
A Visualization Method of Inter-module Communications for
Profiling Energy Consumption of Android Applications

Hiroki Furusho1, Kenji Hisazumi2, Takeshi Kamiyama3, Hiroshi Inamura3, Shigemi Ishida1
and Akira Fukuda1

1Graduate School/Faculty of Information Science and Electrical Engineering, Kyushu Univ., Fukuoka,

Fukuoka, Japan
2System LSI Research Center, Kyushu Univ., Fukuoka, Fukuoka, Japan

3Research Laboratories, NTT DOCOMO INC., Yokosuka, Kanagawa, Japan

Abstract—We propose a method for visualizing the rela-
tionship between software modules of applications running
on the Android OS. Existing energy estimation methods
can analyze energy consumption for each modules of an
application. However, it is difficult for application developers
to choose a module as tuning target by the above profiling
result.

Our proposed method observes data modules communi-
cating each other, and visualizes the relationship between a
large energy-consuming module and other modules. In this
study, we analyzed a verification application with proposed
method and showed the relationship between these applica-
tion modules.

Keywords: Energy consumption, Profiling method, Mobile appli-
cation, Android

1. Introduction
An important task for Android application developers is

reducing the energy consumed by their Android app in order

to prolong the battery life of the Android smartphones.

Although this problem can be addressed at both hardware

and software levels, it is important to reduce the energy

consumption of individual applications that vary significantly

in behavior. Considering the foregoing, it is not sufficient

to identify modules to be tuned by individually visualizing

energy consumption for each module.

The simplest method for reducing the energy consumption

of smartphone applications is to eliminate problems such as

excessive creation instances, loop statement errors, commu-

nication process errors, and bugs. Energy-profiling methods

can identify the points at which the applications consume

excessive energy and determine methods to reduce their

overall consumption. Existing methods can estimate energy

consumption of the entire smartphone by using data obtained

from the OS (such as CPU time, amount of file system

access, and traffic). The authors have proposed a profiling

method that analyzes energy consumption of modules of an

application running on the Android OS [1].

However, a module that must be tuned might be different

from modules that consume energy excessively. For instance,

when module A consumes a large amount of energy, there

are two possible causes: module A itself consumes the

energy, or other modules use module A excessively. In the

latter case, it is not enough to visualize energy consumption

for each module individually to identify modules to tune.

Hence, we propose a method to visualize relationships be-

tween modules to assist developers in determining modules

that must be tuned. The proposed method is applied to a

simple application for testing.

The remainder of the paper is organized as follows. Sec-

tion 2 describes related work. Section 3 explains about the
type of communication monitored by our proposed method

and specifies the logging process. Experimental results are

reported in Section 4. Section 5 concludes with a summary
and specifies the direction of our future works.

2. Related Work
Most smartphone energy analysis methods employ model-

based estimation. The basic form of the energy-consumption

model can be represented by the following linear equation

Eestimate =
∑
m∈M

Cm · Vm (1)

Eestimate, M , Cm and Vm represent estimated energy, a set

of the factors related to energy consumption (such as CPU

time, data communication, access to storage and display),

usage of a factor m ∈ M , and its coefficient, respectively.

Cm is calculated by regression analysis of resource usage

and measured energy consumption.

Several researchers present methods that use a energy

model to estimate the energy consumption of the entire

device, using operating times of each part of the device

as parameters [2][3]. However, it is difficult to identify

the contribution of an application to the total energy con-

sumption because smartphones can run several processes

simultaneously.

An estimation method using values obtained from a Linux

process file system [4] overcomes the issue [5] because the

process file system records the device usage (hereinafter

referred to as "resource usage") for each process separately.

Mittal et al. proposed an energy consumption profiling

Int'l Conf. Embedded Systems and Applications | ESA'15 | 71

method for the CPU, wireless communication (3G, Wi-Fi)

and display[6]. The display energy is consumed by the

application because the interface of the application itself

usually occupies the smartphone display.

The authors have proposed profiling method that analyzes

energy consumption of modules of an application running

on the Android OS[1]. However, a module that must be

tuned might be different from modules that consume energy

excessively as mentioned above.

3. Profiling of relationships between
modules
3.1 Overview
This section describes the monitoring process of inter-

module communication. Our method provides application

developers with profiling result based on the actual usage

of users. Regardless of a developer’s understanding of an

application, the profiling results are helpful.

Our proposed method monitors behavior of an application

and records the behavior in the log file. To hook various

method in an application, we implemented the logging code

using AspectJ[7]. Fig. 1 depicts code weaving using AspectJ.

