
A new Testing Framework for C-Programming
Exercises and Online-Assessments

Dieter Pawelczak, Andrea Baumann, and David Schmudde
Faculty of Electrical Engineering and Computer Science,

 Universitaet der Bundeswehr Muenchen (UniBw M),
Neubiberg, Germany

Abstract - Difficulties with learning a programming
language are wide spread in engineering education. The use
of a single integrated programming environment for coding,
debugging, automated testing and online assessment lowers
the initial burdens for novice programmers. We have
developed the Virtual-C IDE especially for learning and
teaching the C programming language with an integrated
framework for program visualizations, programming exer-
cises and online assessments. A new enhancement of the
IDE is a xUnit like testing framework allowing on the one
hand larger sets of small, test-based programming exercises
and on the other hand simplifying the development of pro-
gramming assignments. The integration of the new testing
framework in the assessment system gives students a better
and direct feedback on their programming achievements
and helps to find syntactic and semantic errors in their
source code.

Keywords: C-programming, teaching programming, unit
testing, static code analysis, dynamic code analysis

1 Introduction
 Difficulties with learning a programming language are
a well-known challenge for students and lecturers in
undergraduate courses [1]. As several studies show, con-
tinuously practicing programming by starting from small
problems shows respectable success, e.g. see [2]. For small
classes, training might be part of the lectures and additional
tutors can give a hand to prevent students from falling be-
hind. Although the same could be done for large classes,
training during the lecture becomes less effective due to the
high diversity of previous knowledge of the students, and
finding sufficient and appropriate tutors is an extensive
task. Luckily an advantage of learning programming is that
– after managing an initial burden – students can directly
grasp, what happens by debugging or testing their pro-
grams. A direct integration of testing in an adequate IDE
further lowers the burdens for novice programmers. Ideally
students work continuously on small programming exer-
cises and receive directly feedback from the IDE with re-
spect to syntactical and semantic issues; and finally
students can submit larger programming assignments from
that IDE to receive their credit points.

We have developed the Virtual-C IDE1 (especially designed
for learning and teaching the C programming language)
over the last years [3]. We use the IDE for automatic

1 https://sites.google.com/site/virtualcide/

assessment and grading of programming assignments in the
third year now. However the original aim to have many
small accompanying programming exercises for self-
learning could not be established yet, due to the high effort
for writing tests. In this paper we present a new testing
framework, which enormously reduces the effort for test
development. Although this framework allows students to
write their own tests, we do not plan to integrate test
writing in the primer C programming course at the moment,
as our curriculum covers software testing in the software
engineering courses in the major terms.

2 Review of related work
 Software testing is a core topic in computer science.
Even though software testing is often taught in conjunction
with software engineering, it becomes more and more im-
portant for programming courses: besides testing first ap-
proaches, tool-based testing is widely used today in pro-
gramming primers [4]. The benefit of testing for students is
obvious: with test programs provided by the lecturer, stu-
dents can train programming outside classroom and have
immediate feedback on their exercises. For the Java pro-
gramming language, jUnit tests are widely spread. The
language independent testing concept is typically named
xUnit tests [5]. Based on these, systems for automated gra-
ding of programming assignments like e.g. AutoGrader
have evolved [6]. As xUnit testing is aimed more at profes-
sional developers, several tools to simplify test specifica-
tions or handling of tests have been introduced for teaching
programming, as for instance Web-CAT [7]. While Web-
CAT additionally focuses on tests written by students, other
platforms analyze beyond unit testing the data and control
flow of programs, like e.g. ProgTest [8]. AutoGradeMe
works independent from unit testing and is based on static
code analysis and flow analysis of Java programs [9].

 An important aspect is the actual purpose of testing:
while assessment tools typically test, evaluate and grade a
program source after its submission, xUnit tests provide
immediate feedback without formal grading. The new
testing framework presented in this paper covers both: an
xUnit like test system for offline training and evaluation of
programming exercises as well as an automated assessment
system for programming assignments. As the test frame-
work is directly integrated in the IDE, students benefit from
a single environment for coding, debugging and testing.

Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 279

3 Testing framework
 The testing framework (TF) is generally based on the
well-known xUnit frameworks and its test dialogs [5]. It is
syntactically adapted from the Google C++ Testing Frame-
work [10] with regards to the C programming language and
for educational scope. A test suite (TS) is a single test file
and consists of test cases (TC) based on one or more tests.
Main differences (despite the programming language) com-
pared to the Google C++ Testing Framework are:

• Random test data via the macro ARGR.
• Simplified verification of output parameters with the

ARG macro.
• Predefined tests: function and reference function tests

(Section 3.4.2), performance tests (Section 3.4.3) and
I/O tests (Section 3.4.4)

• No test fixture macro TEST_F. Instead, test fixtures
are provides in the test prologue.

