt it, else continue.
 User A computes M = DRh’(C). (Note here that Rh

’ = Rh).

For this algorithm to work, the Z values computed by both users
must be the same, and they are because:

(User A computes): Z = dR = dkG

(User B computes): Z = kPUA = kdG=dkG

Implementation hint: To compute the Z point, user B can do
the following: ECP_Z = ECP_PUA.multiply(k);

CONCLUSION
We presented the underlying number theory of Elliptic

Curve Cryptography in a simple to understand way. We
explained several algorithms and the mathematical reasons why
they work. We also explained how these algorithms can be
implemented using the java language and platform. We provide
the complete source code of these implementations for
researchers and students to experiment with and discover the
beauty and elegancy of Elliptic Curve Cryptography.

Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 73

REFERENCES
[1] U.S. Department of Commerce/National Institute of Standards and

Technology (NIST). Recommendation for Pair-Wise Key-Establishment
Schemes Using Discrete Logarithm Cryptography. Special Publication
800-56A Revision 2, May 13 2013.
http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-
56A_Revision1_Mar08-2007.pdf (retrieved Feb. 2015).

[2] Whitfield Diffie and Martin E. Hellman. "New Directions in
Cryptography". IEEE Transactions on Information Theory Vol. 22 (6).
p644–654, Nov. 1976.

[3] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems”. Communications of
the ACM, Vol.21, Issue 2, pp120-126, Feb. 1978.

[4] Andrew Burnett, Keith Winters, and Tom Dowling, "A Java
implementation of an elliptic curve Cryptosystem". Proceedings of the
inaugural conference on the Principles and Practice of programming,
2002 and Proceedings of the second workshop on Intermediate
representation engineering for virtual machines, (PPPJ '02/IRE '02), 2002
Pages 83 - 88 National University of Ireland Maynooth, County Kildare,
Ireland, Ireland ISBN: 0901519871

[5] V. Gayoso Martınez, L. Hernandez Encinas, and C. Sanchez Avila. "A
Java Implementation of the Elliptic Curve Integrated Encryption
Scheme." The 2010 International Conference on Security and
Management (SAM’10), 2010

[6] Johann Großschadl, Dan Page, and Stefan Tillich. "Efficient Java
Implementation of Elliptic Curve Cryptography for J2ME-Enabled
Mobile Devices." Information Security Theory and Practice. Security,
Privacy and Trust in Computing Systems and Ambient Intelligent
Ecosystems Lecture Notes in Computer Science Volume 7322, 2012, pp
189-207

[7] V. Gayoso Martınez and L. Hernandez Encinas. “Implementing ECC with
Java Standard Edition 7”. International Journal of Computer Science and
Artificial Intelligence Vol. 3 Iss. 4 pp134-142, Dec 2013

[8] Joppe W. Bos, J. Alex Halderman, Nadia Heninger, Jonathan Moore,
Michael Naehrig, and Eric Wustrow. “Elliptic Curve Cryptography in
Practice” In Proc. Of the 18th conf. on Financial Cryptography and Data
Security (FC 2014) Christ Church Barbados. March 3-7, 2014. Springer
Nov. 8 2014.

[9] Joseph. H. Silverman. “The Arithmetic of Elliptic Curves (2nd ed.),
Springer-Verlag, New York, ISBN: 978-0-387-09493-9, 2009.

[10] Hankerson, Darrel, Menezes, Alfred J., Vanstone, Scott. “Guide to
Elliptic Curve Cryptography”. Springer-Verlag, New York, NY, ISBN:
978-0-387-95273-4, USA, 2004.

[11] René Schoof. “Elliptic Curves over Finite Fields and the Computation of
Square Roots mod p”. Mathematics of Computation 44, (1985), p483-
494.

[12] Victor S. Miller. “Use of Elliptic Curves in Cryptography”. Advances in
Cryptology – CRYPTO 1985 Proceedings. Lecture Notes in Computer
Science Vol. 218 pp417-426, Springer 1986.

