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Abstract—Underground power cables are one of the fun-
damental elements in power grids, but also one of the more
difficult ones to monitor. Those cables are heavily affected by
ionization, as well as thermal and mechanical stresses. At the
same time, both pinpointing and repairing faults is very costly
and time consuming. This has caused many power distribution
companies to search for ways of predicting cable failures based
on available historical data.

In this paper, we investigate five different models estimating
the probability of failures for in-service underground cables.
In particular, we focus on a methodology for evaluating how
well different models fit the historical data. In many practical
cases, the amount of data available is very limited, and it is
difficult to know how much confidence should one have in the
goodness-of-fit results.

We use two goodness-of-fit measures, a commonly used one
based on mean square error and a new one based on calculating
the probability of generating the data from a given model.
The corresponding results for a real data set can then be
interpreted by comparing against confidence intervals obtained
from synthetic data generated according to different models.

Our results show that the goodness-of-fit of several com-
monly used failure rate models, such as linear, piecewise linear
and exponential, are virtually identical. In addition, they do
not explain the data as well as a new model we introduce:
piecewise constant.

I. INTRODUCTION

Electric power transmission and distribution networks

consist of different types of cables, some of which have been

installed more than 50 years ago, and some are newly added

to the network. The major problem with these power cables

is the lack of efficient condition monitoring methods [14].

Power outages, i.e. the unavailability of electricity supply

due to faults, have many undesirable effects and are a

high cost to the society as a whole. Loss of production,

cost of repair, and customers’ dissatisfaction are some of

the important factors to be considered when analyzing the

impact of outages. For institutions like hospitals, airports,

and train stations, power outages can be disastrous.

There are many different reasons for power outages.

According to a study by the Edison Electric Institute [10],

70 percent of power outages in the USA are weather related

phenomena such as lightning, rain, snow, ice, etc. Another

11 percent of outages are caused by animals, such as

birds, coming into contact with power lines. To reduce the

impact of such incidents, many power electric companies are

moving towards underground transmission and distribution

lines. However, underground cables may also cause outages,
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most commonly due to insulation degradation and ruptures

in conductors.

One drawback of underground cables is that the procedure

for finding the exact place of failure is harder, since no visual

inspection can be performed. In addition, even when a fault

is localized, the process of digging the ground to reach the

cable, and also repairing the cable, is more difficult and

requires more skill than for aerial cables.

Many governing bodies are continuously increasing re-

quirements put on distribution companies concerning the

acceptable number and duration of power outages. In ad-

dition, in many areas of life, society is more and more

relying on electrical power. Consequently, there is a great

need for better methods to determine the condition of the

in-service underground cables and their remaining useful

life. In particular, it is important that those methods are cost

effective.

In this paper, we analyze five different models to esti-

mate the relationship between the age and failure rate in

underground high voltage cables. In addition to commonly

used models (linear, piecewise linear, and exponential), we

also consider constant and piecewise constant models. In

particular, we focus on the methodology for evaluating how

well different models fit the data. As is common in this

domain, the amount of data we have available is very limited,

and it is difficult to know how much confidence should one

have in the goodness-of-fit results.

We calculate the empirical failure rates based on real data

of over fifty years of historical faults from a small European

city. The data comes from historical databases at Halmstad

Energi och Miljö (HEM Nät), one of the Swedish electricity

distribution companies.

The remaining of this paper is structured as follows.

Background and related work is presented in section 2.

In section 3 we explain the proposed model evaluation

methodology, and we describe our experiments and results in

section 4. We summarize our contribution and discuss future

work in section 5.

II. BACKGROUND AND RELATED WORKS

A mathematical model that represents the current condi-

tion of a cable is known as the state of the cable [13]. The

state represents the condition of the cable at a given point

in time. Owing to the fact that the cables are laid under

the ground, their current state is not directly observable.

Depending on the amount of available information, one can

estimate the state in different ways, using different models.

Clearly, if the information about the cables increases, the
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representing model becomes more precise. However, there

is a tradeoff between the cost of collecting additional data

and the benefits such data would provide.

There are mainly two methods for condition assessment

of underground cables. The first is measuring the cables’

condition by using different types of diagnostic and stress

test analysis such as partial discharge (PD) and dielectric

losses. The second is mining historical information such as

age of the cables, and previous failures.