• Test and test case names can be string literals
• Heap and data segment re-initialization per test case

for full application tests, i.e. execution of main().
• Dynamic re-linking of C functions (Section 3.4.5)
• Automatic prototyping for functions under test.
• GUI based selection/ de-selection of test cases.

3.1 Constraints for the educational scope
 It is a challenge for automated testing of students’
source codes on the one hand to support students in finding
and fixing of programming mistakes in their code, and on
the other hand not to reveal too much information about the
solution. The use of a reference implementation inhibits
disclosure of the test definition. Still a reference implemen-
tation is a common and efficient way to test students’ code,
compare e.g. [6] [8]. Revealing the test definition (as it is
self-evident in software engineering) can help students in
understanding the task description and train their testing
skills, see e.g. [4]. The TF in general allows to open and
edit test definitions except for automatic assessment of pro-
gramming assignments, i.e. for graded submissions.
Theoretically a student can adapt her/ his code according to
the test results, thus creating a solution, which fits to the
tests but not to the task description. Likewise undesirable is,
that students add workarounds in their existing solution to
fit the tests. This raises the question about the level of detail
for the test results. Our former approach was to give a pro-
gramming description with detailed specification on the
functions and the program’s I/O. The tests performed for
the assessment ran locally in the Virtual-C IDE with direct
feedback. However the test input was not revealed in the
test results. Although most errors could be fixed easily
comparing the test report with the exercise description,
student’s missed the lack of test data. The new testing
framework offers the opportunity to reveal test data in the
test results as we introduced random data. This highly in-
creases the number of tests and hardens students to program
according to the test results instead of the specification. To
check on specific failures, the student can deselect tests that
already passed to focus on his/ her errors.

Figure 1. Structure of the testing framework (TF)

3.2 Structure of the testing framework
 Figure 1 shows the structure of the TF. The first step
covers compiling the student’s source file under test (SUT).
In case of a compiler error, the test execution is aborted, as
a syntactical correct file is expected. Static source code
information is stored on a function base in a database
(SSID). Static information covers for instance the para-
meters, number of integer or float-operations, the maximum
loop depth, recursion, etc. Afterwards the test suite is com-
piled by the test suite compiler (TSC), which generates a C
file of the corresponding test cases. This file is compiled
and linked with the SUT and together with the virtual
machine (MOPVM) extensions library. Finally the test is
executed in the MOPVM and the results are displayed in
the test dialog, see Section 4.1. The TSC is a stand-alone
tool, which is able to generate test files according to a test
suite description; still it relies on the SSID and the
MOPVM features integrated in the Virtual-C IDE.

3.3 Static tests
 The compiler issues typical warnings during its se-
mantic analysis phase with respect to typecasts, unused or
un-initialized local variables, dead-code, accessing NULL-
pointers, etc. Another important static test is performed by
the TSC, as it checks, if functions under test (FUT) are
properly used in the SUT, e.g. if count and types of
arguments are correct. This measure prevents linker errors,
which are typically difficult to trace for students. The re-
sults of the static tests are printed to the console and visu-
alized in the test dialog, see Section 4.1.

3.4 Dynamic tests
 Dynamic tests are the main focus of the framework.
The test suite can run multiple test cases on a function basis
as well as on a program basis. In both cases, a test fixture is

TF

static tests
dynamic tests

Test suite
Compiler

(TSC)

Source under test
(SUT) testSuite.tsc

testDef.c

C-Compiler

C-Compiler

static source
information

database

creates

Linker

Test Executable

MOPVM

Test Results

accesses

MOPVM-

Extensions.lib

SSID

280 Int'l Conf. Frontiers in Education: CS and CE | FECS'15 |

set up. Instead of mock objects as specified by the Google
C++ Testing Framework [10], the TF provides per test case
a test prologue and test epilogue, as you can see in the
following examples Figure 2-6. The test fixture is defined
in the prologue; in between prologue and epilogue each test
will use a clean test fixture. Optionally TCs can share local
variables between tests. For each test case, even the data
and heap segments are restored. Consecutive tests inside a
test case share data and heap segments, which is for in-
stance important when testing a set of functions with re-
spect to linked lists. The epilogue allows modifying the
overall test case result, adding text to the test report or
performing clean-ups as, e.g. freeing system resources. The
test is run and results can be evaluated afterwards (black-
box testing) or during the execution (white-box testing).
Black-box testing is preliminary done by evaluating return
values, output parameters or console output on given para-
meters or console input. White-box testing can be achieved
by function injection: the linker uses dynamic linking in test
mode; thus every function can be re-linked during run-time
to a test, a mock or a test-and-mock function, see Section
3.4.5.

