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Abstract—The strength of public key cryptography utilizing 

Elliptic Curves relies on the difficulty of computing discrete 
logarithms in a finite field. Diffie-Hellman key exchange algorithm 
also relies on the same fact.  There are two flavors of this 
algorithm, one using Elliptic Curves and another without using 
Elliptic Curves. Both flavors of the algorithm rely on the difficulty 
of computing discrete logarithms in a finite field.  Other public key 
cryptographic algorithms, such as RSA, rely on the difficulty of 
integer factorization.  Both flavors of Diffie-Hellman key exchange 
algorithm will be discussed in this paper, and we will show 
implementation details of both of them.  Additionally, we will 
describe what Elliptic Curve Cryptography (ECC) is, and how we 
can implement different cryptographic algorithms in java, such as 
digital signatures, encryption / decryption and Key exchange.  We 
will not utilize the java built-in implementations of ECC. Instead, 
we will use the java programming language as a platform to 
implement several cryptographic algorithms from the ground up, 
thus revealing the details of each algorithm and the proofs and 
reasons these algorithms work.  We will describe the theory of 
ECC and show implementation details that would help students, 
practitioners, and researchers understand, implement and 
experiment with such algorithms.  

 
Keywords—Elliptic Curve Cryptography, Implementation, 

Network Security. 

I. INTRODUCTION 
The strength of public key cryptography utilizing Elliptic 

Curves relies on the difficulty of computing discrete logarithms 
in a finite field.  Diffie-Hellman key exchange algorithm also 
relies on the same fact.  There are two flavors of this algorithm, 
one using Elliptic Curves [1] and another without using Elliptic 
Curves [2]. Both flavors of the algorithm rely on the difficulty 
of computing discrete logarithms in a finite field.  Other public 
key cryptographic algorithms, such as RSA [3], rely on the 
difficulty of integer factorization.  Both flavors of Diffie-
Hellman key exchange algorithm will be discussed in this 
paper, and we will show implementation details of both of 
them.  Additionally, we will describe what Elliptic Curve 
Cryptography (ECC) is, and how we can implement different 
cryptographic algorithms in java, such as digital signatures, 
encryption / decryption and Key exchange.  Many [4][5][6][7] 
implemented these algorithms in Java utilizing java’s built-in 
libraries and they focus more on performance. We will not 
utilize the java built-in implementations of ECC and we will 
focus more on functionality instead of performance.  Instead, 
we will use the java programming language as a platform to 
implement several cryptographic algorithms from the ground 
up, thus revealing the details of each algorithm and the proofs 

and reasons these algorithms work.  We will describe the theory 
of ECC and show implementation details that would help 
students, practitioners, and researchers understand, implement 
and experiment with such algorithms. We will not evaluate the 
strengths of each algorithm and the technologies using ECC.  A 
great resource for comparing these algorithms and technologies 
and discusses their vulnerabilities can be found in [8].   

Elliptic Curves (EC) are curves that are also naturally 
groups.  They can be used to form a group that is defined by 
custom arithmetic operations on its elements.  We will first 
describe these operations geometrically and then algebraically 
over real numbers.  Since ECs will be used to explain 
cryptographic algorithms, we will focus on ECs over an 
underlined field p (where p is a prime number); working only 
with whole numbers.  The Elliptic Curve Discrete Logarithm 
Problem (ECDLP) is the discrete logarithm problem for the 
group of points on an EC over a finite field.  The best known 
algorithm to solve ECDLP is exponential (or at least sub-
exponential since it is faster than exponential in log(p), but 
slower than polynomial), and that is why EC groups are used 
for cryptography.  In simple terms, the Discrete Logarithm 
Problem (DLP) is: given an element n in the subgroup 
generated by a point g, find an integer m satisfying n = gm  or 
else m=logg(n).  If we are working over a large finite field and 
are given points P and kP, it is very difficult to determine the 
value of k. This is called the Discrete Logarithm Problem for 
elliptic curves and is the basis for the cryptographic 
applications we will see in this paper. 

