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Abstract – In proportional share scheduling, the different 
performances of CPUs can make running tasks unfair during 
a period. To make them fair in a system, we present a 
proportional share scheduling employing performance-aware 
virtual time (PVT) maintained globally. This PVT is the share 
of CPU time received by a task and increases at a rate 
proportional to the performance of CPU where the task is 
running on and inversely proportional to the weight of the task. 
The schedulers of CPUs, when they assign CPU time to a task, 
utilize PVT to make a decision which task and how long it 
should preempt CPU to minimize the difference of PVTs
among tasks. We evaluated our approach experimentally on
general purpose operating system in the homogeneous and 
heterogeneous multiprocessor (HMP) systems. On both 
systems, the results show the significant improvement that is
near-perfect (around 99% better) fairness in the homogeneous 
multiprocessor system and much better (more than 60% better)
in the HMP system. 

Keywords: Proportional share scheduler, virtual time, 
performance-aware, heterogeneous multiprocessor, fairness. 

1 Introduction 
Proportional share scheduling which provides 

abstractions for multiplexing resources among tasks allocates 
resources to a task proportional to its weight to guarantee the 
weighted fairness in a system. Unfortunately, generally this 
fairness cannot be completely achieved in practice because 
infinitesimal CPU quanta are required in theory. To minimize 
the difference of CPU time between a task ideally needed in 
theory and actually received, previous works have introduced 
various approaches such as [3] and [12]. These approaches, 
however, do not consider that the unfairness among tasks can 
arise also by the different performance of CPUs. In practice,
the unfairness arises in the homogeneous multiprocessor 
system which has CPUs of different frequencies like x86-
based, and it is more obvious in case of heterogeneous 
multiprocessor (HMP) systems.

The HMP system such as ARM big.LITTLE processor 
was introduced to make an energy-aware scheduling possible 
by processing tasks on the core of less energy consumed. In
such a system, since each CPU has different capacity and 

frequency, unless schedulers consider the performance of 
CPUs, the unfairness could be amplified and more frequent 
than the homogeneous. Nevertheless, in HMP related works, 
most focus is on the performance optimization, energy-saving 
and showing the benefit of them [6]-[8], while not much 
effort is being given to guarantee the fairness among tasks.

The fairness among tasks is significantly important 
factor to guarantee quality-of-service (QoS) of multi-program 
workloads [9], [10]. For example, applications such as 
immersive virtual environments and interactive multi-media 
can lead to unpredictable and undesirable result because they 
require real-time computation and communication services 
from the operating system on the assumption that all tasks 
make equal progress on CPUs. Yet, this expectation cannot 
be guaranteed in the case of that a task running on a big core 
(or the higher frequency of CPU) works more than the other 
on a small core (or the lower frequency of CPU). In this case, 
finally, the difference of work done among tasks should be 
minimized with the consideration about the performance of 
CPUs to guarantee QoS based on the fairness. 

To achieve this goal with considering about the 
frequency and capacity of CPUs as major factors of the 
performance, we present a proportional share scheduling 
employing performance-aware virtual time (PVT). PVT, a
virtual time of a task maintained in a system widely, 
increases at a rate proportional to the performance of CPU 
where the task is running on and inversely proportional to the 
weight of the task based on CPU time received by the task.
This PVT makes the unfairness among tasks traceable 
relatively, and schedulers utilize it when they assign CPU 
time to a task. By leveraging existing proportional share 
scheduler employing PVT, this work provides near-perfect 
fairness (more than 99%) in the homogeneous multiprocessor 
system and much better fairness (more than 60%) in the HMP 
system than the previous one. 

