
Proportional Share Scheduling employing Performance-
aware Virtual Time in Multiprocessor Systems

Munseok Kim1, Hyunmin Yoon2, and Minsoo Ryu1

1Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
2Department of Electronics Computer Engineering, Hanyang University, Seoul, Korea

{mskim, hmyoon}@rtcc.hanyang.ac.kr, msryu@hanyang.ac.kr

Abstract – In proportional share scheduling, the different
performances of CPUs can make running tasks unfair during
a period. To make them fair in a system, we present a
proportional share scheduling employing performance-aware
virtual time (PVT) maintained globally. This PVT is the share
of CPU time received by a task and increases at a rate
proportional to the performance of CPU where the task is
running on and inversely proportional to the weight of the task.
The schedulers of CPUs, when they assign CPU time to a task,
utilize PVT to make a decision which task and how long it
should preempt CPU to minimize the difference of PVTs
among tasks. We evaluated our approach experimentally on
general purpose operating system in the homogeneous and
heterogeneous multiprocessor (HMP) systems. On both
systems, the results show the significant improvement that is
near-perfect (around 99% better) fairness in the homogeneous
multiprocessor system and much better (more than 60% better)
in the HMP system.

Keywords: Proportional share scheduler, virtual time,
performance-aware, heterogeneous multiprocessor, fairness.

1 Introduction
Proportional share scheduling which provides

abstractions for multiplexing resources among tasks allocates
resources to a task proportional to its weight to guarantee the
weighted fairness in a system. Unfortunately, generally this
fairness cannot be completely achieved in practice because
infinitesimal CPU quanta are required in theory. To minimize
the difference of CPU time between a task ideally needed in
theory and actually received, previous works have introduced
various approaches such as [3] and [12]. These approaches,
however, do not consider that the unfairness among tasks can
arise also by the different performance of CPUs. In practice,
the unfairness arises in the homogeneous multiprocessor
system which has CPUs of different frequencies like x86-
based, and it is more obvious in case of heterogeneous
multiprocessor (HMP) systems.

The HMP system such as ARM big.LITTLE processor
was introduced to make an energy-aware scheduling possible
by processing tasks on the core of less energy consumed. In
such a system, since each CPU has different capacity and

frequency, unless schedulers consider the performance of
CPUs, the unfairness could be amplified and more frequent
than the homogeneous. Nevertheless, in HMP related works,
most focus is on the performance optimization, energy-saving
and showing the benefit of them [6]-[8], while not much
effort is being given to guarantee the fairness among tasks.

The fairness among tasks is significantly important
factor to guarantee quality-of-service (QoS) of multi-program
workloads [9], [10]. For example, applications such as
immersive virtual environments and interactive multi-media
can lead to unpredictable and undesirable result because they
require real-time computation and communication services
from the operating system on the assumption that all tasks
make equal progress on CPUs. Yet, this expectation cannot
be guaranteed in the case of that a task running on a big core
(or the higher frequency of CPU) works more than the other
on a small core (or the lower frequency of CPU). In this case,
finally, the difference of work done among tasks should be
minimized with the consideration about the performance of
CPUs to guarantee QoS based on the fairness.

To achieve this goal with considering about the
frequency and capacity of CPUs as major factors of the
performance, we present a proportional share scheduling
employing performance-aware virtual time (PVT). PVT, a
virtual time of a task maintained in a system widely,
increases at a rate proportional to the performance of CPU
where the task is running on and inversely proportional to the
weight of the task based on CPU time received by the task.
This PVT makes the unfairness among tasks traceable
relatively, and schedulers utilize it when they assign CPU
time to a task. By leveraging existing proportional share
scheduler employing PVT, this work provides near-perfect
fairness (more than 99%) in the homogeneous multiprocessor
system and much better fairness (more than 60%) in the HMP
system than the previous one.