An Elliptic Curve over real numbers consists of the points 
on the curve, along with a special point Ѻ, which is called the 
point at infinity and is the identity element under the addition 
operation.  The EC can be based on Weierstrass's equation [9] 
which is of the form y2=x3+ax+b where x, y, a and b are real 
numbers.  The only constraint for the values of a and b is that 
we do not want the curve to have repeated factors, or else 
multiple roots; we want the curve to have distinct roots.  In other 
words, the discriminant of E, 4a3+27b2 must not equal to zero, 
which guaranties that the curve is regular and there are no points 
where the first derivatives of the curve are cancelled out; there 
are no points with two or more different tangents [10].  The 
number of Points (or else the order of the curve) on an EC mod 
p denoted by #E( p) is given by the Scoof’s algorithm [11] and 
provides the range of the number of points which is: 

. 

Elliptic Curve Cryptography (ECC) [12] has been 
incorporated in a number of frequently used protocols.  ECC is 
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appealing to implementers because it requires smaller key sizes 
[13] [10] than other public key crypto systems such as RSA [3], 
while offering the same level of security.  This leads to faster 
and more efficient implementations of algorithms in software 
and in hardware, and more importantly it enables the design of 
more energy efficient processors for mobile devices.  SSH [14] 
is a protocol that enables secure remote logins.  Key exchange 
between the server and the clients is implemented using Diffie-
Hellman on ECs (ECDH) [1].  Each SSH server has a host key 
and it is used to authenticate itself to the clients.  The clients 
need to accept and save this key the first time they connect to 
the server.  After the first time, they verify this server host key 
with the saved host key.  The server and the clients, then 
authenticates themselves by signing a transcript of the key 
exchange using ECDSA [15] [16] that we will talk about later. 

Bitcoin is a distributed peer-to-peer digital crypto currency.  
It enables users to make online payments directly to other 
parties without going through a financial institution [17].  To 
make a payment, a user transfers ownership of bitcoins to 
another user by attaching his/her ECDSA signature and the 
public key of the payee at the end of the new transaction. 

II. ECC OPERATIONS 

A. ECC Operations - geometrically 
To add two distinct points P and Q on an EC where P ≠ -Q, 

we draw a line through both points.  This line intersects the EC 
in a third point called -R.  Reflecting this -R point on the x-axis 
yields the point R which is R=P+Q, as shown in Figure 1.   

If P = -Q, then P+Q= Ѻ, as shown in Figure 2.  The cubic 
curves used in ECC are depressed, which means that the square 
component of the equation is eliminated.  The solutions (r1, r2, 
r3) to such cubic equations is given by (x-r1)(x-r2)(x-r3).  
Performing the multiplications we get x3-(r1+r2+r3)x2+number.  
Because the ECC curve does not have the x2 term, this implies 
that the sum of its roots is equal to zero.  Having the equation 
of a line y=mx+d, we set the two equations equal to find their 
intersection points.  So, x3+px+q = mx+d which becomes: 
x3+(p-m)x+(q-d) = 0 and the solutions are a,b,c. Since the sum 
of these roots equals zero, a+b must equal to –c.  Thus, the 
reflection of the –c is our third point on the curve; and this is 
the reason we need to reflect the resulting point when we 
perform additions in ECs. 

 
Fig. 1. Adding distinct points P and Q on an Elliptic Curve over .  The result 
is point R. 

Based on addition, we can define multiplication of a point 
P by a scalar as 2P=P+P, and 3P=2P+P, and 4P=3P+P or 4P = 
2P+2P, etc, as shown in Figure 3.  Note that when we add a 
point P to itself, we take the tangent on that point, which 
intersects the EC on another point, then we reflect that point to 
get 2P. 

 

 
Fig. 2. Adding points P and Q where point P is equal to –Q.  The result is the 
point at infinity Ѻ. 
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Fig. 3. Doubling the point P produces the point 2P.  Adding to that P, produces 
3P, etc. 