The condition of power cables can be measured in two

ways: using on-site testing [6], [7], [9] or laboratory testing

[16]. On-site testing is performed directly on the in-service

cables. In the laboratory testing, first, a new cable undergoes

accelerated aging processes to simulate the condition of aged

cables, which are then analyzed. In both of these methods

the amount of PD, oil analysis, and bulk properties of

insulation, e.g. tang δ measurement, are used to determine

the cables condition. The tang δ measurement is a diagnostic

test conducted on cables’ insulation to measure their deteri-

oration. In fact, the tang δ measurement is used as the loss

factor of the insulation material which will increase during

the aging process. The assessment of the in-service cables

should be performed every 3-5 years and the results classify

the investigated cables into different categories based on

which future maintenance can be performed. Both of these

measurements are very costly and complex processes.

The historical data analysis is usually performed in one

of the two ways. The first is based on Crow-AMSAA and

reliability growth model [1], [2], [8], [14]. Based on the

time duration between each recorded failure in the system,

historical failures are modeled using a Weibull distribution.

This Weibull model is then used to estimate the time to

the next failure, usually in the whole system, i.e., for all

underground cables, without any distinction between aged

and new cables. In other words, all the cables are considered

to be in the same condition, regardless of their age, type, and

other factors.

In the second historical data analysis method, in addition

to the previous failures, other information such as age, and

insulation condition are used to model failure rate [11],

[12], [18]. Bloom et al. [3], [4] used historical data for age

and number of previous failures as “observable condition”;

and experts’ judgment for insulation degradation condition,

environmental stressor, and effect of the previous failures as

“unobservable conditions”. By using the historical data and

the experts’ knowledge they modeled the changes in cables’

condition probabilistically, i.e., given the current state of a

cable, what is the probability of different cable states in the

future. Of all the factors used in their work, only age and

historical failure rate are extracted from actual data, and all

the rest of the information is based on the experts’ judgment.

The failure rate model is usually used for estimating the

expected number of future failures. One important aspect

is that future failures are influenced by the replacement

strategy employed, which is one of the possible solutions for

electric power companies to reduce the number of outages.

Replacement actions, also known as rejuvenation, is the

procedure of replacing the old and faulty parts with new

cables. There has been some research analyzing how the

replacement of old cables reduces the number of expected

failures and improves reliability, for example [11] and [12],

however, the majority of work in the field does not take

rejuvenation into account.
In general, there are three types of underground cables

widely used in distribution power grids [5]:

• Oil-Filled cable

• Paper Insulated Lead Cover cable (PILC)

• Cross-linked Polyethylene cable (XLPE)

Before development of XLPE cables in 1993, PILC cables

were the most common installed underground power cables

[15]. Their estimated expected lifetime is declared to be

around 40 years [17], but they have been used for more than

that in many transmission and distribution grids. In these

grids, the problem of degradation of underground cables due

to aging is becoming more and more severe.
The old Paper Insulated Lead Cover (PILC) cables, which

are of main concern in this study, are heavily affected by a

number of factors such as ionization, thermal breakdown as

well as electrical and mechanical stresses [5]. Since the paper

insulation is made of cellulose, the quality of the insulation

degrades over time and causes more frequent breakdowns.

One way to decrease the corrosion speed and cable fragility

is to fill the paper insulation with oil.
There are several important factors that accelerate the

aging process in PILC cables. The ones most commonly

mentioned in the literature are cyclic overloading, thermal

breakdown, PD, irregular load pattern, direct or indirect

spiking, inadequate depth in the ground, and very low

temperature.
Cable joints, which are part of the underground cables, can

also cause outages in the network. The jointing is the act of

reconstructing two cables to become one. It is used when

a longer cable is needed or when a part of an old cable is

replaced with a new cable. A joint is usually the weakest

part of an underground cable and it is affected by three

types of stressors: thermal, electrical, and mechanical stress.

Mechanical stress and water ingress are the main causes of

failures in cable joints [5]. The fault in the joints might affect

the conductor, insulation, or sheath. The sheath of the joints

get corroded due to overloading and the chemicals present in

the soil over a period of time. This increases the chance of

moisture seepage into the joint, which subsequently causes

failure.
In this work, we only use available historical data to

compute failure rate. This approach is not as accurate as

performing direct measurements on individual cables, but is

often preferred in practice since mining the available data

to find a model is significantly cheaper than performing

laboratory or field tests.

III. METHODOLOGY

It is well known that by analyzing historical information of

cables inventory, it is possible to predict the future failures in
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cables with some degree of accuracy. One common example

is modeling the failure rate for a particular type of cables.

We use historical data from a small European city to estimate

the parameters of the model. This model can then be used

to predict future faults for different cables.

In particular, in this paper we focus on the failure rate for

PILC underground cables at a certain age. Note that there

are several other factors affecting failure rate variation in

cables, such as number of joints, history of previous failures,

environmental stressors, usage patterns, manufacturer and

cable type, etc. Here, however, we only consider the age

and the number of historical faults to estimate failure rate.