The remainder of this paper is composed of several
sections as follows. Section 2 describes an existing
proportional share scheduling and its limitation, and Section 3
introduces PVT and how to utilize it in a system. In section 4,
we show substantially improved results based on the
completely fair scheduler (CFS) employing PVT in Linux as
a representative fair scheduler in practice. Section 5
concludes this paper with the consideration of future works.

70 Int'l Conf. Foundations of Computer Science | FCS'15 |

2 Proportional Share Scheduler and
Limitation
 Proportional share scheduling which is able to provide

abstractions for multiplexing resources among tasks is
allocating resources to a task proportional to its weight to
guarantee weighted fairness in a system [1]. Proportional
share resource allocation is ideally generalized processor
sharing (GPS) scheme [2]. A fluid-style resource and prefect
fairness based on an infinitesimal fluid resource model are
assumed, but actual system cannot provide resource
infinitesimally in practice. Therefore, approximate scheduling
scheme is being proposed like packet by packet GPS (PGPS)
[4], and weighted fair queuing (WFQ) [2]. Figure 1 shows the
ideal scheme and quantum-based scheduling which is able to
be implemented to achieve proportional share scheduling in
practice [11].

 Let be the weight of task and be the set of all
active tasks at time . The share of a task at time is
defined as follows.

The share is changeable in runtime because the number
of tasks in a system can be changed dynamically. For
example, if a new task is initialized, the total weight
is increased and the share of task is decreased on the
contrary. Therefore, a proportional share scheduler only
guarantees a relative share of CPU time according to the total
weight changes.

To measure the difference of CPU time received by a
task between the ideally needed and the actually received,
virtual-time domain [1] can be utilized. In this domain, the
virtual time is the share of CPU time received by a task. The
share of CPU time is allocated to a task proportional to the
weight of the task. Therefore, the virtual time can be
computed as follows.

Let be the CPU time assigned to task by time t, and
let be the set of all tasks active at time . Because the
virtual time increases at a rate proportional to the sum of

weights of all tasks, if the total sum of weights increases, the
virtual time of increases faster and vice versa.

Additionally, the lag is defined as the ideal CPU time
which should be assigned to a task by subtracting the actual
CPU time received by a task. Suppose that task is active
and have a fixed weight in the interval . Let
denotes the CPU time received by the task in under a
certain scheduling scheme A, and denotes the
CPU time under the Generalized Processor Sharing (GPS)
scheme; an idealized scheduling model which achieves
perfect fairness. The lag of task τ at time (, for
any interval , is formally defined as

However, in the case of proportional share schedulers
based on partitioned scheduling, they have each run queue
individually and try to guarantee the fairness with the
consideration about the weights of tasks only within the run
queue where the scheduler involved in. Although this
approach has no problem in a system which has the same
performance of CPUs, it can incur a problem in a system
which has different performance of CPUs. In such a system,
as well as the sum of weights of tasks on each CPU, the
performance of each CPU can be different by the dynamic
frequency changes or the static capacity of processors.

In case of the different frequency of CPUs, for example,
consider four tasks and which have the same
weight value 100 individually on the dual-core processor
which has CPUs 1 and 2. The frequency of CPU 1 is 1 GHz
while it of CPU 2 is 2 GHz. They can operate as following
scenarios.

1. Four tasks and start simultaneously at time 0
2. Execute and in CPU 1, and in CPU 2 during

2 sec
a. moved to CPU 2 without delay
b. moved to CPU 1 without delay

3. Execute and in CPU 1, and in CPU 2 during
2 sec
a. moved to CPU 2 without delay
b. moved to CPU 1 without delay

4. Execute and in CPU 1, and in CPU 2 during
2 sec

In this case, all of tasks can receive the same amount of CPU
time; however, at the point of the amount of work done, it can
be totally different result. If we consider the performance of
CPUs, according to the proportion of performance of each
CPU, we can describe the relative ratio of the amount of work
done by each task based on CPU time like follows. The
processed of work in CPU 1, processed

 and processed in
both CPUs while the processed
in CPU 2. Finally, the amount of work done by each task is in
the order of . If the length of execution

Figure 1. Proportional share scheduling.