B. ECC Operations - algebraically 
Adding two points P,Q  EC with coordinates P=(x1,y1) and 

Q=(x2,y2), we get point R=(x3,y3). Here we have 3 cases to 
consider [18]:  

1. x1 ≠ x2 

2. x1=x2 and y1= -y2 

3. x1=x2 and y1=y2 

Case 1. The first case involves the addition of two points P 
and Q that are not negative of each other (Q ≠ -P).  The slope 
of the line passing through both points is defined as: L=(y2-
y1)/(x2-x1). The coordinates of point R(x3,y3) = P+Q are: x3 = 
L2-x1-x2 and y3 =L(x1-x3)-y1. 

Case 2. The second case involves the addition of two points 
P=(x1,y1)  and Q=(x1,-y1); Q is the reflexion of point P on the 
x-axis.  We can write this as P + (-P) = Ѻ, where Ѻ is the special 
point at infinity (the line passing through P and Q intersects the 
EC at infinity.  Therefore, (x,y) and (x,-y) are inverses with 
respect to the elliptic curve addition operation.  Here we can 
also see how we can subtract a point P=(x1,y1) from point 
Q=(x2,y2) to produce a point R.  We simply reverse the sign of 
the y-coordinate of point P and we perform addition as it is 
described earlier. 

Case 3: The third case involves the addition of a P=(x1,y1) 
with itself: P+P=R; this is also referred to “point doubling”.  In 
this case we assume that y1 ≠ 0, otherwise we would be looking 
at case 2 above.  In this case, the slope of the line (the tangent 
here) is calculated as:  L=(3x1

2+a) / 2y1 , where a is the variable 
a from the equation of the Elliptic Curve.  The coordinates of 
the point R=(x3,y3) are calculated the same way as in case 1.  
Since we are adding a point to itself the calculations can be 
simplified to: x3 = L2-2x1 and y3 = L(x1-x3)-y1. 

III. ELLIPTIC CURVES OVER A FINITE FIELD 
To implement cryptographic algorithms we need to work 

with whole numbers over a finite field, which is an essential 
property in cryptography; floating point arithmetic is slow and 
inaccurate due to round off errors.  Elliptic Curves over p can 
be defined the same way as over  where p is a prime greater 
that 3 (in practice p is a large prime number).  The equation of 
the Elliptic Curve now becomes: y2 = x3+ax+b (mod p) where 
4a3+27b2 (mod p) ≠ 0, and a, b are in the finite field p.   

The coordinates (x3,y3) of the point R=P+Q are calculated 
the same way as it is shown in case 1 above, but performed with 
(mod p): x3 = L2-x1-x2 (mod p) and  y3 =L(x1-x3)-y1 (mod p).  
The slope L is calculated as follows: If P ≠ Q then L=(y2-y1)(x2-
x1)-1 (mod p). If P=Q then the slope L is calculated as follows: 
L=(3x1

2+a)(2y1)-1 (mod p), where a is the variable a from the 
equation of the Elliptic Curve; we can rewrite the calculation of 
the x-coordinate  as: x3 = L2-2x1 (mod p),  and y3 stays the same 
as y3 =L(x1-x3)-y1 (mod p).   

We explained how we can add two distinct points and how 
to double a point (adding a point to itself). In other words, P+P 
= 2P. And 2P+P = 3P, 3P+P = 4P, and we can add 3P to 4P to 
get 7P, etc.  We can think of it as the scalar multiplication 
operation under the additive notation of a point where 7P = 
P+P+P+P+P+P+P, adding 7 copies of the point P to itself.  The 
strength of Elliptic Curve Cryptography relies on the fact that 
given points P and Q such that P = kQ is computationally 
infeasible to find k, and this is the Elliptic Curve Discrete 
Logarithm Problem (ECDLP). 

A. Properties of Addition on ECs 
It can be shown [19] that the curve E( p) under point 

addition is a commutative / abelian group because of the 
following properties [20]: 

 P + Ѻ = Ѻ + P = P  for all P  E( p), which 
makes the point Ѻ be the identity under point addition. 

 P + (-P) = Ѻ   for all P  E( p), which 
makes the reflection of a point the inverse of the point. 

 P + (Q+R) = (P+Q) + R for all P,Q,R  E( p), 
which is the associativity law. 

 P + Q = Q+P   for all P,Q  E( p), which 
is the commutative law. 