3.4.1 Assertions vs. expectations and warnings
 In accordance with the Google C++ Testing Frame-
work [10] the TF distinguishes between assertions and ex-
pectations as expressed by the macros ASSERT_* and
EXPECT_*. An assertion must be met and contradiction
leads to an immediate failure of a test. An expectation
might not be fulfilled. This will lead to a failure of the test,
but its execution is continued. A typical example for expec-
tation vs. assertion is a function modifying a pointer passed
as parameter. It is wrong, if the student does not test for a
NULL pointer; still the functional part might be imple-
mented correctly for valid pointers. In case the program-
ming assignment does not rely on the NULL pointer test,
this test could use EXPECT_*, whereas the proper func-
tionality is tested by assertions. The behavior of assertions
and expectations can be expressed with the macros
FATAL() and ERROR() respectively, to print a corres-
ponding message in the report. Additionally, a test can
always print warnings with the macro WARN().

3.4.2 Function tests
 In addition to the TEST() macro as specified in [10],
the TF defines the two macros _funcRefTest() and
_funcTest(). Both macros allow a simple but powerful
notation for function tests; the first requires a reference im-
plementation for comparing the results. This short test de-
scription is possible by implicitly invoking assertions for
given parameters and return values and by adding func-
tional extensions to C. For every function test the TSC uses
reflection by querying the SSID for function return and
parameter types. Figure 2 shows an implementation of a
simple TC including four test descriptions. The _func-
RefTest() macro expects the name of the FUT, a cor-
responding reference function, a factor specifying the count
of allowed instructions compared to the reference function
and the arguments for the function call. The ARGR()
macro generates random test data in a given range for a
specified type. Per default, each ARGR() adds three tests

(additive, not combinatorial); an optional fourth argument
can specify the number of tests. Thus the _funcRef-
Test() example in Figure 2 actually creates six tests. For
pointers a pointer to the specified value is created. Strings
are treated different, as char or wchar_t pointers are
commonly used for character arrays; thus ARGR() creates
a modifiable null-terminated string array of printable ASCII
characters with a length corresponding to the given range
(actually the allocated memory will always refer to the
maximum range, only the string length varies). In a
function tests with _funcTest() you provide the number
of allowed instructions together with a list of arguments.
For functions, the last parameter is an expression of the ex-
pected return value, compare Figure 2. This macro can be
easily used to test fix values or to forgo a reference imple-
mentation.

Figure 2. Function test definitions

Figure 3. Tests for output parameters

Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 281

 Function output parameters can be tested with the
ARG() macro. In case a non-constant pointer parameter is
passed via the macro, the result is compared with the
argument of the reference implementation or the optional
forth argument of ARG(); e.g. ARG(char*, s, 128,
”Hello World”) checks, if the contents of s is “Hello
World” after the function call. The third parameter defines
the maximum allocated memory size. Figure 3 shows a test
case with three different simple tests on strings. The second
test uses the ARG() macro to feed an in-/ output parameter
and to verify its contents afterwards. The third test uses
ARG() in combination with a reference function.

Figure 4. Performance tests (insertion in binary tree)

3.4.3 Performance tests
 Performance tests evaluate the number of instructions
required for the execution of a FUT; the instruction counter
can be queried with the MOPVM extension library function
_getExecutionCount(). Each tests initially resets the
counter, so that the counter can be evaluated in a TEST()
macro. To access the execution counter from other tests
within a TC, the instruction counter is additionally stored in
the pseudo variables $1 … $n for n test cases. So each test
can compare the performance of the previous tests. The
execution count of a test can also be queried by $testName,
as long as the test name is specified as a regular identifier,
compare e.g. $insertAnn in Figure 4. These variables
can be evaluated either in a TEST() macro or in the
epilogue. Figure 4 shows a simple and far not complete test
case checking on the performance of a binary tree insertion.
The test case expects, that insertion of leafs at the same
depth require about the same count of instructions. The
insertion of the root, nodes or leafs in different depth cannot
be performed with the same count of instructions, as an
insertion in an array for instance would allow.