Int'l Conf. Foundations of Computer Science | FCS'15 | 71

time at the scenario 2, 3, and 4 could be manipulated properly,
 and can be fair while is of the least work done and

is of the most. Even though the total sum of weights in each
CPU during execution is absolutely balanced, the result of
work done among tasks can be totally different by the
performance of CPUs and it eventually leads tasks to the
unfairness. Finally to guarantee the fairness among tasks in a
system, as well as the sum of weight of tasks, the
performance of CPUs should be considered together.

3 Performance-aware Virtual Time
 In this section, we propose performance-aware virtual

time (PVT) where the performance of CPU is defined using
two major factors: frequency and capacity. PVT, as a virtual
time of a task maintained globally, increases at a rate
proportional to the performance of CPU where the task is
running on and inversely proportional to the weight of the
task based on CPU time received by the task. Additionally,
we utilize PVT to monitor the fairness measure in a system.
Basically our approach considers both systems homogeneous
and heterogeneous multiprocessor (HMP), and each CPU
individually has a dynamic voltage and frequency scaling
(DVFS) which is efficient technology for dynamic power
management (DPM). Therefore, PVT of task of weight
in CPU P is calculated as follows.

Let and be the maximum weight of a task and
CPU frequency acceptable in a system, and be
the total amount of frequencies by time , and ()
is a constant value of CPU P which indicates the relative ratio
of the performance among CPUs from the fastest ().
This constant value can be determined depending upon the
types of tasks running on a system based on the results of
various benchmarks or some specific metrics reported by chip
vendors also.

Additionally, if we scale and as a same value
to reduce a fraction, we finally can simplify equation as
follows.

All tasks in a system have their own PVT values. By utilizing
these values, we are able to monitor the change of fairness in
a system by the changes of results of periodic repeating
follows.

The maximum result of should be maintained as
a similar level. This means eventually that the results are

always bounded into the specific value, and the level of
fairness measure is being maintained in a system.

The difference (lag) of CPU time received by the task
between the ideally needed and the actually received by time t
based on the performance of CPU P can be derived as follows.

Let n be the number of CPUs in a system. When is
greater than zero, received less time than the time ideally
needed, and in case of zero the time was ideally received and
the more time received in the other case; however, operating
system cannot reclaim CPU time from a task that has already
received. Therefore, we utilize PVT to find a task with the
lower PVT and give more CPU time prior to the tasks with
higher PVT in a system to minimize the difference of PVTs.

 In case of a I/O intensive task or a task of starting, its
PVT is revised exceptionally because PVT of a task out of
run queue can be maintained as the lowest without system
progression applied when they are coming back to run queue
again. To make a decision of revision needed or not, we
classifies two groups of tasks according to the state transition
of task. In case of task transition between ready and running,
tasks should be revised, and the other cases except for the
first are not revised. Therefore, PVTs of I/O tasks of the latter
case need to be revised by subtracting as much time as
system progressed during being out of run queue. Finally
PVTs of the tasks is revised to keep the previous position in a
system widely as

The I/O intensive task is out from the run queue of CPU P
at time and inserted into the run queue of CPU at time .
In this case, the minimum PVT of each time and is
subtracted and added to keep the previous level of fairness
position in a system.

4 Experimental Evaluation
Completely fair scheduler (CFS) is the most popular and

the first fair scheduler applied to the general purpose
operating system while the other operating systems like
Windows and Linux of earlier version (before the version of
2.6.23) are providing round-robin scheduling. By these
reasons, to achieve our goal, we utilized existing CFS in
Linux (after the version of 2.6.23) to employ performance-
aware virtual time (PVT). PVT of each task was also utilized
to monitor the fairness measure in a system. To evaluate the
effectiveness of our proposed approach, we considered two
different environments both homogeneous multiprocessor
system and heterogeneous multiprocessor (HMP) system. The
characteristics of these are shown in Tables 1 and 2.