 P + Q = R   for all P,Q  E( p), P + Q 
produces result R  E( p), thus the addition operation is 
closed on the curve E( p). 

The fact that the points on an elliptic curve form an abelian 
group is behind most of the interesting properties and 
applications utilizing ECs. 

IV. JAVA IMPLEMENTATION DETAILS 
The algorithms presented here are well known and standardized.  

We will not present the entire implementation of these algorithms 
(because of space limitations), instead we will provide implementation 
hints on how one can implement them.  For each algorithm we will 
provide hints on how some of the important steps of the algorithms can 
be implemented.  Full source code is provided for free upon request.  
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We do not claim that our implementations outperform any other 
implementations.  We simply provide implementation hints in Java in 
this paper.  The source code can be used as a vehicle to deepen our 
understanding of the inner workings of such security algorithms. 

Java’s BigInteger object is used almost exclusively for 
implementing these algorithms.  This object contains methods 
that can operate on large numbers (primes or not) needed for all 
cryptographic algorithms. Its probablePrime() method 
generates prime numbers of specified number of bits.  Other 
methods allow you to add, subtract, multiply, etc. BigInteger 
objects.  One of the important methods that is used frequently 
is the modPow() method which allows you to raise a number to 
a power and then perform the mod operation, all in this single 
call.  Another method that is used as frequently is the 
modInverse() which allows you to perform a mod operation on 
the inverse of a number.  Based on the BigInteger object, we 
created an ECC_Point object.  This object allows us to perform 
additions of Points based on the properties of EC discussed 
earlier.  This object enables us to perform numerical operations 
considering the point at infinity as well. There are two main 
functions is this object, one to add two points, and the second 
to multiply a Point by a scalar.  We will be using variable names 
that begin with BI to indicated that the data type of a variable 
is of BigInteger, and ECP to indicate that the datatype of a 
variable is of ECC_Point; the complete object is provided in the 
URL mentioned above. 

V. DIFFIE-HELLMAN KEY EXCHANGE ALGORITHMUSING THE 
TEMPLATE 

The Diffie-Hellman key exchange algorithm is used 
between two parties to exchange keys securely over a public 
unsecured communication line. Its strength is based on the fact 
that while it is easy to calculate exponentials modulo a prime 
number, it is very hard to calculate discrete logarithms.  The 
Diffie-Hellman Key Exchange algorithm between two parties 
works as follows: 

 Both users agree on a number q that is a large prime 
number. 

 Both users also agree on a number a that is a primitive root 
of q and a<q. 

 User A selects a private key XA that is XA<q. 
 User B selects a private key XB that is XB<q. 
 User A calculates her public key YA = aXA mod q. 
 User B calculates her public key YB = aXB mod q. 
 At this point the two users exchange their public keys. 
 User A Calculates the Secret key K=YBXA mod q. 
 User B Calculates the Secret key K=YAXB mod q. 

 

Both users exchanged publicly the q, a, and their public 
keys YA and YB.  However, it is very difficult for an eaves 
dropper to calculate the discrete logarithm and find either XA or 
XB knowing YA, YB, a, and q. In actuality, the two parties 
exchanged information in a public domain to securely calculate 
the shared secret key K, which can then be used in other 
symmetric algorithms. 

Implementation hint: To perform the operation K=YAXB 
mod q in Java, we can do:  

BI_K =BI_YA.modPow(BI_XB, BI_q); 

VI. DIFFIE-HELLMAN ON ELLIPTIC CURVES (ECDH) 
The Diffie-Hellman algorithm can also be used over Elliptic 

Curves between two parties to exchange keys.  The algorithm 
works as follows: 

 Both users agree on an elliptic curve E over a finite field 
 such that the discrete logarithm problem is hard in 

E( ).  This implies that both users agree on the Elliptic 
curve (i.e. y2=x3+ax+b (mod q)) which includes the 
values of a and b, as well as the prime q. 

 Both users also agree on a base point G  E( ) so that 
its order is a large prime. 

 n is the smallest integer such that nG=Ѻ (where Ѻ is the 
point at infinity). 

