
Absolute Bandwidth Scheduling via Group-based
Partitioned Proportional Share Scheduling and Dynamic
Weight Management on Varying-Speed Multiprocessors

Sangwon Shin, Shakaiba Majeed, and Minsoo Ryu*
Department of Computer Science and Engineering, Hanyang University, Seoul, Korea

{swshin, shakaiba}@rtcc.hanyang.ac.kr, msryu@hanyang.ac.kr

Abstract - For the past few years there has been an increase
in the use of compute intensive applications running on high-
performance embedded systems based on multi-core platforms.
These applications demand an absolute share of CPU
bandwidth to guarantee a certain level of QoS (Quality of
Service) and fulfil their timing constraints. Unfortunately,
traditional proportional share or priority scheduling
algorithms employed in general purpose operating systems
are not able to provide an absolute share of processor
resources for such time sensitive tasks. In this paper, we
present an absolute bandwidth scheduling scheme which aims
at providing an absolute share of CPU bandwidth to groups of
soft real-time tasks regardless of the work load conditions and
varying speeds of CPU. The proposed scheme provides a
mechanism of CPU bandwidth allocation for groups of soft-
real time tasks by dynamically changing the overall weight of
the group while maintaining the proportion of share of each
task in the group. Our proposed approach works on top of a
traditional proportional share scheduler and does not require
any modifications to the kernel layer. To demonstrate the
effectiveness and the correctness of our scheme, we have
implemented a prototype using Linux cgroups and the existing
completely fair scheduler (CFS). A series of experiments are
conducted to prove that each soft real-time task in the group
maintains its required absolute bandwidth.

Keywords: Absolute bandwidth scheduling, group-based
proportional share scheduling, dynamic weight management,
QoS, soft real-time.

1 Introduction
 For the past few years there has been an increase in the
use of compute intensive applications such as multimedia
processing, online gaming and data encryption/decryption
running on high-performance embedded systems based on
multi-core platforms. These applications demand an absolute
share of CPU bandwidth to guarantee a certain level of QoS
(Quality of Service) and fulfil their timing constraints. For
instance, a video application may require 30% of processor
bandwidth at 1GHz to decode 30 frames per second for
smooth playback.

 Unfortunately, traditional proportional share or priority
scheduling algorithms employed in general purpose operating
systems are not able to provide an absolute share of CPU
resources for time sensitive tasks. The proportional share
algorithm aims at providing relative fairness to the tasks
proportional to their weights, for distributing CPU bandwidth.
As a result, the relative share of each task decreases as the
system load increases.

 The second hindrance in allocating a guaranteed share of
CPU bandwidth is the assumption of fixed speed or
performance of each CPU core. In a real world system,
however, the speed of CPU may vary with new tasks being
dynamically added to the CPU and the underlying DVFS
(dynamic voltage and frequency scaling) policy. As a result,
each task may generate a different utilization value depending
upon the current speed of the CPU. Consider for example that
a soft real-time task such as an HVEC (High Efficiency
Video Coding) decoder demands 60% of CPU utilization on
ARM Cortex A9 processor running at maximum frequency of
1.5 GHz. If the task is scheduled on a CPU which is running
at 1.0 GHz, HVEC may not meet its performance metrics
because CPU utilization in that case should be 90%. This may
adversely affect the resource allocation problem especially in
multi-core environments where CPUs can run at varying
speeds and task migration occurs frequently. Hence, to
provide efficient CPU bandwidth allocation to tasks, the
individual as well as overall computation performance of all
the CPU resources in a system under a certain condition must
be take into account.

 In this paper we propose an absolute bandwidth
scheduling (ABS) scheme to accomplish absolute bandwidth
guarantees on top of an existing partitioned proportional share
scheduler. The proposed scheme performs two important
functions. First, it partitions tasks running on each processor
into two groups, absolute bandwidth tasks that require
absolute bandwidth guarantees and proportional share tasks
that require traditional proportional share services. Second, it
dynamically adapts the weights of absolute bandwidth task
groups to satisfy their absolute bandwidth requirements
taking into account the dynamic change in workload
characteristics and varying processor speeds. We show
through experimental evaluation that the proposed scheme

58 Int'l Conf. Foundations of Computer Science | FCS'15 |

can efficiently achieve absolute bandwidth guarantees in
conjunction with an existing proportional share scheduler.

