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Abstract - For the past few years there has been an increase 
in the use of compute intensive applications running on high-
performance embedded systems based on multi-core platforms. 
These applications demand an absolute share of CPU 
bandwidth to guarantee a certain level of QoS (Quality of 
Service) and fulfil their timing constraints. Unfortunately, 
traditional proportional share or priority scheduling 
algorithms employed in general purpose operating systems 
are not able to provide an absolute share of processor 
resources for such time sensitive tasks. In this paper, we 
present an absolute bandwidth scheduling scheme which aims 
at providing an absolute share of CPU bandwidth to groups of 
soft real-time tasks regardless of the work load conditions and 
varying speeds of CPU. The proposed scheme provides a
mechanism of CPU bandwidth allocation for groups of soft-
real time tasks by dynamically changing the overall weight of
the group while maintaining the proportion of share of each 
task in the group. Our proposed approach works on top of a 
traditional proportional share scheduler and does not require 
any modifications to the kernel layer. To demonstrate the 
effectiveness and the correctness of our scheme, we have 
implemented a prototype using Linux cgroups and the existing 
completely fair scheduler (CFS). A series of experiments are 
conducted to prove that each soft real-time task in the group 
maintains its required absolute bandwidth. 

Keywords: Absolute bandwidth scheduling, group-based 
proportional share scheduling, dynamic weight management, 
QoS, soft real-time.

1 Introduction 
 For the past few years there has been an increase in the 
use of compute intensive applications such as multimedia 
processing, online gaming and data encryption/decryption 
running on high-performance embedded systems based on 
multi-core platforms. These applications demand an absolute 
share of CPU bandwidth to guarantee a certain level of QoS 
(Quality of Service) and fulfil their timing constraints. For 
instance, a video application may require 30% of processor 
bandwidth at 1GHz to decode 30 frames per second for 
smooth playback. 

 Unfortunately, traditional proportional share or priority 
scheduling algorithms employed in general purpose operating 
systems are not able to provide an absolute share of CPU 
resources for time sensitive tasks. The proportional share
algorithm aims at providing relative fairness to the tasks 
proportional to their weights, for distributing CPU bandwidth. 
As a result, the relative share of each task decreases as the 
system load increases.  

 The second hindrance in allocating a guaranteed share of 
CPU bandwidth is the assumption of fixed speed or 
performance of each CPU core. In a real world system, 
however, the speed of CPU may vary with new tasks being 
dynamically added to the CPU and the underlying DVFS 
(dynamic voltage and frequency scaling) policy. As a result, 
each task may generate a different utilization value depending 
upon the current speed of the CPU. Consider for example that 
a soft real-time task such as an HVEC (High Efficiency 
Video Coding) decoder demands 60% of CPU utilization on 
ARM Cortex A9 processor running at maximum frequency of 
1.5 GHz. If the task is scheduled on a CPU which is running 
at 1.0 GHz, HVEC may not meet its performance metrics 
because CPU utilization in that case should be 90%. This may 
adversely affect the resource allocation problem especially in 
multi-core environments where CPUs can run at varying 
speeds and task migration occurs frequently. Hence, to 
provide efficient CPU bandwidth allocation to tasks, the 
individual as well as overall computation performance of all 
the CPU resources in a system under a certain condition must 
be take into account.  

 In this paper we propose an absolute bandwidth 
scheduling (ABS) scheme to accomplish absolute bandwidth 
guarantees on top of an existing partitioned proportional share 
scheduler. The proposed scheme performs two important 
functions. First, it partitions tasks running on each processor 
into two groups, absolute bandwidth tasks that require 
absolute bandwidth guarantees and proportional share tasks 
that require traditional proportional share services. Second, it 
dynamically adapts the weights of absolute bandwidth task 
groups to satisfy their absolute bandwidth requirements 
taking into account the dynamic change in workload 
characteristics and varying processor speeds. We show 
through experimental evaluation that the proposed scheme 
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can efficiently achieve absolute bandwidth guarantees in 
conjunction with an existing proportional share scheduler. 