3.4.4 I/O tests
 A console C program typically reads data from stdin
and prints results to stdout. I/O tests can be performed on
functions or whole programs. The MOPVM extensions
library allows simple redirection of stdin and stdout. The
_IOTest macro requires a string literal as input for stdin.
Instead of the NUL-character, EOF is passed to the

application. The optional third and further arguments
present stdout. This is a list of string literals representing a
regular expression on the expected or (with the !-Operator)
unexpected output plus a descriptive error message.
Alternatively, the test can have a body for an explicit test
definition: the pseudo variable $return refers to the
return value of the FUT whereas $out can be used to
check on stdout, compare Figure 5.

Figure 5. I/O tests

Figure 6. Function injection

3.4.5 Function injection
 The Virtual-C IDE uses dynamic linking for testing,
i.e. the VM maintains a look-up-table for each function. A
test case can modify the look-up-table with the _relink-
Symbol() function by overwriting the original function
pointer with a function pointer to a mock or a test function.

282 Int'l Conf. Frontiers in Education: CS and CE | FECS'15 |

This allows replacing any function as long as the new func-
tion provides the same signature. Figure 6 shows a test case
on the scanf() function by replacing scanf() with
myscanf(). This function counts the number of calls as
well as it checks the format specifiers. The function inject-
tion is done here in the test fixture, thus it is active
throughout the test case. Function injection can also be
done on a test basis, i.e. each test can provide it’s own
mock function. The original function linking is restored
when running the next test case, thus the following test case
will operate again on the original scanf()-function un-
less it is re-linked again.

4 Field of application
 The testing framework has two major modes of opera-
tion. By opening test suites (file extension .tsc) the test
dialog is opened and tests can be directly run in the IDE.
This mode is called the exercise mode, as it is designed for
self-learning. The same dialog can be indirectly opened as
part of the automated assessment system (assessment
mode).

Figure 7. Test dialog of the exercise mode (EM)

4.1 Exercise mode
 A student can open a test file and run it on her/ his C-
module to receive a report on her/ his achievements. Figure
7 shows an example dialog of the exercise mode (EM). The
results of the static and dynamic tests are directly visualized
in a traffic-light scheme: red (fatal failures), yellow (errors),
green (pass). The test report is printed to the console. In
addition to xUnit tests, the user can directly deselect test
cases or select specific test cases in the dialog to focus on
single failures. The test code is initially hidden, to focus on
the testing; the “edit” button allows viewing and editing the
test specification, as described in Section 3.4. EM is for
self-learning or lecture accompanying; the lecturer can
provide an exercise description together with a test file to
allow students testing their solutions. As the IDE supports
direct opening from URLs, a test file can also be published
on a web server.

Figure 8. Submission dialog of the assessment mode (AM)

4.2 Assessment Mode
 In assessment mode (AM) a student works on a larger
programming assignment. She/ he has to submit her/ his
solution from the Virtual-C IDE to a server. The student’s
code is checked and the progress is stored on the server.
Unless the code has passed the tests, the student can submit
corrections of his/ her code. After a successful submission,
the student can continue locally in EM to enhance her/ his
solution. Programming assignments can consist of multiple
tests. Figure 8 shows an example of the submission dialog,
which is a plug-in of the Virtual-C IDE. The dialog is im-
plemented as a web view and controls the workflow of a
programming assignment. The submission dialog is actually
presented as a questionnaire with embedded test suites – for
details see [3]. It is an html document presenting the tasks
and gathering the results. Each submission is stored on the
server. For a code submission, the test suite will be down-
loaded from the server and executed as if the test is exe-
cuted in EM. Afterwards the results are updated in the sub-
mission dialog:

• Style: coding style warnings – additional style checks
• Static Test: test results from static tests (EM)
• Dynamic Test.: test results from dynamic tests (EM)
• Result: an overall percentage based on the criteria

above

 A threshold is defined for each criterion, so that too
many compiler, style or linker warnings might already abort
further tests. In case a test fails, the EM dialog is opened to
present the detailed test results. In opposite to EM, the stu-
dent cannot continuously run tests, as the number of test
runs is limited to prevent try-and-error submissions. The
student is not allowed to edit or view the test suite, as it

Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 283

may contain a reference implementation. In addition to EM,
style checks and plagiarism detection are performed.

