
Multiprocessor MMIO Tracing via Memory Protection
and a Shadow Page Table

Myoungjae Kim1, Hyunmin Yoon2, Minkwan Choi1, Shakaiba Majeed1, and Minsoo Ryu1*
1Department of Computer Science and Engineering, Hanyang University, Seoul, Korea
2Department of Electronics Computer Engineering, Hanyang University, Seoul, Korea

{mjkim, hmyoon, mkchoi, shakaiba}@rtcc.hanyang.ac.kr, msryu@hanyang.ac.kr

Abstract – Memory-mapped I/O (MMIO) tracing provides an
effective means for analyzing and debugging I/O related
functions since it allows us to observe and track the interplay
between processors and I/O devices [1]. However, existing
MMIO tracing techniques have a serious drawback in
multicore systems. Current MMIO techniques commonly use a
memory protection mechanism to detect access to an MMIO
address area under consideration. Unfortunately, this
approach may miss some I/O events and even lead to a data
race condition due to inappropriate management of
concurrent accesses to the MMIO address area. In this paper,
we describe a novel MMIO tracing approach introducing the
notion of shadow page table. We use a shadow page table to
allow only one processor to have access to a MMIO address
area while forbidding other processors’ access to the same
MMIO address area. We show how the shadow page table
approach can be efficiently implemented on a multiprocessor
platform with dual core ARM Cortex A15 CPU.

Keywords: Memory Mapped I/O (MMIO) Trace, Memory
Protection, Page Fault, Shadow Page Table.

1 Introduction
Memory-mapped I/O (MMIO) tracing provides an effective
means for analyzing and debugging I/O related functions
since it allows us to observe and track the interplay between
processors and I/O devices. For example, to analyze and
debug failures in device drivers, developers must be able to
find out what data is sent to or received from the device.
MMIO tracing can collect detailed information about I/O
operations conducted between a processor and I/O devices,
thus enabling us to track down the source of failures.

However, existing MMIO tracing techniques have a
serious drawback in multicore systems. Current MMIO
tracing techniques commonly use a system-wide address
translation table, i.e. page table in processors with paging
support, to set the MMIO address area under consideration as
invalid and rely on memory access exceptions to detect any
processor’s access to the protected MMIO address area. When
an exception is generated by a read/write instruction, a
specially designed exception handler collects information

about the I/O access, enables access permission for the MMIO
address area, re-executes the faulting memory access
instruction, and sets the access permission back to invalid.
Unfortunately, in multicore hardware, this may lead to
missing some I/O events and even a data race condition since
other processors can make writes simultaneously to the same
address area during the time interval where the access to
MMIO address area is enabled.

In this paper, we present a novel MMIO tracing method
introducing the notion of shadow page table. When a page
fault occurs on a certain processor, we replace the page table
seen by the exception handling processor with a shadow page
table, while leaving other processors referencing the original
page table. The shadow page allows only the exception
handling processor to access the MMIO address area, but
other processors’ access to the MMIO area is prohibited
through the original page table. Therefore, this approach
allows us to avoid the problem of missing I/O events and race
conditions. We describe how the shadow page table approach
can be efficiently implemented on a multiprocessor platform
with dual core ARM Cortex A15 CPU.

This paper is organized as follows. Section 2 describes
existing MMIO tracing techniques. Section 3 presents our
shadow page table approach and Section 4 concludes this
paper.

2 Background of MMIO Tracing
2.1 Memory-mapped I/O (MMIO)
MMIO requires a section of memory to allow a processor to
communicate with I/O controllers. A processor with MMIO
support reserves some part of its address space for a special
I/O address range where I/O controllers’ registers are mapped
to specific addresses in the designated I/O address range.
Programs can access I/O registers through memory access
instructions such as load and store, which is no different from
read/write access to normal memory addresses [3].

MMIO tracing can be efficiently implemented using a
page table. A page table contains the mapping between virtual
addresses and physical addresses and some additional
information associated with each page table entry. One
important piece of information is the access permission for

16 Int'l Conf. Foundations of Computer Science | FCS'15 |

each page. By manipulating the access permission for each
MMIO page, we can allow or prohibit the processor’s access
to specific MMIO pages. MMIO tracing initially disables
access permission for MMIO pages using the page table.
Whenever a processor attempts to access a protected MMIO
page, a page fault exception occurs. A special page fault
handler then collects information about the I/O access, enables
the access permission for the MMIO page, re-executes the
faulting memory access instruction, and re-disables the access
permission.

Figure 1. Address space of a Processor using MMIO.