The remainder of this paper is composed of several 
sections as follows. Section 2 describes an existing 
proportional share scheduling and its limitation, and Section 3 
introduces PVT and how to utilize it in a system. In section 4, 
we show substantially improved results based on the 
completely fair scheduler (CFS) employing PVT in Linux as 
a representative fair scheduler in practice. Section 5 
concludes this paper with the consideration of future works. 
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2 Proportional Share Scheduler and 
Limitation 
 Proportional share scheduling which is able to provide 

abstractions for multiplexing resources among tasks is 
allocating resources to a task proportional to its weight to
guarantee weighted fairness in a system [1]. Proportional 
share resource allocation is ideally generalized processor 
sharing (GPS) scheme [2]. A fluid-style resource and prefect 
fairness based on an infinitesimal fluid resource model are 
assumed, but actual system cannot provide resource 
infinitesimally in practice. Therefore, approximate scheduling 
scheme is being proposed like packet by packet GPS (PGPS) 
[4], and weighted fair queuing (WFQ) [2]. Figure 1 shows the 
ideal scheme and quantum-based scheduling which is able to 
be implemented to achieve proportional share scheduling in 
practice [11]. 

 Let be the weight of task and be the set of all 
active tasks at time . The share of a task at time is 
defined as follows.

The share  is changeable in runtime because the number 
of tasks in a system can be changed dynamically. For 
example, if a new task is initialized, the total weight 
is increased and the share  of task  is decreased on the 
contrary. Therefore, a proportional share scheduler only 
guarantees a relative share of CPU time according to the total 
weight changes.

To measure the difference of CPU time received by a 
task between the ideally needed and the actually received,
virtual-time domain [1] can be utilized. In this domain, the 
virtual time is the share of CPU time received by a task. The 
share of CPU time is allocated to a task proportional to the 
weight of the task. Therefore, the virtual time can be 
computed as follows. 

Let be the CPU time assigned to task by time t, and 
let be the set of all tasks active at time . Because the
virtual time increases at a rate proportional to the sum of 

weights of all tasks, if the total sum of weights increases, the 
virtual time of increases faster and vice versa.

Additionally, the lag is defined as the ideal CPU time 
which should be assigned to a task by subtracting the actual 
CPU time received by a task. Suppose that task  is active 
and have a fixed weight in the interval . Let 
denotes the CPU time received by the task  in  under a 
certain scheduling scheme A, and  denotes the 
CPU time under the Generalized Processor Sharing (GPS) 
scheme; an idealized scheduling model which achieves 
perfect fairness. The lag of task τ at time  ( , for 
any interval , is formally defined as 

However, in the case of proportional share schedulers 
based on partitioned scheduling, they have each run queue 
individually and try to guarantee the fairness with the 
consideration about the weights of tasks only within the run 
queue where the scheduler involved in. Although this 
approach has no problem in a system which has the same 
performance of CPUs, it can incur a problem in a system 
which has different performance of CPUs. In such a system, 
as well as the sum of weights of tasks on each CPU, the 
performance of each CPU can be different by the dynamic 
frequency changes or the static capacity of processors. 

In case of the different frequency of CPUs, for example, 
consider four tasks  and  which have the same 
weight value 100 individually on the dual-core processor 
which has CPUs 1 and 2. The frequency of CPU 1 is 1 GHz 
while it of CPU 2 is 2 GHz. They can operate as following 
scenarios. 

1. Four tasks  and  start simultaneously at time 0 
2. Execute  and  in CPU 1,  and  in CPU 2 during 

2 sec 
a.  moved to CPU 2 without delay 
b.  moved to CPU 1 without delay 

3. Execute  and  in CPU 1,  and  in CPU 2 during 
2 sec 
a.  moved to CPU 2 without delay 
b.  moved to CPU 1 without delay 

4. Execute  and  in CPU 1,  and  in CPU 2 during 
2 sec 

In this case, all of tasks can receive the same amount of CPU 
time; however, at the point of the amount of work done, it can 
be totally different result. If we consider the performance of 
CPUs, according to the proportion of performance of each 
CPU, we can describe the relative ratio of the amount of work 
done by each task based on CPU time like follows. The 
processed  of work in CPU 1,  processed 

 and  processed  in 
both CPUs while the  processed 
in CPU 2. Finally, the amount of work done by each task is in 
the order of . If the length of execution 

Figure 1. Proportional share scheduling.
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time at the scenario 2, 3, and 4 could be manipulated properly, 
 and  can be fair while  is of the least work done and 

is of the most. Even though the total sum of weights in each 
CPU during execution is absolutely balanced, the result of 
work done among tasks can be totally different by the 
performance of CPUs and it eventually leads tasks to the 
unfairness. Finally to guarantee the fairness among tasks in a 
system, as well as the sum of weight of tasks, the 
performance of CPUs should be considered together.  