 User A selects a private key na < n. 
 User A calculates his public key Pa = naG. 
 User B selects a private key nb < n. 
 User B calculates his public key Pb = nbG. 
 Both users exchange their public keys Pa and Pb. 
 User A calculates her Secret key ka = na * Pb.   
 User B calculates her Secret key kb = nb * Pa.   

At this point ka = kb because ka = na * Pb = na * (nb 
* G) = nb * (na * G) = nb * Pa = kb. 

An eavesdropper only sees the curve E, the finite field  
and the points G, naG and nbG.  If the eavesdropper was capable 
of solving discrete logarithms in E( ), she could then find na 
from the points G and naG. 

Implementation hint: To perform the operation Pb = nbG 
in Java, we can do: ECP_Pb = ECP_G.multiply(BI_nb); 

VII. TRIPARTITE DIFFIE-HELLMAN 
The Diffie-Hellman algorithm on Elliptic Curves can be 

extended so that three participants are involved to derive a 
shared key, but we will not discuss this algorithm and its 
implementation in this paper.  This technique requires a single 
exchange of messages between them [21]. It uses the Weil 
pairing, but a better approach is to use the Tate pairing, to define 
the function F.  Let E be the super singular curve y2=x3+1 over 
Eq where q ≡ 2 (mod 3).  Let S be a point on the curve of order 
n.  The three users choose a secret number: a, b, c (mod n) 
respectively.  They then calculate their public key as: Pa=aS,  
Pb=bS,  Pc=cS respectively, and they broadcast them.  Then 
each of the three participants computes the shared key as 
follows, which is the same as F(S,S)abc : User A: F(Pb, Pc)a , 
User B: F(Pa, Pc)b and User C: F(Pa, Pb)c . 

VIII. ELGAMAL DIGITAL SIGNATURES 
A Digital signature is a mathematical operation on a given 

data where anyone can verify the entity that signed a message.  
The verification process should be relatively easy to compute 
but very hard to forge someone else’s signature.  If one verifies 
that the signature is valid, this implies that the entity who claims 
to have signed the document is the one who actually performed 
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the signage of the document.  The following solution relies on 
the difficulty of computing discrete logarithms over a finite 
field.  Below is the algorithm where User A signs a message 
and sends it User B.  User B then can verify or reject the 
signature. 

 User A selects a generator point G   E( ). 
 User A selects a secret key d (a random number). 
 User A computes his public key PUA= dG. 

Public information: E, , G, PUA. 

Message Signature 

 User A signs the message M by first calculating its hash 
value: e=H(M) 

 User A chooses a random number k (and keeps it secret) 
where gcd(k,N) = 1, and N=#E( ) 

 User A calculates P = k G 
 User A stores the x-coordinate of point P in x 
 User A calculates s ≡ k−1 (e – d x) (mod N). 
 User A transmits the signature (e, P, s) followed by the 

message M (User A does not try to keep the message M a 
secret!) 
Signature Verification (needs 3 Point multiplications) 

 User B stores the x-coordinate of point P in x 
 User B calculates V1 = x PUA + s P 
 User B calculates V2 = e G 
 User B accepts the signature as valid if and only if V1 is 

equal to V2. 
This algorithm works because: 

V1 = x PUA+s P = x d G + s k G = x d G + k−1 (e – d x) k G = G 
( (d x) + e – (d x) )= e G = V2. 

 

Implementation hint: To perform the operation s ≡ k−1 (e – d 
x) (mod N) in Java, we can do:  

BI_s = BI_k.modInverse(BI_N).multiply( 
BI_e.subract(BI_d.multiply(BI_x))).mod(BI_N); 

IX. THE DIGITAL SIGNATURE ALGORITHM (DSA) BASED ON 
ELLIPTICAL CURVES (ECDSA) 

The Digital Signature Standard [15] is based on the Digital 
Signature Algorithm [16].  Recently, the ECDSA [22] 
algorithm emerged that uses Elliptic Curves.  ECDSA is similar 
to ElGamal’s signature scheme but it uses a slightly different 
signature verification method which makes verification of 
signatures faster [19].  The main difference between ECDSA 
and ElGamal’s digital signature system is that in ElGamal’s 
system the verification process requires three multiplications of 
an integer times a point, whereas in ECDSA only two 
multiplications of an integer times a point are required.  These 
multiplications are the most expensive parts of these 
algorithms. 