 The rest of this paper is organized as follows: section 2
gives a brief review of the related work, section 3 elaborates
our proposed scheme. In section 4 we give an implementation
of the scheme, section 5 explains our experimental set up and
finally we conclude with section 6.

2 Related Work
 Many researchers proposed resource reservation
schemes to provide guaranteed allocation of resources to a
group of tasks present in an application. For example, the
processor capacity reserve scheme proposed by Mercer et al.
[2] suggests using priority based scheduling to grant resource
reservation to each application. Later a kernel module is used
to keep track of the CPU usage of each application to
implement the granted reservation. A similar approach,
called ACTORS [3], reserves resources for each application
and readjust the assignment by using feedback from the
application. This solution gives user a comprehensive control
over resource allocation but the technique requires non-trivial
modification to the kernel.

 To provide a constant share of CPU bandwidth
regardless of the workload conditions a fixed share
scheduling (FSS) policy has been proposed in [4]. FSS
enables a traditional proportional share scheduler to provide
constant share of CPU bandwidth by dynamically modifying
the weights of soft real-time tasks under changing workload
conditions. However, FSS assumes that the speed or
performance of the CPUs remains fixed over time. Note that
the dynamic voltage frequency scaling (DVFS) mechanism
implemented in modern computing systems scales up or
down the speed of CPUs as new tasks arrive and/or depart.
Hence, to provide absolute CPU bandwidth allocation to tasks,
dynamic CPU speeds must be taken into account.

3 Absolute Bandwidth Scheduling
 There are two general approaches to multiprocessor
scheduling, global scheduling and partitioned scheduling. The
global scheduling approach maintains single task queue and
schedules tasks selecting eligible tasks guided by a global
scheduling policy and assigning them to appropriate
processors. On the other hand, the partitioned scheduling
approach maintains a separate task queue for each processor
and schedules tasks in a way similar to distributed scheduling.
In a partitioned scheduling system, tasks are first assigned to
processors and each processor runs a separate scheduler
instance to schedule them independently of other processors.

 In this work, we consider partitioned scheduling systems
with proportional share scheduling support. In order to
satisfy absolute processor bandwidth requirements in such
partitioned proportional share scheduling systems, we present

a group-based proportional scheduling scheme with dynamic
weight management as described below

3.1 Group-based Proportional Share
Scheduling

 The goal of group-based proportional scheduling
schemes is to meet the performance requirements of a group
of tasks within applications. The key idea of group-based
proportional share scheduling is to allocate resources to task
groups relative to their weights such that the share of each
group is defined by a proportional share with respect to the
other groups present in the system. The share of each task
within a group is defined by a proportional share of its parent
group [4]. For example, let be the weight of group and
let be the set of all active groups at time , then the share

 of a group at time is defined as below.

 Let be the weight of task and be the set of all
active tasks included in group at time . The share of
a task with weight at time is defined as below.

3.2 Dynamic Weight Management for Groups

 In order to obtain absolute bandwidth allocation
guarantees from the existing proportional share scheduler, we
propose to add an absolute bandwidth allocator on top of it
with a minimal impact on the existing system architecture.
The primary goal of the absolute bandwidth allocator is to

Figure 1. The absolute bandwidth scheduling model.

Int'l Conf. Foundations of Computer Science | FCS'15 | 59

receive absolute bandwidth requirements from the soft real-
time tasks and changing the weights of groups of tasks by
examining the run queue of each processor and its current
speed.

 Figure 1 shows the proposed absolute bandwidth
scheduling model with an absolute bandwidth allocator
running on top of an existing group-based proportional share
scheduler on a multiprocessor platform. The platform consists
of m processors P = . Each processor has
identical maximum processing speed but can be
operating on varying speeds depending on the workload
conditions and DVFS (dynamic voltage and frequency scaling
(DVFS) mechanism. Let us denote the current frequency of a
processor by .

 For the proposed model, we define a set of active tasks
T = running on the multiprocessor platform
and divide these tasks into two groups such that

where is a group of soft real-time tasks that require
absolute bandwidth guarantees and is a group of best
effort tasks that require proportional share bandwidth
guarantees.