3 Performance-aware Virtual Time 
 In this section, we propose performance-aware virtual 

time (PVT) where the performance of CPU is defined using 
two major factors: frequency and capacity. PVT, as a virtual 
time of a task maintained globally, increases at a rate 
proportional to the performance of CPU where the task is 
running on and inversely proportional to the weight of the 
task based on CPU time received by the task. Additionally, 
we utilize PVT to monitor the fairness measure in a system. 
Basically our approach considers both systems homogeneous 
and heterogeneous multiprocessor (HMP), and each CPU 
individually has a dynamic voltage and frequency scaling 
(DVFS) which is efficient technology for dynamic power 
management (DPM). Therefore, PVT of task of weight 
in CPU P is calculated as follows. 

Let  and be the maximum weight of a task and 
CPU frequency acceptable in a system, and be
the total amount of frequencies by time , and ( )
is a constant value of CPU P which indicates the relative ratio 
of the performance among CPUs from the fastest ( ).
This constant value can be determined depending upon the 
types of tasks running on a system based on the results of 
various benchmarks or some specific metrics reported by chip 
vendors also.

Additionally, if we scale  and  as a same value 
to reduce a fraction, we finally can simplify equation as 
follows. 

All tasks in a system have their own PVT values. By utilizing 
these values, we are able to monitor the change of fairness in 
a system by the changes of results of periodic repeating 
follows.

The maximum result of  should be maintained as 
a similar level. This means eventually that the results are 

always bounded into the specific value, and the level of 
fairness measure is being maintained in a system.

The difference (lag) of CPU time received by the task 
between the ideally needed and the actually received by time t
based on the performance of CPU P can be derived as follows. 

Let n be the number of CPUs in a system. When  is 
greater than zero,  received less time than the time ideally 
needed, and in case of zero the time was ideally received and 
the more time received in the other case; however, operating 
system cannot reclaim CPU time from a task that has already 
received. Therefore, we utilize PVT to find a task with the 
lower PVT and give more CPU time prior to the tasks with 
higher PVT in a system to minimize the difference of PVTs. 

 In case of a I/O intensive task or a task of starting, its 
PVT is revised exceptionally because PVT of a task out of 
run queue can be maintained as the lowest without system
progression applied when they are coming back to run queue 
again. To make a decision of revision needed or not, we 
classifies two groups of tasks according to the state transition
of task. In case of task transition between ready and running,
tasks should be revised, and the other cases except for the 
first are not revised. Therefore, PVTs of I/O tasks of the latter 
case need to be revised by subtracting as much time as 
system progressed during being out of run queue. Finally
PVTs of the tasks is revised to keep the previous position in a
system widely as 

The I/O intensive task  is out from the run queue of CPU P
at time  and inserted into the run queue of CPU  at time . 
In this case, the minimum PVT of each time  and  is 
subtracted and added to keep the previous level of fairness 
position in a system.  

4 Experimental Evaluation 
Completely fair scheduler (CFS) is the most popular and 

the first fair scheduler applied to the general purpose 
operating system while the other operating systems like 
Windows and Linux of earlier version (before the version of 
2.6.23) are providing round-robin scheduling. By these 
reasons, to achieve our goal, we utilized existing CFS in 
Linux (after the version of 2.6.23) to employ performance-
aware virtual time (PVT). PVT of each task was also utilized 
to monitor the fairness measure in a system. To evaluate the 
effectiveness of our proposed approach, we considered two 
different environments both homogeneous multiprocessor 
system and heterogeneous multiprocessor (HMP) system. The
characteristics of these are shown in Tables 1 and 2.
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Hardware
CPU Intel i7-4770 3.4 GHz Dual 