72 Int'l Conf. Foundations of Computer Science | FCS'15 |

Hardware
CPU Intel i7-4770 3.4 GHz Dual

processor
RAM 4 GB DDR3 SDRAM

Software Operating
System

Ubuntu 14.04 (on VMWare),
Linux Kernel Version : 3.18.2

Hardware CPU Samsung Exynos5 Octa
big.LITTLE processor

RAM 2 GB LPDDR3 RAM

Software Operating
System

Android 4.4.4 Kit Kat,
Linux Kernel Version : 3.10.9

To evaluate the fairness among tasks between operating
systems the original version and the version of PVT employed
in the system Table 1, we created simple application whose
performance is mostly proportional to the frequency of CPU
to make simply be 1 in all CPUs. The execution time of
each instance was compared to measure the fairness among
tasks. This application just repeats infinite loop simply and
print out the cumulative average time consumed at every 2.5
billionth loop. This cumulative average execution time was
approximately 1.3 sec in practice. Three instances of the
application were executed concurrently in the system shown
in Table 1, and we got the results 10 times per 1 min from the
original version and our version of PVT applied in Linux
kernel 3.18.2.

Even though there is not a significant difference in the
execution of three instances evaluated on the homogeneous
dual-core processor, as depicted in Figure 2, the different
execution time of tasks arises and being kept consistently.
Interestingly, this experiment was evaluated in the one of
most popular general purpose operating system and processors
even though the type of application was not very common.

CFS employing PVT in the version of inux kernel 3.18.2
achieves near-perfect fairness among three tasks on the
homogeneous dual-core processor as depicted in Figure 3
while the unfairness arises obviously in Figure 2. When the
time is 100, Figure 4 shows that of three tasks
is bounded in 3 sec (of PVT) approximately.

In case of the system in Table 2, we created a similar
application, but the number of loop operation was changed to
1 million, and a sleep code for 5ms was inserted after printing
out (per about 850ms in practice) to simulate the effects of I/O
operation together. Twelve instances of this application were
created and executed concurrently, and we gathered the results
10 times per 1 min.

1295

1300

1305

1310

1315

1320

1 2 3 4 5 6 7 8 9 10

Γ1

Γ2

Γ3

1295

1300

1305

1310

1315

1320

1 2 3 4 5 6 7 8 9 10

Γ1

Γ2

Γ3

Table 1. homogeneous multiprocessor environment

Table 2. heterogeneous multiprocessor environment

Figure 2. cumulative average time of cycles
on Ubuntu 14.04 LTS of kernel 3.18.2

Figure 3. cumulative average time of cycles after PVT applied

Figure 4. Periodic repeats of MaxDiff(t) of 3 tasks in the
homogeneous during 100 sec

Figure 5. Cumulative average time of cycles
on Android KitKat of kernel 3.10.9

Int'l Conf. Foundations of Computer Science | FCS'15 | 73

Figure 5 shows the results when we measure the
cumulative average time of each task using the existing kernel.
There is a lot of variation among the execution times of tasks
even though all tasks are identical. In Figure 6, when
compared to Figure 5, the cumulative average time values of
the twelve tasks are more narrowed down. Based on the
results, the maximum deviation of the cumulative average
time can be shown as Figure 7.

Figure 7 shows that PVT applied kernel guarantees the
fairness among tasks by giving at least 60% better than the
original kernel in HMP system. During 600 sec,
of the twelve tasks are bounded into 5 sec as shown in Figure
8.

Additionally, according to the each result of , the
fairness among three tasks in the homogeneous is being
guaranteed better than it of twelve tasks in the heterogeneous
as described above results.

5 Conclusion
In this paper, we proposed a proportional share

scheduling employing performance-aware virtual time (PVT)
to guarantee and measure the fairness among tasks in a
system. The proposed approach leads the fairness to the
significantly improved than previous systems. We also
introduced how to monitor the fairness by utilizing PVT to
compare the level of fairness measure in a system.