 The rest of this paper is organized as follows: section 2 
gives a brief review of the related work, section 3 elaborates 
our proposed scheme. In section 4 we give an implementation 
of the scheme, section 5 explains our experimental set up and 
finally we conclude with section 6.

2 Related Work 
 Many researchers proposed resource reservation 
schemes to provide guaranteed allocation of resources to a 
group of tasks present in an application. For example, the 
processor capacity reserve scheme proposed by Mercer et al. 
[2] suggests using priority based scheduling to grant resource 
reservation to each application. Later a kernel module is used 
to keep track of the CPU usage of each application to 
implement the granted reservation.  A similar approach,
called ACTORS [3], reserves resources for each application 
and readjust the assignment by using feedback from the 
application. This solution gives user a comprehensive control 
over resource allocation but the technique requires non-trivial 
modification to the kernel. 

 To provide a constant share of CPU bandwidth 
regardless of the workload conditions a fixed share 
scheduling (FSS) policy has been proposed in [4]. FSS 
enables a traditional proportional share scheduler to provide 
constant share of CPU bandwidth by dynamically modifying 
the weights of soft real-time tasks under changing workload 
conditions. However, FSS assumes that the speed or 
performance of the CPUs remains fixed over time. Note that 
the dynamic voltage frequency scaling (DVFS) mechanism 
implemented in modern computing systems scales up or 
down the speed of CPUs as new tasks arrive and/or depart. 
Hence, to provide absolute CPU bandwidth allocation to tasks, 
dynamic CPU speeds must be taken into account.

3 Absolute Bandwidth Scheduling 
 There are two general approaches to multiprocessor 
scheduling, global scheduling and partitioned scheduling. The 
global scheduling approach maintains single task queue and 
schedules tasks selecting eligible tasks guided by a global 
scheduling policy and assigning them to appropriate 
processors. On the other hand, the partitioned scheduling 
approach maintains a separate task queue for each processor 
and schedules tasks in a way similar to distributed scheduling. 
In a partitioned scheduling system, tasks are first assigned to 
processors and each processor runs a separate scheduler 
instance to schedule them independently of other processors. 

 In this work, we consider partitioned scheduling systems 
with proportional share scheduling support.  In order to
satisfy absolute processor bandwidth requirements in such 
partitioned proportional share scheduling systems, we present 

a group-based proportional scheduling scheme with dynamic 
weight management as described below 

3.1 Group-based Proportional Share 
Scheduling

 The goal of group-based proportional scheduling 
schemes is to meet the performance requirements of a group 
of tasks within applications.  The key idea of group-based 
proportional share scheduling is to allocate resources to task 
groups relative to their weights such that the share of each 
group is defined by a proportional share with respect to the 
other groups present in the system. The share of each task 
within a group is defined by a proportional share of its parent 
group [4]. For example, let be the weight of group  and 
let  be the set of all active groups at time , then the share 

 of a group at time  is defined as below. 

 Let  be the weight of task  and  be the set of all 
active tasks included in group at time . The share  of 
a task  with weight at time  is defined as below. 

  

3.2 Dynamic Weight Management for Groups 

 In order to obtain absolute bandwidth allocation 
guarantees from the existing proportional share scheduler, we
propose to add an absolute bandwidth allocator on top of it 
with a minimal impact on the existing system architecture. 
The primary goal of the absolute bandwidth allocator is to 

Figure 1. The absolute bandwidth scheduling model.
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receive absolute bandwidth requirements from the soft real-
time tasks and changing the weights of groups of tasks by 
examining the run queue of each processor and its current 
speed.  