To estimate failure rate we need to have access to his-

torical databases containing information such as installation

year, date of previous failures, and the age of the cable at

the time of failure. Furthermore, to calculate the proportion

of faulty cables over total cables, we need to know the total

length of all the in-service cables during each year.

The process of calculating the failure rate, estimating

model parameters, and finally, evaluation of the results is

described below, as shown in Figure 1.

A. Pre-processing

Due to the requirements explained above and the available

databases, we have selected cable inventory data set. This

data set contains historical information about both the in-

service and destroyed cables that have been installed since

1908 in Halmstad power distribution grid. Each cable is

described with a unique ID and the transmission line to

which it belongs, as well as additional information such as

insulation type, conductor size, installation year, length, etc.

In this work, we only analyze in-service high-voltage PILC

cables.

A transmission line between two cable boxes consists of a

number of cables. According to the data set, the total number

of high-voltage transmission lines containing PILC cable is

about 500.

The cables in a line may have different installation years.

We assume that the initial installation year of the line is the

earliest installation year among all cables in the group.

In addition to length of in-service cables, we require

information about past failures. In our case the historical

failure database could not be directly linked to the cable

information, since the two use different asset identifiers.

Therefore, to identify past failures, we use the assumption

that short cables in any given line are artifacts of previous

repairs. Therefore, we consider each cable of length smaller

than 20 meters to correspond to a failure in the line. The

failure is assumed to have taken place in the year of the

installation of the short cable, and to take place in the

oldest cable within this line. Those assumptions are not fully

accurate, but we have confirmed, through discussions with

domain experts, that they are realistic.

B. Failure rate estimation

Failure rate is the frequency with which a system or

component fails within a given unit of time. This definition

Fig. 1. Overview of the model creation and evaluation process.

can be naturally extended to a population of systems, for

example a network of cables. In this work we consider

the number of failures per year per kilometer. The general

equation for the empirical failure rate is:

FR =
N

L
,

where N is the number of failures in a year and L is the

total length of in-service cables.

There are many factors that influence the failure rate, how-

ever, in this work we only focus on cable age (understood

as the number of years between installation of the cable

and the time of the failure). It is a well-known fact that the

likelihood of failure changes with age. Therefore, we express

the empirical failure rate for underground cables at age α as

the total number of failure that happened to cables at age

α, denoted N(α), divided by the total length of cables that

were in-service at age α, denoted L(α):

FR(α) =
N(α)

L(α)
.

Among several factors affecting failure rate, we only

consider the factors that can be estimated from the historical

databases we have access to: installation year of each cable

(age), length, voltage class (high voltage or low voltage),

and failure history: number of failures, and age at time of

failure.

C. Modeling and parameter estimation

A failure function, λ(α), is a function that describes

changes in failure rate depending on age. Figure 2 shows

a commonly used model that represents the failure function

known as the bathtub curve [11]. The model begins with

a high failure rate (infant mortality), followed by fairly

constant failure rate (useful life). Finally, the failure rate

increases again as the component reaches the end of its life

(wear-out).
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Fig. 2. Bathtub curve of typical failure rate for components.

When discussing power cables, we are particularly inter-

ested in modeling the “wear-out” time and the effects of

aging process on failure rate. It is commonly believed that

the failure rate increases as cables get older.

Our goal is to find an appropriate failure function λ(α).
To this end, we investigate five different models and evaluate

how well, the empirical failure rates fit each model. Observe

that we do not specifically consider the “infant mortality”

period in this analysis.

We have decided to perform experiments using five dif-

ferent failure functions. The three commonly used models in

statistical analysis are linear, piecewise linear, and exponen-

tial. In addition to these, we have also investigated constant

and piecewise constant models.

Constant: This model is described by a constant line with

the failure rate equal to λ(α) = μ , where μ is the mean

failure rate value of all the empirical data points FR(α).

Piecewise constant: This model is constructed by two

constant lines at different values, μ1 and μ2, where μ1 is

the mean failure rate before Tpwc and μ2 is the mean failure

rate after Tpwc.

λ(α) =

{
μ1 if Tpwc ≤ α
μ2 if Tpwc > α

Linear: The linear model is specified by a linear function

with two parameters: slope ml and intercept bl. In this

model, the increment of failure rate between two consecutive

time points is constant.

λ(α) = ml(α) + bl

Piecewise linear: This model represent the failure rate to

be constant at the beginning up to age Tpwl, and then failure

rate grows linearly with slop mpwl. Therefore, the function is

specified by three parameters, the constant failure rate bpwl,

the time which failure rate starts to increase linearly Tpwl,

and the slop mpwl of the line.