4.2.1 Coding Style
 Today’s software developer tools widely support auto
formatting of source code. Nevertheless, the authors think,
that following code styling rules – especially with respect to
structuring source code by proper indentation – is still a
competence students should achieve in programming
courses. The IDE therefore does not provide auto format
but checks the source code against a set of rules like for
instance:

• Indentation; a consistent indentation is expected
throughout the code: either K&R style or ANSI
style. Proper indention in conditions and loop bodies.

• Identifier names are using the proper upper/ lower
case conventions for variables, functions, defines,
etc.

• No use of magic numbers.

 The coding style test is a build-in function of the
Virtual-C IDE. In AM the style test is mandatory, i.e. a
source code submission without any indentation (as for in-
stance received via email) won’t pass the style test.

4.2.2 Plagiarism Detection
 It is beyond doubt, that plagiarism detection is
required in any automated assessment system with respect
to source code. As plagiarism is an academic offence, it is
handled completely different compared to programming
faults; as an option, a plagiarizing student can be blocked
from any further submissions to trigger a talk with the
course instructor. After the talk, the student can continue
working on his/ her assignment if applicable, as the course
instructor can enable re-submission. Results from the pla-
giarism detection are presented with a traffic-light back-
ground color in the result report, but are not included in the
overall percentage. In Figure 8 the first two program
submissions have passed the plagiarism detection and are
marked with a green background, whereas the last
submission failed. For details on the plagiarism detection
system see [11].

4.3 Offline Mode
 A third mode is the offline mode (OM), which is
nearly identical to AM. It allows performing a program-
ming assignment offline, i.e. either from a local repository
or from a webserver but with unidirectional access. OM can
serve as a preparation for the examination or to provide
additional more extensive exercises. OM is also important
for the lecturers or course instructors to prepare the test
suites of a programming assignment.

5 Evaluation
 The automatic assessment system is used in our C
programming course for three years now. Students prepare
their programming assignments at home and are allowed to
submit their code during two hours class time. Each pro-
gramming assignment typically consists of five consecutive

code submissions. During class time 2-3 instructors are
present to support 4 groups of about 20 students each.
Initially the system was installed to reduce the adminis-
trative work of the instructors, to reduce plagiarizing and to
focus more on programming issues.

Figure 9. Course examination results compared

with online assessment from 2013 and without before

5.1 Code submissions
 The formal functional tests of the automated assess-
ment system require, that students put more time into their
programming assignments with respect to fixing errors
compared to the years before. In addition, each submission
is treated equally; instructors cannot turn a blind eye to
minor programming mistakes or to collaborative work. This
had a positive effect on the examination results: students
were more comfortable with typical programming con-
structs, compare Figure 9.

5.2 Test reports
 Properly explaining a failure to a student is the most
difficult part of the automated assessment system. The
advantage of the xUnit based testing is, that assertions are
printed in the report in a “standardized” format, like, e.g.:
expected 55, but result is 34. The TSC will additionally add
the corresponding function call for function tests in the
report, like e.g. fibonacci(10). Students have the most
difficulties with exceptions. Although the test report prints
the line in the source code, that is responsible for the
exception, students hardly find the problem on their own.
Reasons for exceptions were tests, passing NULL pointers,
as well as erroneous code like uninitialized pointers,
unallocated or too less allocated memory and array bounds.
Our expectation was that students debug their failing
functions by simply copying the function call from the test
report to their source code. But with respect to function
testing, students seem to be overextended. They often seem
to flinch from changing their code for debugging. For I/O
tests on the opposite, students usually run their programs
with the test input without difficulties.

284 Int'l Conf. Frontiers in Education: CS and CE | FECS'15 |

5.3 But-it-works syndrome
 As other studies show, students perform rarely tests on
their code with a high coverage [12] [13]. So a failure in
their submission is often taken as an error of the test system
or harassment. Unfortunately not all students read the
assignment description properly. They might for instance
print the Fibonacci number to stdout inside the function
fibonacci() instead of returning the calculated number
as requested. The program gives the expected output to
screen, but the function test self, of course, fails. Another
typical fault is storing the return value in a global variable
instead of using the return statement; and again the function
test will fail. Although these examples can be easily ex-
plained to a good student, as they represent unstructured
programming habits, other students often see the modi-
fication of a working solution just as additional work.
Laborious but effective is to add a reference to the assign-
ment description in the report, e.g. your function does not
return the expected value as described in section … on
page …

5.4 Test development
 Writing tests with the new testing framework is ex-
ceptional easier compared to writing tests by directly using
the function based MOPVM extension library (compare
[3]). Especially beneficial is the automated report ge-
neration and the simplified random data generation. Thus
an instructor must put less time in developing tests; still the
test coverage is much higher as the number of actual tests
rises due to the simple randomization of arguments.

