
Abstract— Environmental risks caused by exposure to 
ground level ozone have significantly increased during 
recent years. One main producer of ozone is the 
photochemical reaction between volatile organic 
components and the anthropogenic nitrogen oxides created 
by vehicular traffic. Therefore the measurement and 
monitoring of atmospheric ozone concentration levels is 
important. In this paper we propose a study of the use of 
state-of-the-art machine learning approaches in modelling 
the concentration of ground level ozone. The prediction is 
based on concentrations of seven gases (NO2, SO2, and 
BTX (Benzene, Toluene, o-,m-,p-Xylene) and six 
meteorological parameters (ambient temperature, air 
pressure, wind speed, wind direction, global radiation, and 
relative humidity). The analysis of the results indicates that 
accurate models for the concentration of ground level 
ozone can be derived with the best performance accuracies 
indicated by the Ensemble Learning Algorithms. The 
investigation carried out compares the use of different 
machine learning classifiers and show that the Ensemble-
classifier Bagging performs superior to standard single 
classifiers, such as Artificial Neural Networks and Support 
Vector Machines, popularly used in literature. In addition, 
we study the performance of the meta-classifier Bagging 
when different base classifiers are used in optimised 
configurations and compare the results thus obtained. The 
research conducted bridges an existing research gap in 
big-data analytics related to environment pollution 
prediction, where present research is largely limited to 
using standard learning algorithms such as Neural 
Networks and Support Vector Machines often available 
within popular commercial software packages.  

Keywords: Ozone, Atmospheric pollution, machine 
learning, Environment Science, Ensemble classifiers 

1 Introduction
Ozone is a trans-boundary air pollutant that can be 

formed by photochemical reactions between anthropogenic 
nitrogen oxides(NOx) and Volatile Organic Compounds 
(COVs) in the presence of sunlight[1]. When O3 is formed, 
it remains suspended in the lower atmosphere (ground level 
ozone) for hours to days depending on the meteorological 
conditions and can endanger local and regional receptors.  

In recent years, the environmental risks caused by 
exposure to ground level ozone (O3) from both stationary 
and mobile sources have increased annually[2]. Several 
studies that analyse the effects of meteorological conditions 
on the formation and transport of O3 have been listed in the 
work of [3]. Further, statistically significant relationships 
have been identified between elevated concentrations of O3
and environmental risks in [4],[5]. 

A number of studies in the field of environmental science 
and engineering have focused their interest on constructing 
models to predict the concentrations of gases that result in 
air pollution. The majority of environmental researchers 
tend to use Artificial Neural Networks (ANN) and Support 
Vector machines (SVM) to predict ozone concentration [6]-
[11]. Although there are more developed data mining /
machine learning techniques, such as Ensemble learning 
approaches [12], only two attempts have investigated their 
use in predicting the ozone concentration; they are the work 
of [13] and [14].  This research showed that improvements 
in predictions can be obtained using bagging[15] as against 
using the popular single classifiers such as Artificial Neural 
Networks (ANN) and Support Vector Machines (SVM). 
However these investigations were limited in the fact that 
Bagging was used only with the default single classifier 
RepTree[12]  in WEKA (Waikato Environment for 
Knowledge Analysis) toolkit [16] as the base classifier.  In 
the field of air pollution monitoring, no attempt has been 
made to test other ensemble classifier, select the best base 
classifier or to optimise the performance of the base 
classifier based on various possible parameter selections, all 
of which can lead to significant improvements in prediction 
accuracies. On the other hand, several attempts have been 
made in areas beyond air quality prediction in the use of 
ensemble classifiers, such as in bioinformatics, medicine 
and marketing, to build predictive models [17]-[21]. This 
work has shown that ensemble classifiers outperform the 
corresponding single classifiers and that the ultimate 
answer to the question, which classifier works best, 
depends on the dataset. It is clear that different datasets, in 
particular from different application domains, are 
statistically different and this has a high impact on the 
variability of results obtainable from different classifiers.