Figure 2. Paging and translation scheme.

2.2 MMIO Tracing in Linux
The Linux MMIO tracing tool uses a validity attribute
associated with each page table entry to force page fault to
occur when a processor accesses a memory mapped I/O
region even if the region exists in a valid page [5]. The tool

records the MMIO accesses in the following way: First, the
MMIO pages are marked as invalid. When a fault occurs due
to an access to these pages, the page fault handler emulates
the faulting instruction by changing the attribute of the page
as valid and starts logging the events. After the emulation
and logging the page fault handler again marks the page as
invalid. Finally, the interrupted kernel code takes control
again and executes the next instruction to the faulting
instruction.

While the page fault handler is emulating the faulting
instruction, the other processors can freely access the page
containing the data which the faulting instruction wanted to
access because that page is marked valid during this interval.
In such situation, other processor’s access does not create a
page fault which leads to event missing without notice.

Figure 3. Tracing control flow.

3 MMIO Tracing with a Shadow Page
Table

As mentioned earlier, existing MMIO tracing techniques
based on a memory protection mechanism may fail to capture
some concurrent I/O events on multiprocessors. The problem
is that other processors can make references to the same
MMIO address area during the interval the memory access is
allowed. Those accesses cannot be detected as they do not
trigger page fault exceptions and may even lead to data race
conditions.

A plausible solution is freezing other processors during the
page fault handling. When a page fault happens, we may stop
other processors’ execution by sending a special inter-
processor interrupt (IPI) to other processors. This would
prevent other processors from accessing the MMIO address
area. However, sending and receiving IPIs also requires
access to the interrupt controller’s MMIO addresses, which
would entail the same problem.

Int'l Conf. Foundations of Computer Science | FCS'15 | 17

Figure 4. Shadow Page Table.

In order to address the above problem, we propose the use
of a shadow page table (SPT). When a page fault occurs, a
shadow page table replaces the kernel’s original page table
used by the fault handling processor. The use of shadow page
table allows us to enable the access permission of the fault
handling processor while other processors’ memory access is
prohibited by the original kernel’s page table. Therefore, this
approach can overcome the problem of missing I/O events and
race conditions.

The shadow page table can be efficiently implemented in
many operating systems that support paging-based memory
management. We replicate the original kernel’s page table and
modify the access rights to the MMIO address areas in the
replicated shadow page table to enable access permission.
When a page fault occurs, we change the page table base
register of the processor so that it can refer to the shadow page
table during the page fault handling. Since other processors
still refer to the original page table, they are not allowed to
make access to the MMIO address areas. Once logging
MMIO I/O access information is done, we change the page
table base register to point to the original page table.
Afterwards, all the processors use the original page table.
There is a possibility that two more processors try to write
access on a same MMIO address almost at the same time. It
also leads to data race condition as two processors re-execute
the faulting memory access instructions. To prevent this
problem, we need to protect fault handling as a critical section
with a synchronization method such as spin lock.

Figure 5. Tracing control flow with SPT.

4 Conclusion
In this paper, we have presented a novel MMIO tracing
method introducing the notion of shadow page table. Letting a
processor refer to shadow page table while it conducts MMIO
tracing, we can solve a problem of missing another MMIO
event by other processors as well as data race condition under
multiprocessor platform.

5 Acknowledgment
This work was supported partly by Seoul Creative Human
Development Program (HM120006), and partly by the
National Research Foundation of Korea(NRF) grant funded
by the Korea government(MEST) (NRF-2011-0015997), and
partly the MSIP(Ministry of Science, ICT and Future
Planning), Korea, under the C-ITRC(Convergence
Information Technology Research Center) (IITP-2015-
H8601-15-1005) supervised by the IITP(Institute for
Information & communications Technology Promotion).

6 References
[1] Wikipedia, “Memory-mapped I/O,” [Online]. Available:
http://en.wikipedia.org/wiki/Memory-mapped_I/O

[2] A. Kadav and M. M. Swift, "Understanding modern
device drivers," ACM SIGARCH Computer Architecture
News, vol. 40, pp. 87-98, 2012.

[3] D. P. Bovet and M. Cesati, Understanding the Linux
kernel: " O'Reilly Media, Inc.", 2005

[4] Wikipedia, “Virtual memory,” [Online]. Available:
http://en.wikipedia.org/wiki/Virtual_memory

[5] LWN, “Tracing memory-mapped I/O operations,”
[Online]. Available: https://lwn.net/Articles/270939/

18 Int'l Conf. Foundations of Computer Science | FCS'15 |