6 Conclusion and outlook
 The new testing framework integrated in the Virtual-C
IDE enables students to develop, debug and tests their
programs in a single programming environment. Small test
suites provided by the course lecturer can serve as
accompanying exercises with little effort for the lecturer. At
the same time, the test framework smoothly integrates into
an automated assessment system. We expanded the system
towards a better reporting, an appealing visualization and
higher test coverage. In opposite to secret tests for
programming submissions, details on the test data is laid
open to students in order to give a better feedback for fixing
errors.

 Although the TF supports performance tests there is
still a high potential in pushing performance tests further. A
lack of the assessment system is, that code fitting the re-
quirements will mostly pass even if it is written cumber-
some or less effective. So good students may miss an
opportunity to discuss their solutions with the course
instructors or fellow students because of a failure or an
unexpected poor feedback. An additional report on the qua-
lity of the submission could trigger such a discussion for
the benefit of these students. An ongoing research at our

institute is detailed analyzing the dynamic structure of pro-
grams, which should result in a metrics for code quality.

7 References
[1] A. Robins, J. Rountree and N. Rountree. Learning and

teaching programming: A review and discussion. Computer
Science Education, Vol. 13, (2003), 137-172

[2] W. Pullan, S. Drew and S. Tucker. A Problem Based
Approach to Teaching Programming. In Proc. of the 9th Int.
Conf. on Frontiers in Education: Computer Science and
Computer Engineering (Las Vegas, USA), FECS’13, 403-408

[3] D. Pawelczak and A. Baumann. Virtual-C - a programming
environment for teaching C in undergraduate programming
courses. In Proc. of IEEE Global Engineering Education
Conference EDUCON, (Istanbul, Turkey, April 3-5, 2014),
1142-1148

[4] J. L. Whalley and A. Philpott. A unit testing approach to
building novice programmers’ skills and confidence. In Proc.
of the 13th Australasian Computing Education Conf. (Perth,
Australia), ACE 2011, 113-118

[5] K. Beck, Test Driven Development: By Example. Addison-
Wesley, 2002.

[6] M. T. Helmick. Interface-based programming assignments
and automatic grading of Java programs. In Proc. of the 12th
annual SIGCSE conf. on Innovation and technology in
computer science education (Dundee, Scotland, UK, June 23-
27, 2007), ITiCSE’07, 63-67

[7] S. H. Edwards. Using software testing to move students from
trial-and-error to reflection-in-action. In Proc. of the 35th
SIGCSE technical symp. on Comp. science education (Nor-
folk, Virginia, USA, March 3-7, 2004) SIGCSE '04, 26-30.

[8] D.M. de Souza, J.C. Maldonado and E.F. Barbosa. ProgTest:
An environment for the submission and evaluation of
programming assignments based on testing activities. In Proc.
of 24th IEEE-CS Conf. on Software Engineering Education
and Training (Waikiki, Honolulu, HI, USA, 22-24 May,
2011), CSEE&T, 1-10

[9] D. M. Zimmerman, J. R. Kiniry and F. Fairmichael. Toward
Instant Gradeification. In Proc. of 24th IEEE-CS Conf. on
Software Engineering Education and Training (Waikiki,
Honolulu, HI, USA, 22-24 May, 2011), CSEE&T, 406-410

[10] Zhanyong Wan, et al. Google C++ Testing Framework –
googletest: https://code.google.com/p/googletest/.

[11] D. Pawelczak: Online Detection of Source-code Plagiarism in
Undergraduate Programming Courses. In Proc. of the 9th Int.
Conf. on Frontiers in Education: Computer Science and
Computer Engineering (Las Vegas, USA), FECS’13, 57-63

[12] Gómez-Martín, M. A., and Gómez-Martín, P. P. Fighting
against the 'But it works!' syndrome. In Proc. XI Int. Symp. on
Computers in Education (Coimbra, Portugal, November 18-
20, 2009). SIIE’09.

[13] S. H. Edwards and Z. Shams. Do student programmers all
tend to write the same software tests? In Proc. of the 2014
conf. on Innovation & technology in computer science
education (Uppsala, Sweden, June 21-25, 2014), ITiCSE '14,
171-176

Int'l Conf. Frontiers in Education: CS and CE | FECS'15 | 285