 Figure 1 shows the proposed absolute bandwidth 
scheduling model with an absolute bandwidth allocator 
running on top of an existing group-based proportional share 
scheduler on a multiprocessor platform. The platform consists 
of m processors P = . Each processor has 
identical maximum processing speed but can be 
operating on varying speeds depending on the workload 
conditions and DVFS (dynamic voltage and frequency scaling
(DVFS) mechanism. Let us denote the current frequency of a 
processor by . 

 For the proposed model, we define a set of active tasks 
T =   running on the multiprocessor platform 
and divide these tasks into two groups such that  

where is a group of soft real-time tasks that require 
absolute bandwidth guarantees and is a group of best 
effort tasks that require proportional share bandwidth 
guarantees.

 Each processor  has a separate task run queue  such 
that  

where is a group of soft real-time tasks allocated to 
processor  and is a group of best effort tasks allocated 
to processor . The best effort tasks are allocated bandwidth 
shares in proportion to their weights in accordance with the 
existing group-based proportional share scheduling scheme.
We denote the weight of a best effort task  by 

so that the overall weight of the best effort group 
scheduled at  is given by 

 The goal of absolute bandwidth scheduling is to provide 
an absolute bandwidth to soft real-time tasks. This can be 
achieved by receiving a absolute bandwidth requirement from 
each task and then dynamically changing the weights of each 
soft real-time group to maintain the requested bandwidth 
requirements. We define the absolute bandwidth request by 
any software task  as CPU utilization required 
from a CPU when running at . In the proposed model 
each task with in may put such request through an 
application programming interface (API) 
request_absolute_bandwidth() as shown in Figure 2.  

 For a group of soft real-time tasks assigned to a 
processor , the absolute CPU utilization  is defined by  

 It is worth noting that when dispatching the tasks to a
specific processor it is necessary that the sum of bandwidth 
requests cannot be greater than 1. However, the 
resulting  can be greater than 1 in case when the current 
operating frequency  is less than the maximum speed 
of CPU. This will enable DVFS to increase the operating 
frequency of CPU as required. 

 Having obtained the absolute CPU utilization  of a 
soft real-time group, the weight of the group can be obtained 
as  

The group weight obtained from Equation (3) guarantees that 
each soft real-time task gets an absolute bandwidth allocation 
and the other best effort tasks present on the run queue are 
assigned a proportional share of the CPU bandwidth. 

  

 Figure 2 shows an example of the proposed absolute 
bandwidth scheduling model. Consider two sets of 
tasks  and =  running 
on a dual-processor platform. Maximum frequency of each 
processor,  is 10 GHz while current frequency of is 

 and current frequency of is  . 

 Soft real task  and  are allocated to processor  and 
have absolute bandwidth requirements of  and 

 at 10 GHz, and best effort task  and  are 
allocated to processor  and have weights  and 

. By applying Equation (2) to group of soft real-

Figure 2. Examples of absolute bandwidth scheduling
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time tasks, we have  and by 

applying Eq. (3), we get 
. By using this weight value for the group we obtain the 

share of each soft real-time task present in the group as 
desired. We can verify the result by applying Equation (1):

 and 

 and  and 

. 

 Soft real task  and  are allocated to processor  and 
have absolute bandwidth requirements of  and 

 at 10 GHz, and best efforts task  and  are 
allocated to processor  and have weights  and 

. By applying Equation (2) to group of soft real-
time tasks, we have    and by 

applying Eq. (3), we get
. Using this weight value we can verify the share of each 

soft real-time task by applying Equation (1):
 and 

and  and

. 

4 Implementation 
 We have implemented a prototype of the proposed 
scheme on Linux kernel 3.18.3 using control groups 
(cgroups). Cgroups provide a mechanism to aggregate or 
partition tasks into hierarchical groups categorized by their 
peculiar behavior primarily for the purpose of efficient 
resource management among tasks.  