 Each processor has a separate task run queue such
that

where is a group of soft real-time tasks allocated to
processor and is a group of best effort tasks allocated
to processor . The best effort tasks are allocated bandwidth
shares in proportion to their weights in accordance with the
existing group-based proportional share scheduling scheme.
We denote the weight of a best effort task by

so that the overall weight of the best effort group
scheduled at is given by

 The goal of absolute bandwidth scheduling is to provide
an absolute bandwidth to soft real-time tasks. This can be
achieved by receiving a absolute bandwidth requirement from
each task and then dynamically changing the weights of each
soft real-time group to maintain the requested bandwidth
requirements. We define the absolute bandwidth request by
any software task as CPU utilization required
from a CPU when running at . In the proposed model
each task with in may put such request through an
application programming interface (API)
request_absolute_bandwidth() as shown in Figure 2.

 For a group of soft real-time tasks assigned to a
processor , the absolute CPU utilization is defined by

 It is worth noting that when dispatching the tasks to a
specific processor it is necessary that the sum of bandwidth
requests cannot be greater than 1. However, the
resulting can be greater than 1 in case when the current
operating frequency is less than the maximum speed
of CPU. This will enable DVFS to increase the operating
frequency of CPU as required.

 Having obtained the absolute CPU utilization of a
soft real-time group, the weight of the group can be obtained
as

The group weight obtained from Equation (3) guarantees that
each soft real-time task gets an absolute bandwidth allocation
and the other best effort tasks present on the run queue are
assigned a proportional share of the CPU bandwidth.

 Figure 2 shows an example of the proposed absolute
bandwidth scheduling model. Consider two sets of
tasks and = running
on a dual-processor platform. Maximum frequency of each
processor, is 10 GHz while current frequency of is

 and current frequency of is .

 Soft real task and are allocated to processor and
have absolute bandwidth requirements of and

 at 10 GHz, and best effort task and are
allocated to processor and have weights and

. By applying Equation (2) to group of soft real-

Figure 2. Examples of absolute bandwidth scheduling

60 Int'l Conf. Foundations of Computer Science | FCS'15 |

time tasks, we have and by

applying Eq. (3), we get
. By using this weight value for the group we obtain the

share of each soft real-time task present in the group as
desired. We can verify the result by applying Equation (1):

 and

 and and

.

 Soft real task and are allocated to processor and
have absolute bandwidth requirements of and

 at 10 GHz, and best efforts task and are
allocated to processor and have weights and

. By applying Equation (2) to group of soft real-
time tasks, we have and by

applying Eq. (3), we get
. Using this weight value we can verify the share of each

soft real-time task by applying Equation (1):
 and

and and

.

4 Implementation
 We have implemented a prototype of the proposed
scheme on Linux kernel 3.18.3 using control groups
(cgroups). Cgroups provide a mechanism to aggregate or
partition tasks into hierarchical groups categorized by their
peculiar behavior primarily for the purpose of efficient
resource management among tasks.

 To exploit the benefits of cgroups and to efficiently
manage CPU resources we implemented the absolute
bandwidth allocation scheduling using CPU subsystem of
cgroups. However, we add two new parameters to the
existing CPU subsystem. The first parameter cpu.softRT is
used to classify each task on the system as a soft real-time or
best effort task. The other parameter cpu.absoluteBW is
implemented as a structure and indicates absolute bandwidth
requirement of each task in a group.

 In order to provide absolute bandwidth allocation to soft
real-time tasks we implemented dynamic weight management
for groups on top of the existing Linux’s completely fair
scheduler (CFS) [8]. Our addition of parameters in CPU
subsystem of cgroups and the process of dynamic weight
management does not modify the existing kernel
implementation and has no impact on the existing system if
newly defined parameters are not used.

5 Experimental Evaluation
 We evaluated the effectiveness and correctness of the
implementation of absolute bandwidth scheduling scheme by
conducting a series of experiments. These experiments were
performed on an Intel Core i5-4690 CPU which has four
cores with 3.50 GHz maximum speed, running on Linux
3.18.3. Each set of experiments was conducted 10 times to
ensure that the experiments and their results are repeatable.

 In the first set of experiments, we observed the CPU
utilization of soft real-time tasks under varying workload
conditions. We used four target tasks
with absolute bandwidth requirement

 at 3.5 GHz. Each task used
in this experiment is a busy-waiting task which consumes
100% of CPU utilization when executed alone on a processor.
Each processor was running on its maximum speed. We
started adding new best efforts tasks at 1000 millisecond and
noticed that the actual CPU utilization of target tasks is
maintained to their demanded absolute bandwidth even
though the number of running best efforts tasks on each CPU
was dynamically changing. Notice that since the processors
are running on their maximum frequency hence the actual
CPU utilization and the absolute bandwidth utilization
demanded by tasks is same. Figure 3 shows that actual
utilization of target soft real-time task is maintained around
absolute bandwidth even though the number of tasks varies
dynamically.