From the review of literature conducted and summarised 
above, a lack of research into effectively utilising Ensemble 
learning to predict ozone concentration was identified. 
Therefore the research proposed in this paper aims to find 
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accurate models that can be used to predict ground level 
ozone concentrations, given a multitude of environmental 
parameters. An investigation was carried out comparing the 
performance of several machine learning techniques. 
Multiple predictive models were built using popular single 
classifiers namely Multilayer Perceptron (MLP) and 
Support  Vector Machines and two ensemble learning 
algorithms, namely Bagging and Random Forests[22],
using the WEKA  toolkit. In addition, comparative analyses 
were performed to determine the algorithm that produced 
the best performance and to optimize the performance of 
each selected approach. The dataset considered in this work 
was obtained from Sohar University, Oman, which used a 
DOAS instrument [23] to gather the environmental data. 
The dataset includes concentrations of eight gases 
(O3, NO2, SO2, and BTX (Benzene, Toluene, o-,m-,p-
Xylene)) and six meteorological parameters (ambient 
temperature, air pressure, wind speed and direction, 
solar radiation, and  relative  humidity).  

As implantations of the machine learning algorithms 
used for pre-processing/data-cleaning, feature selection, 
optimizing classifier parameters, modelling and 
performance analysis, WEKA has been used throughout 
this paper. Initially, training phases based on different 
classification algorithms for predicting O3 concentration 
were performed. Subsequently, the prediction performance 
of different algorithms, were examined using ten-fold cross 
validation as implemented in WEKA. Various evaluation 
metrics have been utilised to analyse the results. It should 
be noted the key focus of the research conducted is not 
time-series analysis of O3 concentration (i.e. predicting how 
O3 concentration changes with time) but how to predict O3
concentration based on the concentrations of the primary 
pollutant gases and the environmental parameters that can 
have an impact. In particular when O3 creation is assumed 
to be due to the production of primary pollutant Nitrogen 
Dioxide, generated by vehicular traffic in this area, the time 
dependent analysis is not essentially useful. 

For clarity of presentation this paper is divided into 
several sections. Apart from this section that provided the 
reader with an insight to the research context and identified 
research gaps, section-2 provides the background to data 
collection and presentation. Section-3 details the 
experimental procedure followed and section-4 provides the 
experimental results and a detailed analysis of the results. 
Finally section-5 concludes with an insight into future 
research. 

2 Data collection and representation

This section provides details of the data collection 
approach used and how this data was represented for 
subsequent analysis. 

2.1 The sampling site 
 Measurements were recorded across the Sohar Highway 

(SHW), Oman, in front of the main entrance to the Sohar 

University (SU) with a Differential Optical Absorption 
System (DOAS) instrument that was professionally 
installed (see Fig.1. for an aerial view of the system). The 
light beam travels a round-trip of 477 meters from A, which 
is located on the roof of the main administrative office 
building of SU, to B, where a reflector (or receiver) is 
installed on the top of another building situated across the 
road, as illustrated in Fig.1. The SHW has two lanes in each 
direction and an additional two single carriageway roads, in 
parallel, on both sides, bringing the total number of lanes to 
eight. Additionally, there is the SU car park, marked as C, 
where vehicular traffic may be present and thus would 
result in higher levels of O3 concentrations. In order to 
capture the rapid variations of the concentrations of gases 
present in the space of the monitoring path, evaluations of 
light captured by the DOAS instrument is performed every 
30 seconds for the measurement of the concentrations of 
O3, NO2, and SO2 gases and every one minute for 
measurement of the concentrations of BTX.  Additionally, 
the meteorological parameters, including wind speed and 
direction, relative humidity, pressure, temperature, 
precipitation, global solar radiation etc., are separately 
measured by sensors located on the roof of the SU building 
at A. The height of the instruments from ground level was 
approximately 12 metres. 

2.2 Ozone dataset  
The dataset used for the experiment was captured by the 

Sohar University DOAS system during 2013/2014.
However, due to a technical fault in the system, the dataset 
collected during the specified period is not continuous. 
Nonetheless, a sufficiently large dataset was gathered to 
make the experiments statistically relevant. This dataset 
was analysed to investigate the modelling algorithm that 
gives the best prediction accuracy.  

In the dataset used so far, there are a total of 6,744 
instances spread across the years 2013-2014, as detailed in 
Table I. 

Fig. 1.  Sampling path of the DOAS instrument; A = light emitter 
location, B = reflector location and C = car park.
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2.3 Dataset representation  
The target dataset is a sequence of measurements 

presented in a time series. The measurements are 
concentration values of eight gases measured in μgm-3 and 
readings of six environmental parameters. Table II lists the 
14 attributes of each measured data value with their 
descriptive statistics.  