processor
RAM 4 GB DDR3 SDRAM

Software Operating 
System

Ubuntu 14.04 (on VMWare),
Linux Kernel Version : 3.18.2

Hardware CPU Samsung Exynos5 Octa 
big.LITTLE processor

RAM 2 GB LPDDR3 RAM

Software Operating 
System

Android 4.4.4 Kit Kat,
Linux Kernel Version : 3.10.9

To evaluate the fairness among tasks between operating 
systems the original version and the version of PVT employed 
in the system Table 1, we created simple application whose 
performance is mostly proportional to the frequency of CPU 
to make  simply be 1 in all CPUs. The execution time of
each instance was compared to measure the fairness among 
tasks. This application just repeats infinite loop simply and 
print out the cumulative average time consumed at every 2.5 
billionth loop. This cumulative average execution time was
approximately 1.3 sec in practice. Three instances of the 
application were executed concurrently in the system shown 
in Table 1, and we got the results 10 times per 1 min from the 
original version and our version of PVT applied in Linux 
kernel 3.18.2.

Even though there is not a significant difference in the 
execution of three instances evaluated on the homogeneous 
dual-core processor, as depicted in Figure 2, the different 
execution time of tasks arises and being kept consistently.
Interestingly, this experiment was evaluated in the one of 
most popular general purpose operating system and processors 
even though the type of application was not very common. 

CFS employing PVT in the version of inux kernel 3.18.2 
achieves near-perfect fairness among three tasks on the 
homogeneous dual-core processor as depicted in Figure 3 
while the unfairness arises obviously in Figure 2. When the 
time  is 100, Figure 4 shows that of three tasks
is bounded in 3 sec (of PVT) approximately.

In case of the system in Table 2, we created a similar 
application, but the number of loop operation was changed to 
1 million, and a sleep code for 5ms was inserted after printing 
out (per about 850ms in practice) to simulate the effects of I/O 
operation together. Twelve instances of this application were 
created and executed concurrently, and we gathered the results 
10 times per 1 min.  
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Table 1. homogeneous multiprocessor environment

Table 2. heterogeneous multiprocessor environment

Figure 2. cumulative average time of cycles             
on Ubuntu 14.04 LTS of kernel 3.18.2

Figure 3. cumulative average time of cycles after PVT applied

Figure 4. Periodic repeats of MaxDiff(t) of 3 tasks in the 
homogeneous during 100 sec

Figure 5. Cumulative average time of cycles            
on Android KitKat of kernel 3.10.9
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Figure 5 shows the results when we measure the 
cumulative average time of each task using the existing kernel. 
There is a lot of variation among the execution times of tasks 
even though all tasks are identical. In Figure 6, when 
compared to Figure 5, the cumulative average time values of 
the twelve tasks are more narrowed down. Based on the 
results, the maximum deviation of the cumulative average 
time can be shown as Figure 7. 

Figure 7 shows that PVT applied kernel guarantees the 
fairness among tasks by giving at least 60% better than the 
original kernel in HMP system. During 600 sec,
of the twelve tasks are bounded into 5 sec as shown in Figure 
8.

Additionally, according to the each result of , the 
fairness among three tasks in the homogeneous is being 
guaranteed better than it of twelve tasks in the heterogeneous 
as described above results. 

5 Conclusion
In this paper, we proposed a proportional share 

scheduling employing performance-aware virtual time (PVT) 
to guarantee and measure the fairness among tasks in a
system. The proposed approach leads the fairness to the 
significantly improved than previous systems. We also 
introduced how to monitor the fairness by utilizing PVT to
compare the level of fairness measure in a system. 

Additionally, if we consider the remaining 40% in the 
results of HMP system, there could be more factors such as 
the number of heterogeneous CPUs and migration, the type of 
tasks, miss-rate of cache, the policy of load balancer and so 
forth which may affect the fairness of tasks in a system. As a 
future goal, we plan to focus on the relationship between 
these factors and the fairness guarantees. As a future work, 
we also intend to determine the capacity of CPU which can 
affect the fairness measure. 
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