λ(α) =

{
bpwl if Tpwl ≤ α
mpwl · (α− Tpwl) + bpwl if Tpwl > α

Exponential: this distribution is described by the function:

λ(α) = β · eβ·α

For each model, the corresponding parameters are calcu-

lated by Levenberg-Marquardt optimization algorithm im-

plemented in Python scipy library, minimizing the mean

square error.

After parameter estimation, we need to evaluate how well

do the empirical data points fit each model. This can be done

by using different goodness-of-fit measures.

D. GOF evaluation

In this study we employ two goodness-of-fit measures;

the first is based on calculating the probability of generating
the data from a given model (PGD); the second is based on

mean square error between the data and the model (MSE).

In the PGD measure, for each age, the value of the

failure function λ(α) at that age is considered to be the

mean value of a normal distribution. The variance of this

normal distribution is computed from the empirical data

points. At each age, the cumulative probability function is

used to calculate the probability that a given data point

belongs to the normal distribution centered around the failure

function. Finally, the calculated probabilities for each age are

multiplied together to give the value of GOF for that model.

The higher this probability is, the better the data points fit

the model.

However, the resulting numbers are very small and dif-

ficult to analyze, and thus we use the negative logarithm

(base 10) of those values to make them easier to interpret.

Therefore, the lower the value of the GOF, the better the

empirical failure rates fit the model under consideration.

GOFPGD =

− log10
∏
α

P (x ≤ FRα|FRα ∈ Xi ∼ (μ = λ(α), σ2))

The MSE GOF measure is the sum of squared differences

between each data point and the value of the failure function

at corresponding age. Also in this case, the lower the

GOF value the better the data points fit the model under

consideration.

GOFMSE =
1

n

∑
α

(FR(α)− λ(α))2

where n is the number of data points.

Finally, it is important to note that, while GOF results

can be compared directly, it is often difficult to properly

interpret the results, especially when the data is of limited

quantity (and also quality) and it does not fit any of the

models perfectly. Therefore, we propose a way to interpret

the results by comparing the obtained GOF measures with

expected GOF and confidence intervals, estimated using

synthetic data.
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Fig. 3. Empirical failure rate per kilometer as function of age, for high
voltage PILC cables.

For each model, a number of synthetic data sets are

generated by drawing random points from a normal dis-

tributions with mean equal to the failure function at each

age and variance computed from the empirical data points.

The synthetic data sets should have the same number of

points as the empirical data points. The PGD and MSE

GOF are computed between each synthetic data set and

the corresponding model, confidence intervals are derived

based on the variance of the GOF values. The GOF of

the synthetic data sets generated by one model are also

compared to all other models in order to determine how

well a data set generated from model A fits model B.

These comparisons will help us draw conclusions about the

how well the empirical data points fit each of the proposed

models.

IV. RESULTS AND DISCUSSION

The result of calculating empirical failure rates at each

age, for high voltage PILC cables, is shown in Figure 3. The

horizontal axis represents the cable age at time of failure and

the vertical axis represents the failure rate λ (per kilometer).

By comparing this result with Figure 2 it is possible to

extract three lifetime phases. The empirical data starts with

higher failure rates at ages 1-6, the “infant mortality” period.

It then continues with a period of low and fairly constant

rates during ages 7-19, the “useful life”. And finally, the

higher failure rates start again from age 20, the “wear-out”

phase. However, there are also some differences from the

bathtub curve, the most clear ones being the peak at ages

around 30 years, and the shape of the wear-out phase.

The parameters for constant, piecewise constant, linear,

piecewise linear, and exponential models were estimated

from the empirical data. Each resulting model is shown in

Figure 4. The resulting parameter for the constant model

is μ = 0.052, and for the piecewise constant model are

μ1 = 0.023, μ2 = 0.082, and Tpwc = 30. The parameters

for the linear model are ml = 0.0013, and bl = 0.0128. For

the piecewise linear bpwl = 0.0231, mpwl = 0.00147, and

Tpwl = 0.00695. For the exponential model, the parameter

β is equal to 0.0254.

To compare the results of GOF between different models,

first we generated 100 synthetic data sets based on each

model, and then measured the PGD and MSE between each

randomly generated data set and all the models. In Figure 5,

one randomly generated data set is shown for each model.

Then, for each group of 100 generated data sets, we found

the mean value of all calculated GOF to all models and the

corresponding 95 percent confidence interval.