 In the second set of experiments, we observed the CPU
utilization and job completion time of target soft real-time
tasks under the assumption of varying CPU speeds. We
created four soft real-time tasks with
absolute bandwidth requirement

 at 3.5 GHz. Each task was

Figure 3. CPU utilization of soft real-time tasks, number
of running tasks in the proposed scheme

Int'l Conf. Foundations of Computer Science | FCS'15 | 61

added to a separate group destined to schedule on a particular
CPU using processor affinity. To simulate that two of the
CPUs, CPU1 and CPU3 are running at slower speeds, we
used a value of loop counter inversely proportional to the
desired frequency in the busy-waiting loop of soft real-time
tasks, such that the current frequency of CPU1 and CPU4 is
3.5 GHz and 1.75 GHz for CPU1 and CPU3.

 Table 1 shows that for CPU1 and CPU3, the actual
utilization of soft real-time tasks at simulated current
frequency is increased as a result of applying Equation (2).
We then used this utilization value to recalculate the weights
of the soft real-time task groups scheduled at CPU1 and
CPU3 to maintain their initial absolute bandwidth request.
The last row in Table 1 shows the relationship between the
absolute bandwidth requirement and job-completion time of
each task; for a given operating frequency, the smaller the
absolute bandwidth request the longer it takes to complete the
task.

6 Conclusions
 In this paper, we have presented an absolute bandwidth
scheduling scheme which guarantees absolute bandwidth for
a soft real-time tasks and proportional bandwidth allocation to
best effort tasks. We implemented absolute bandwidth
scheduling using the notion of group-based scheduling and by
dynamically changing the weights of groups of soft real-time
tasks on top of the existing Linux CFS scheduler. We
demonstrated with our experiments that the soft real-time
tasks maintain their required absolute bandwidth when more
tasks were added on the system and even when the current
speed of the underlying CPUs was changed.

Acknowledgment
 This work was supported partly by Seoul Creative
Human Development Program (HM120006), partly by the
National Research Foundation of Korea(NRF) grant funded
by the Korea government(MEST) (NRF-2011-0015997), and
partly the MSIP(Ministry of Science, ICT and Future
Planning), Korea, under the C-ITRC(Convergence
Information Technology Research Center) (IITP-2015-
H8601-15-1005) supervised by the IITP(Institute for
Information & communications Technology Promotion).

References
[1] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A.

Varvel, "Proportionate progress: A notion of fairness
in resource allocation," Algorithmica, vol. 15, pp.
600-625, 1996.

[2] C. W. Mercer, S. Savage, and H. Tokuda, "Processor
capacity reserves: Operating system support for
multimedia applications," in Multimedia Computing
and Systems, 1994., Proceedings of the International
Conference on, 1994, pp. 90-99.

[3] E. Bini, G. Buttazzo, J. Eker, S. Schorr, R. Guerra, G.
Fohler, et al., "Resource management on multicore
systems: The ACTORS approach," IEEE Micro, vol.
31, pp. 72-81, 2011.

[4] H. Kim, H. Yoon, P. Wu, and M. Ryu, "Fixed Share
Scheduling via Dynamic Weight Adjustment in
Proportional Share Scheduling Systems."

[5] P. Holman and J. H. Anderson, "Group-based pfair
scheduling," Real-Time Systems, vol. 32, pp. 125-168,
2006.

[6] J. Kay and P. Lauder, "A fair share scheduler,"
Commun. ACM, vol. 31, pp. 44-55, 1988.

[7] S. Mittal, "A survey of techniques for improving
energy efficiency in embedded computing systems,"
International Journal of Computer Aided
Engineering and Technology, vol. 6, pp. 440-459,
2014.

[8] C. S. Pabla, "Completely fair scheduler," Linux
Journal, vol. 2009, p. 4, 2009.

Table 1. CPU utilization and job completion time of each soft
real-time groups

62 Int'l Conf. Foundations of Computer Science | FCS'15 |