[13] I. F. Blake, G. Seroussi, and N. P. Smart. “Elliptic Curves in
Cryptography”. London Mathematical Society Lecture Note Series Vol.
265. Cambridge University Press, Cambridge, 1999 ISBN 0521-653746.
Reprinted in 2000.

[14] D. Stebila and J. Green. “Elliptic Curve Algorithm Integration in the
Secure Shell Transport Layer”. RFC 5656, Dec. 2009.
http://tools.ietf.org/html/rfc5656 Retrieved Feb. 2015.

[15] Digital Signature Standard (DSS), Federal Information Processing
Standards Publications FIPS 186-4 July 2013 National Institute of
Standards and Technology (NIST) doi:10.6028/NIST.FIPS.186-4 U.S.
Department of Commerce
http://csrc.nist.gov/publications/PubsFIPS.html ,
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf. Retrieved
Feb. 2015.

[16] Digital Signature Algorithm US patent 5231668A Jul. 27 1993 Inventor
David W. Kravitz. http://www.google.com/patents/US5231668 Retrieved
Feb. 2015.

[17] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System.
Oct. 2008 https://bitcoin.org/bitcoin.pdf, Retrieved Feb 2015.

[18] Douglas R. Stinson "Cryptography Theory and Practice 3rd Edition
Discrete Mathematics and its applications". Series editor Kenneth H.
Rosen. Publisher: Chapman & Hall/CRC Taylor & Francis Group Boca
Raton London New York, ISBN13: 978-1-58488-508-5, 2006.

[19] “ELLIPTIC CURVES” NUMBER THEORYAND CRYPTOGRAPHY
SECOND EDITION, Discrete Mathematics and its Applications” Series
Editor Kenneth H. Rosen 2008 by Taylor & Francis Group, LLC.
Chapman & Hall/CRC. Taylor & Francis Group 6000 Broken Sound
Parkway NW, Suite 300. Boca Raton, FL 33487-2742. Chapman &
Hall/CRC is an imprint of Taylor & Francis Group, an Informa business.
ISBN: 13: 978-1-4200-7146-7

[20] William Stallings, “Cryptography and Network Security: Principles and
Practice” fourth edition. ISBN: 0-13-187316-4 Pearson / Prentice Hall
Upper Saddle River, NJ, 2006

[21] Antoine, Joux. “A one round protocol for tripartite Diffie-Hellman”. In
Algorithmic Number Theory, Ed. W. Bosma, Vol. 1838 of Lecture Notes
in Computer. Sci., pp 385–393. Springer- Verlag, Berlin, 2000.

[22] The FIPS 186-4 Elliptic Curve Digital Signature Algorithm Validation
System (ECDSA2VS) Updated March 18 2014. National Institute of
Standards and Technology (NIST). Information Technology Laboratory.
http://csrc.nist.gov/groups/STM/cavp/documents/dss2/ecdsa2vs.pdf
Retrieved Feb. 2015.

[23] American National Standards Institute. "Public Key Cryptography for the
Financial Services Industry: Key Agreement and Key Transport Using
Elliptic Curve Cryptography". ANSI X9.63, 2001.

[24] Institute of Electrical and Electronics Engineers. Standard Specifications
for Public Key Cryptography - Amendment 1: Additional Techniques.
IEEE 1363a, 2004.

[25] International Organization for Standardization / International
Electrotechnical Commission. Information Technology - Security
Techniques - Encryption Algorithms - Part 2: Asymmetric Ciphers.
ISO/IEC 18033-2, 2006.

[26] Standards for Efficient Cryptography Group. Recommended Elliptic
Curve Domain Parameters. SECG SEC 1 version 2.0, 2009.

[27] V. Gayoso Martínez, F. Hernández Álvarez, L. Hernández Encinas.
"Analysis of ECIES and Other Cryptosystems Based on Elliptic Curves".
Journal of Information Assurance and Security 6(4) : 285-293 (2011).

74 Int'l Conf. Frontiers in Education: CS and CE | FECS'15 |