We performed the PGD and MSE tests for all combination

of synthetic data sets and models. In this case, data sets A,

B, C, D, and E are the 100 randomly generated data sets

from constant, piecewise constant, linear, piecewise linear,

and exponential models respectively. The results of GOF

tests based on PGD and MSE are presented in Table I and

Table II. For example, the result of PGD GOF test of the

data generated from constant model (A) with respect to the

linear model (C) is 43.8960± 0.6276.

From the GOF results presented in Table I and Table II,

several observations can be made, as follows.

As expected, the best GOF results are obtained when the

data set is compared to the model which generated it. For

example, Data A fits model A better than any other model.

These correspond to the diagonal entries in Table I and

Table II.

The results of GOF measurements from fitting each gen-

erated synthetic data with the same model (diagonal of the

tables) does not show any statistically significant differences.

This verifies that performing this type of comparison be-

tween synthetic data and models is systematically correct,

i.e., the result of comparing model A with synthetic data A

is as good as comparing model B with synthetic data B.

Except the constant model (model A) which is statistically

very different from the rest of the models, the result of

pairwise comparison between a GOF test in synthetic data

generated by a model but fitting with another model, and

a result of GOF test in the other combination of this two

models, is not significantly different. For example, GOF

between data B and model D, is not significantly different

than the GOF between data D and model B.

There is no statistically significant difference between

GOF of the data points, neither the empirical nor synthetic,

between linear, piecewise linear, and exponential models.

That is, the GOF results are within the respective confidence

interval obtained from the synthetic data. This indicates that

those three models are virtually identical.

Nonetheless, the real data seems to fit the piecewise

constant model better than the other models. This suggests

that the failure rate could be modeled by two constant lines;

low failure rate up to age 30 and higher failure rate after

that. This does not confirm the assumption that the failure

rate increases monotonically as a function of age. This

observation is quite surprising, and we believe it deserves
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Fig. 4. Five different failure rate models, fitted to the empirical data.

further analysis in the future.

This result might be caused by several factors. First, the

very high values of failure rate at ages between 32 and 35

years affect other models more than the piecewise constant

model. Second, the input data set and the in-use information

is not enough to uniquely and with confidence identify

the best model. Therefore, other information should also

be taken into the account. Third, we did not considered

the affect of repair and replacement of cables on failure

rate estimation. In fact, the process of rejuvenation of the

underground cables prevents the failure rates from becoming

too high, especially after experiencing number of failures (in

our case after age of 40 years or so).

V. CONCLUSION AND FUTURE WORK

In this paper we have presented some of the characteristics

of power grid cables, especially PILC underground cables,

which are used in many power transmission and distribu-

tion networks. We have also discussed the main challenges

regarding fault prediction for these cables.

TABLE I
GOODNESS-OF-FIT MEASUREMENT BY USING PGD TEST

We have introduced five different probabilistic models

for predicting failure rate depending on cable age, and

evaluated how well does each of these models fit the real-

world, historical fault data. We have employed two different

goodness-of-fit measurements, one based on mean square

error and one based on probability of generating the data.

In order to compare the GOF measures between various

models, a new methodology is presented. The GOF test

results are interpreted by generating 100 synthetic data sets

for each model, and estimating the corresponding confi-

dence intervals. Then, pairwise comparisons are performed

between each model and synthetic data sets.

According to the result of GOF from PGD and MSE tests,

the linear, piecewise linear, and exponential models do not

show significant difference. On the other hand, the piecewise

constant model fits the failure rates better, in a statistically

significant way, than other models.

This result was quite surprising, since we expected that the

failure rate to be an increasing function of age. This could

be explained by the fact that the faulty cable sections are

TABLE II
GOODNESS-OF-FIT MEASUREMENT BY USING MSE TEST
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Fig. 5. Synthetic data generated based on different models

continuously replaced by new cables. In fact, the replacement

strategy in the underground cables is something we plan to

look into in the future in more detail.
In this work we have only considered the failure rate

based on the age and the total number of previous failures.

However, from the available data set, we can obtain the

effects of failure rate based on other factors such as the

number of joints, history of previous failures, geographical

location, etc. For example, we can cluster cables based on

the number of joints per kilometer, and then calculate the

failure rate for cables at each cluster. Therefore, by adding

more information to the failure rate estimation we can have

a better interpretation of the cables failure rate variation over

age.
The probabilistic model can also be updated by consider-

ing additional information such as load patterns, temperature,

and effects of replacement. By exploiting useful information

one can determine the condition of in-service equipment,

and better plan the scheduling maintenance. Consequently,

instead of unplanned outages, power distribution companies

can have planned outages, which are shorter and less dis-

ruptive.
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