Additionally, if we consider the remaining 40% in the
results of HMP system, there could be more factors such as
the number of heterogeneous CPUs and migration, the type of
tasks, miss-rate of cache, the policy of load balancer and so
forth which may affect the fairness of tasks in a system. As a
future goal, we plan to focus on the relationship between
these factors and the fairness guarantees. As a future work,
we also intend to determine the capacity of CPU which can
affect the fairness measure.

6 Acknowledgment
This work was supported partly by Seoul Creative Human
Development Program (HM120006), partly by the National
Research Foundation of Korea (NRF) grant funded by the
Korea government (MEST) (NRF-2011-0015997), and partly
the MSIP (Ministry of Science, ICT and Future Planning),
Korea, under the C-ITRC (Convergence Information
Technology Research Center) (IITP-2015-H8601-15-1005)
supervised by the IITP(Institute for Information &
communications Technology Promotion).

7 References
[1] NIEH, Jason; VAILL, Christopher; ZHONG, Hua.
Virtual-Time Round-Robin: An O (1) Proportional Share
Scheduler. In: USENIX Annual Technical Conference,
General Track. 2001. p. 245-259.

[2] MARKATOS, Evangelos P.; LEBLANC, Thomas J.
Using processor affinity in loop scheduling on shared-
memory multiprocessors. Parallel and Distributed Systems,
IEEE Transactions on, 1994, 5.4: 379-400.

[3] CHANDRA, Abhishek, et al. Surplus fair scheduling: A
proportional-share CPU scheduling algorithm for symmetric
multiprocessors. In: Proceedings of the 4th conference on
Symposium on Operating System Design & Implementation-
Volume 4. USENIX Association, 2000. p. 4-4.

[4] PAREKH, Abhay Kumar; GALLAGER, Robert G. A
generalized processor sharing approach to flow control in
integrated services networks-the single node case. In:

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10

kernel
3.10.9
PVT
applied

Figure 6. Cumulative average time of cycles after PVT
applied

Figure 7. maximum deviation of cumulative average time

Figure 8. Periodic repeats of MaxDiff(t) of 12 tasks in the HMP
system during 600 sec

74 Int'l Conf. Foundations of Computer Science | FCS'15 |

INFOCOM'92. Eleventh Annual Joint Conference of the IEEE
Computer and Communications Societies, IEEE. IEEE, 1992.
p. 915-924.

[5] KUMAR, Rakesh, et al. Single-ISA heterogeneous
multi-core architectures: The potential for processor power
reduction. In: Microarchitecture, 2003. MICRO-36.
Proceedings. 36th Annual IEEE/ACM International
Symposium on. IEEE, 2003. p. 81-92.

[6] KOUFATY, David; REDDY, Dheeraj; HAHN, Scott.
Bias scheduling in heterogeneous multi-core architectures. In:
Proceedings of the 5th European conference on Computer
systems. ACM, 2010. p. 125-138.

[7] SHELEPOV, Daniel, et al. HASS: a scheduler for
heterogeneous multicore systems. ACM SIGOPS Operating
Systems Review, 2009, 43.2: 66-75.

[8] GREENHALGH, Peter. Big. little processing with arm
cortex-a15 & cortex-a7. ARM White paper, 2011.

[9] OGRAS, Umit Y.; MARCULESCU, Radu. " It's a small
world after all": NoC performance optimization via long-
range link insertion. Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 2006, 14.7: 693-706.

[10] BONALD, Thomas; MASSOULIÉ, Laurent. Impact of
fairness on Internet performance. In: ACM SIGMETRICS
Performance Evaluation Review. ACM, 2001. p. 82-91.

[11] KIM, Hyungwoo, et al. Fixed Share Scheduling via
Dynamic Weight Adjustment in Proportional Share
Scheduling Systems.

[12] D. Ok, B. Song, H. Yoon, P. Wu, J. Lee, J. Park, and M.
Ryu, “Lag-Based Load Balancing for Linux-based Multicore
Systems,” The 2013 International Conference on
Foundations of Computer Science, July 2013.

Int'l Conf. Foundations of Computer Science | FCS'15 | 75