AspectJ includes an additional object named Aspect, which

is not a part of Java. The Aspect object contains the condi-

tions of the embedding point (pointcuts) in the source code

and the embedding codes (advice). When an application is

generated, Java bytecode, which generated from the advice,is

embedded into the application.

Fig. 1: Code embedding using AspectJ.

3.2 Inter-module communication of an An-
droid application
We classify communication type of Android application

modules. Table 1 shows monitoring target modules and call-

ing patterns of modules. The target modules are Activity
class, Service class, BroadcastReceiver class and

AlarmManager classes. Activity provides the GUI for the
functions of an application. Service runs longer than the

Activity class and performs background processing. These

application components call each other’s method with data

called Intent. Broadcast Intent is a kind of Intent.
Broadcast Intent is sent to all of modules that have a

particular attribute value. A BroadcastReceiver can receives

a Broadcast intent. AlarmManager sends an Intent in a

constant cycle.

Table 1: Calling pattern of Android module.
Activity class and Service class

• Normal calling
• Calling via AlarmManager

BroadcastReceiver class
• Calling from Android application
• Calling from Android system

3.2.1 Normal invocation

Fig. 2 shows the logging process of normal invocation

of an Activity. This case occurs when switching screen of

an application or using a function of Service. In Android

system, we send an Intent to invoke the Activity from other

Service or Activity. Our proposed method records commu-

nication log between sender module(Activity1) and receiver

module(Activity2). When an Intent instance is created, our

proposed method gives a hash value to the Intent, which

enables us to trace a sender from a receiver. After that, when

Intent is sent by startActivity() ,startService()
and bindService(), the sender module’s name and hash
value are recorded in the log file. The receiver module

receives the Intent and starts processing. Our proposed

method obtains the receiver module’s name and the hash

value given by sender and records them.

Fig. 2: Log collection of a normal invocation.

72 Int'l Conf. Embedded Systems and Applications | ESA'15 |

3.2.2 Periodic invocation
This section describes how to determine the periodic invo-

cation of services. AlarmManager sends Intents to Services

according to settings in advance. For energy saving, it is

important to identify which service received the intents from

AlarmManager and the number of times they were received.

Fig. 3 depicts a method to log such Intents from the Alarm-

Manager to Services. Our proposed method also gives a hash

value to the Intent as in the previous section. Our method

also gives a hash value to the Intent to trace the sender

and receiver in the same way as described in the previous

section. The Intent is used to create an instance of a Pending

Intent. Unlike in the Activity invocation case, we cannot

see the hash value of the sent Intent because we cannot

obtain the Intent instance from the Pending Intent. To
check the hash value of the sent Intent, our proposed method

collects the ID numbers of the Pending Intents when creating

and sending a Pending Intent. The ID number of Pending

Intent is a return value of java.lang.Object.hashCode()[8].

The receiver can log the same way that we mentioned in

Section 3.2.1.

Fig. 3: Log collection of a periodic invocation.

3.2.3 Invocation by Broadcast Intents
The Android system or applications send Broadcast In-

tents to applications to notify certain events. The application

can receive Broadcast Intent to implement BroadcastRe-

ceiver and specify a type of Intent that the application

wants to receive. The analysis method of this type of

communications determines whether frequency and type of

Broadcast Intent are appropriate.

Fig. 4 shows how to log for inter-application commu-

nication. The logger gives a hash value to an Intent and

logs it as a sender, as mentioned in Section 3.2.1. The

Android system calls the onReceive() method implemented

in BroadcastReceiver whenever the Broadcast Intent is sent.

We can hook the onReceive() method to identify the Intent.

Fig. 5 shows how to log for receiving a Broadcast Intent

from the Android system. We can annotate an attribute

called "action" to an Intent. We can distinguish whether the

Broadcast Intent is sent from the Android system because

a Broadcast Intent sent by the Android system has a value

that begins with a particular string, such as "android.action".

Fig. 4: Log collection of inter-application Broadcast Intent.

Fig. 5: Log collection of Broadcast Intent from the Android

system.

3.3 Log analysis for visualization
This section shows a method, which analyzes and visual-

izes the collected logs, as mentioned previously. Our method

generates a directed graph to visualize communication using

Intent between Activities, Services, and the Android system,

and annotates information such as energy consumption for

each module and frequency of communication for each edge.

The analyzer collects all necessary data from an Android

terminal. It classifies these logs according to type of module

and communication and totals them as shown as in Fig. 6.

The type of communication is mentioned in Table 1.

Int'l Conf. Embedded Systems and Applications | ESA'15 | 73

Fig. 6: Counting log files.