 User_A wants to sign a message m, which is an integer or 
most likely the hash of the document to be signed. 

 User_A chooses an elliptic curve E over a finite field  
where q is a prime number  

 User_A chooses a base point G  E( ) of order n; n is the 
smallest positive integer that nG= Ѻ, which is also the 
number of points on the curve. 

Key Generation 

 User_A select a random d  [1...n-1]. 
 User_A computes PUa = dG, which is a point on the curve. 

d is the private Key and PUa is the public key of User_A. 
Public Information:  E, , n, G, PUa. 

Signature Generation of message m 

 User_A select a random number k, (1 ≤ k < n)  
 User_A computes P=(x,y)=kG    and     r = x mod n. If r is 

zero restart 
 User_A computes e = H(m)    H is SHA-1 (160 bit hash) 
 User_A computes s ≡ k-1 (e+dr) mod n.  If s is zero restart 

The Signature is the pair (r,s) 
Signature Verification 

 User_B verifies that r and s are in [1...n-1] 
 User_B computes e=H(m) 
 User_B computes w ≡ s-1 mod n 
 User_B computes u1 = ew    and   u2=rw 
 User_B computes X=(x,y) = u1G+u2PUa 
 If X is the infinity point, User_B rejects the signature, else 

she computes:  v = x mod n 
 
User_B accepts the signature iff   v is equal to r, since 

r = x mod n    from   P=(x,y), that User A computes, and 

v = x mod n   from    X=(x,y), that User B computes. 

This algorithm works because: 

X=u1G+u2PUa = ewG+rwPUa=es-1G+rs-1PUa = es-1G+rs-1dG = 
s-1(e+rd)G = kG=P 
 
Implementation hint: To perform the operation s ≡ k-1 (e+dr) 
mod n in Java, we can do: 

BI_s = BI_k.modInverse(BI_N).multiply( 
BI_e.add(BI_d.multiply(BI_x))).mod(BI_N); 

X. ELGAMAL PUBLIC KEY ENCRYPTION 
Public Key Encryption is the mathematical operation to a 

message that enables only the recipient to decrypt the message.  
There are two families of encryption algorithms: symmetric and 
asymmetric.  In symmetric algorithms, the same key that 
encrypts can also decrypt a message.  In asymmetric 
encryption, or else public key encryption, one key encrypts and 
the other decrypts – one key is kept secret and the other is made 
public.  Generally, public key crypto-systems are slower than 
symmetric crypto-systems.  Therefore, it is common to use 
public key systems, such Diffie-Hellman, to negotiate and 
establish a key that is then used in a symmetric crypto-system. 

Here is the ElGamal’s encryption algorithm where User A 
encrypts a message and sends it to User B.  Then only User B 
is able to decrypt the recover the original message. 

Initialization 

 User B chooses a generator point G  E( ). 

72 Int'l Conf. Frontiers in Education: CS and CE |  FECS'15  |



 User B chooses a secret integer d. (d is user’s B private 
key). 

 User B computes PUB = dG. (PUB is user’s B public key). 
Public Information: E, , G, PUB 

Encryption 

 User A expresses her message M   E( ). 
 User A chooses a secret session random integer k. It is 

important that a different k is used each time. 
 User A computes M1 = kG 
 User A computes M2 = M + kPUB    
 User A sends to User B: (M1, M2) 

Decryption 

 User B computes and recovers M = M2-dM1   

This algorithm works because: 

M2-dM1 = (M+kPUB) –d(kG) = M + kdG – kdG = M 

Implementation hint: To perform the operation M=M2-dM1 
in Java, we can do:  

ECP_M = ECP_M2.subract( ECP_M1.multiply( 
BI_d)).mod(BI_q); 

XI. MASSEY-OMURA ENCRYPTION 
In Massey-Omura encryption scheme, both users agree on 

an elliptic curve E over a finite field  such that the discrete 
log problem is hard in E( ).  This algorithm works as follows.  
User A places a lock on the message M and sends it to User B.  
User B places another lock on the message and sends it back to 
User A.  User A then removes his lock (leaving the message 
with only User B’s lock on, and sends it back to User B.  User 
B then removes his lock to retrieve the message that User A 
sent him.  Below is the algorithm.  It is important to notice here 
that “removing a lock” requires the multiplication of a point 
with one’s inverse private key.  To do this, both users need to 
know N=#E( ).  If d is the private key, the d’ is the inverse of 
d in  which d*d’ = 1. 