 To exploit the benefits of cgroups and to efficiently 
manage CPU resources we implemented the absolute 
bandwidth allocation scheduling using CPU subsystem of 
cgroups.  However, we add two new parameters to the 
existing CPU subsystem. The first parameter cpu.softRT is 
used to classify each task on the system as a soft real-time or 
best effort task. The other parameter cpu.absoluteBW is 
implemented as a structure and indicates absolute bandwidth 
requirement of each task in a group.

 In order to provide absolute bandwidth allocation to soft 
real-time tasks we implemented dynamic weight management 
for groups on top of the existing Linux’s completely fair 
scheduler (CFS) [8]. Our addition of parameters in CPU 
subsystem of cgroups and the process of dynamic weight 
management does not modify the existing kernel 
implementation and has no impact on the existing system if 
newly defined parameters are not used. 

5 Experimental Evaluation 
 We evaluated the effectiveness and correctness of the 
implementation of absolute bandwidth scheduling scheme by 
conducting a series of experiments. These experiments were 
performed on an Intel Core i5-4690 CPU which has four 
cores with 3.50 GHz maximum speed, running on Linux 
3.18.3. Each set of experiments was conducted 10 times to 
ensure that the experiments and their results are repeatable.  

 In the first set of experiments, we observed the CPU 
utilization of soft real-time tasks under varying workload 
conditions. We used four target tasks   
with absolute bandwidth requirement 

 at 3.5 GHz. Each task used 
in this experiment is a busy-waiting task which consumes  
100% of CPU utilization when executed alone on a processor. 
Each processor was running on its maximum speed. We
started adding new best efforts tasks at 1000 millisecond and 
noticed that the actual CPU utilization of target tasks is
maintained to their demanded absolute bandwidth even 
though the number of running best efforts tasks on each CPU 
was dynamically changing. Notice that since the processors 
are running on their maximum frequency hence the actual 
CPU utilization and the absolute bandwidth utilization 
demanded by tasks is same. Figure 3 shows that actual 
utilization of target soft real-time task is maintained around 
absolute bandwidth even though the number of tasks varies 
dynamically. 

 In the second set of experiments, we observed the CPU 
utilization and job completion time of target soft real-time 
tasks under the assumption of varying CPU speeds. We 
created four soft real-time tasks   with 
absolute bandwidth requirement 

 at 3.5 GHz. Each task was 

Figure 3. CPU utilization of soft real-time tasks, number 
of running tasks in the proposed scheme
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added to a separate group destined to schedule on a particular 
CPU using processor affinity. To simulate that two of the 
CPUs, CPU1 and CPU3 are running at slower speeds, we 
used a value of loop counter inversely proportional to the 
desired frequency in the busy-waiting loop of soft real-time 
tasks, such that the current frequency of CPU1 and CPU4 is 
3.5 GHz and 1.75 GHz for CPU1 and CPU3. 

 Table 1 shows that for CPU1 and CPU3, the actual 
utilization of soft real-time tasks at simulated current 
frequency is increased as a result of applying Equation (2). 
We then used this utilization value to recalculate the weights 
of the soft real-time task groups scheduled at CPU1 and 
CPU3 to maintain their initial absolute bandwidth request.  
The last row in Table 1 shows the relationship between the 
absolute bandwidth requirement and job-completion time of 
each task; for a given operating frequency, the smaller the 
absolute bandwidth request the longer it takes to complete the 
task.  

6 Conclusions 
 In this paper, we have presented an absolute bandwidth 
scheduling scheme which guarantees absolute bandwidth for 
a soft real-time tasks and proportional bandwidth allocation to 
best effort tasks. We implemented absolute bandwidth 
scheduling using the notion of group-based scheduling and by 
dynamically changing the weights of groups of soft real-time 
tasks on top of the existing Linux CFS scheduler. We 
demonstrated with our experiments that the soft real-time 
tasks maintain their required absolute bandwidth when more 
tasks were added on the system and even when the current 
speed of the underlying CPUs was changed.  
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