4. Evaluation
4.1 Environment
This section demonstrates the proposed method prelimi-

narily to apply to a simple application for evaluation. The

authors implemented a log collection function of our method

and analyzed applications that are running on a smartphone

with our method. Fig. 8 shows a screenshot of the application

for verification. The application has three Activity classes,

three Service classes, and one BroadcastReceiver class. Each

Activity class can transition to another Activity except

itself. There are three Service classes, and these classes

are: MyService, MyService2, and MyService3, invoked from

the Activity classes using startService(), setRepeating(), and

bindService(), respectively. The BroadcastReceiver imple-

mented in the application receives Intents from Service

classes and the Android system. We implemented the log

collection function of our method and analyzed applications

that are running on a smartphone with our method.

Fig. 7: Generating the DOT file.

4.2 Result
Fig. 9 shows relationships of the testing application mod-

ules. We generated this directed graph using the devel-

oped logging software and dot, which is a program in

Graphviz[9]. We collected a log, as mentioned in Section
3, and converted the log to the DOT language that dot

interprets. Black edges indicate normal invocation. Yellow

edges show periodic invocation and Broadcast Intents. The

numbers in the edge labels indicate the communication count

between pairs of modules. And line thickness of these edges

shows the percentage of communication count.

Fig. 8: Screenshot of the application for verification.

Android

SCREEN_OFF

MyReceiver

21

MainActivity

MainActivity3

1

MainActivity2

3

MyService2
6

MyService2

MyService35

1
2

6

3

3

1

2

1

4

138

22

Fig. 9: Relationship graph of the testing application modules.

4.3 Discussion

Eprocessing , energy consumption of processing, can be

estimated from information that integrates the call graph

and module’s energy consumption. A subgraph of call

graph indicates a processing of an application. Our proposed

method[1] can estimate energy consumptions of modules

themselves.

Eprocessing is represented by the summation of module’s

energy of a processing.

Eprocessing =
∑

m∈Ms

em (2)

Ms and em represent a set of module elements of a

processing and energy of m ∈ Ms, respectively.

74 Int'l Conf. Embedded Systems and Applications | ESA'15 |

5. Conclusion
In this paper, we presented a profiling method identi-

fying relationships between Android application modules.

Our method monitors and records communication between

modules in an Android application, and visualizes them. Our

proposed method helps application developers in identifying

hidden energy consumption problems that are caused by

communication in the application. We identified types of

communication that should be visualized in an Android

application. We also preliminarily demonstrated the method

using a simple application for verification and showed that

it can depict communications in the application in the form

of a directed graph.

Our future work will include planning to identify commu-

nication patterns in a more complicated module structure.

At present, we can identify relatively simple communica-

tion patterns. We will also demonstrate our method to be

applicable in real applications.

References
[1] H. Furusho, K. Hisazumi, T. Kamiyama, H. Inamura, T. Nakanishi and

A. Fukuda: Power Consumption Profiling Method based on Android
Application Usage,Lecture Notes in Electrical Engineering, Vol. 339,
pp.891–898, Springer Berlin Heidelberg(2015)

[2] L.T. Cignetti, K. Komarov and C.S. Ellis: Energy estimation tools for
the Palm, Proc. the 3rd ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems (MSWIM
’00), pp.96–103, ACM, New York, NY, USA(2000)

[3] L. Zhang, B. Tiwana, Z. Qian, et al: Accurate Online Power Esti-
mation and Automatic Battery Behavior Based Power Model Genera-
tion for Smartphones, Proc. the eighth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis
(CODES/ISSS ’10), pp.105–114, ACM, New York, NY, USA(2010)

[4] T. J. Killian: Processes as Files, USENIX Summer Conf. Salt Lake
City(1984)

[5] Y. Kaneda, T. Okuhira, T. Ishihara, K. Hisazumi, T. Kamiyama and M.
Katagiri: A Run-Time Power Analysis Method using OS-Observable
Parameters for Mobile Terminals, 2010 International Conference on
Embedded Systems and Intelligent Technology (ICESIT 2010), Vol.1,
pp.39–44(2010)

[6] R. Mittal, A. Kansal and R. Chandra: Empowering Developers to
Estimate App Energy Consumption, Proc. the 18th Annual International
Conference on Mobile Computing and Networking (Mobicom ’12),
pp.317–328, ACM, New York, NY, USA(2012)

[7] The Eclipse Foundation, The AspectJ Project, available
from(http://www.eclipse.org/aspectj/) (accessed 2015-05-04)

[8] PendingIntent | Android Developers, http://
developer.android.com/reference/android/app/
PendingIntent.html#hashCode()(accessed 2015-05-10)

[9] Graphviz | Graphviz - Graph Visualization Software, http://www.
graphviz.org/(accessed 2015-05-10)

Int'l Conf. Embedded Systems and Applications | ESA'15 | 75