 User A wants to encrypt a message M E( ). 
 User A chooses a secret integer da with gcd(da,N) = 1. 
 User A computes M1 = daM and sends it to User B.   
 User B chooses a secret integer db, with gcd(db,N) = 1. 
 User B computes M2 = dbM1 and sends it back to User A. 
 User A computes da

-1  n   
 User A calculates M3 = da

-1 M2 and sends it to User B. 
 User B computes db-1  n   
 User B calculates M4 = db

-1 M3.   
M4 = M because: M4 = db

-1 M3 = db
-1 da

-1 M2 = db
-1 da

-1 dbM1 = 
db

-1 da
-1 db daM = M   

Implementation hint: To find the inverse of a number in  
of order N, we perform the following (finding da

-1 knowing da):  

BI_daInv = BI_da.modInverse(BI_N); 

XII. ELLIPTIC CURVE INTEGRATED ENCRYPTION SCHEME 
(ECIES) 

ECIES is another encryption scheme.  ECIES is the most 
extended encryption scheme utilizing ECs.  It is defined in 

ANSI X9.63 [23], IEEE 1363a [24], ISO/IEC 18033-2 [25] and 
SECG SEC 1 [26]. In [27] the authors compare the different 
ECIES versions that are implemented by different security 
organizations and standards.  Both users agree on an elliptic 
curve E over a finite field  so that the discrete log problem is 
hard for E( ).  Both users also agree on a point G  E( ). 
N=#E( ) is the number of points on the curve; the order of the 
curve.  We need 2 different hash functions H1 and H2 and a 
symmetric encryption algorithm.  An advantage of ECIES over 
ElGamal’s and the Massey-Omura public key encryption 
methods is that the message M is not represented as a point on 
the curve, on the contrast it is any sequence of bytes.  Here User 
B wants to send an encrypted message M to user A. 

Initialization 

 User A chooses a secret integer d. (this is the secret key). 
 User A computes PUA = dG. (this is the public key). 

Public Information: (E, , N, G, PUA) 

Encryption 

 User B chooses a random number k where: 1 ≤ k ≤ N − 1 
 User B computes R = kG 
 User B computes Z = kPUA   
 User B computes the hash of R and Z:  Rh=H1(R) and 

Zh=H1(Z). 
 User B encrypts message M using a symmetric algorithm 

and the key Rh : C=ERh(M)    
 User B computes the hash of C and Zh:  t1=H2(C) and 

t2=H2(Zh) 
 User B sends to User A: (R, C, t1, t2) 

Decryption 

 User A computes Z = dR 
 User A computes Rh’=H1(R) and Zh’=H1(Z)   
 User A computes t1’=H2(C) and t2’=H2(Zh’) 
 If t1 is not equal to t1

’ or t2 is not equal to t2
’, reject the 

cipher-text C and don’t even try to decrypt it, else continue. 
 User A computes M = DRh’(C). (Note here that Rh

’ = Rh).  
 

For this algorithm to work, the Z values computed by both users 
must be the same, and they are because:  

(User A computes): Z = dR = dkG    

(User B computes): Z = kPUA = kdG=dkG 

Implementation hint: To compute the Z point, user B can do 
the following: ECP_Z = ECP_PUA.multiply(k); 

 

CONCLUSION 
We presented the underlying number theory of Elliptic 

Curve Cryptography in a simple to understand way.  We 
explained several algorithms and the mathematical reasons why 
they work.  We also explained how these algorithms can be 
implemented using the java language and platform.  We provide 
the complete source code of these implementations for 
researchers and students to experiment with and discover the 
beauty and elegancy of Elliptic Curve Cryptography. 
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