Having collected the above dataset section-3 presents the 
method adopted for its analysis and detailed investigation.  

3 Proposed method
The proposed approach adopts standard data mining 

procedure that involves data pre-processing prior to data 
modelling using machine learning. WEKA (version 3.7.11) 
is a toolkit that supports open source software 
implementation and operation of a large number of options 
for both data pre-processing and modelling. In this section 
we introduce the reader to the specific data pre-processing 
and modelling algorithms that have be adopted within the 
research context of the proposed work, as implemented by 
WEKA. Note that for our data analysis and method 
evaluation comparison purposes both Explorer and 
Experimenter software environments have been used, as 
appropriate.  

3.1 Data pre-processing 
Outlier Removal: In the data captured by the DOAS, 

missing values are recorded as -999.00. A careful analysis
of the captured data also revealed that there are data 
measurement outliers, which could have resulted from 
instances of temporary sensor malfunctioning due to dust, 
high temperatures and overheating. Therefore a data 
cleaning operation within WEKA (listed under pre-
processing) was utilised for the removal of outliers. The 
two filters interquartileRange (filters -> unsupervised ->
attribute -> interquartileRange) and removeWithValues 
(filters -> unsupervised -> instances -> removeWithValues) 
were used respectively to clean the data in hand. Note that 
the first filter adds two extra columns to the data to indicate 
instances which contains the outliers and extreme values 
and the second filter removes such data by refereeing to the 
extra columns added by the first filter. After this cleaning 
process, only approximately 62% (4,173 out of 6,744 
instances) of the original dataset were utilised for the next 
stage (modelling phase). 

Data transformations: Since the wind direction is 
originally measured as an angle from the north in a 
clockwise direction, with values ranging from 0-360
degrees, the originally recorded witnd related data will 
have to be re-represented to avoid 0 and 360 degree 
directions being considered as different. The Wind Speed 
(WS) and Wind Direction (WD) have been combined and 
divided into two orthogonal compenents u = WS×cos(WD)
and v = WS×sin(WD). (u,v) parameters will replace (WS, 
WD) in order to compensate for the above issue with 
regards to the original value of WD.             

Attribute selection: Reduction of the attributes by 
eliminating the msot insignificant attributes can lead to both 
improved accuracy and speed of data modelling. The use of 
three popular feature selection filters have been investigated  
in the proposed research, namely, CFS Subset Evaluator 
with Best First and Greedy Stepwise Search methods,
ReliefFAttributeEval with attribute ranking (removed last 
three attributes), and Principal Components. In the 

TABLE I
DATASET DESCRIPTION

D
at

as
et

2013 2014 Total 
number 

of 
records

Start 
Date

End 
Date

No. of 
Rec.

Start 
Date

End 
Date

No. of 
Rec.

1st

April 
2013

23rd

Aug.
2013

3480
1st

March 
2014

14th 

July 
2014

3264 6744

TABLE II
ATTRIBUTES OF THE DATASET

2013-2014 Unit Min Max Standard 
deviation Mean

Sulphur 
Dioxide 
(SO2)

μgm-3 1.61 15.11 2.33 4.96

Nitrogen 
Dioxide 
(NO2)

μgm-3 0.02 83.99 16.65 18.24

Ozone (O3) μgm-3 0.85 139.50 24.25 43.25

Benzene 
(C6H6)

μgm-3 0.05 19.56 4.17 6.13

Toluene 
(C7H8)

μgm-3 0.73 47.14 7.77 15.16

p-Xylene 
(C8H10(p)) μgm-3 0.10 8.75 1.18 3.30

m-Xylene 
(C8H10(m)) μgm-3 0.69 5.44 0.52 2.44

o-Xylene 
(C8H10(o)) μgm-3 0.80 58.15 6.91 29.56

Temperature ºC 16.19 45.06 3.53 31.10

Relative 
Humidity % 8.47 93.57 19.33 64.38

Pressure kPa 98.94 102.89 0.56 100.19
Global 
Radiation W/m2 -2.75 1120.24 247.95 201.13

Wind speed m/s 0.31 6.266 1.02 1.77
Wind 
Direction degree 0.11 359.99 91.50 137.52
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experiments conducted it was revealed that none of these 
filters uenhanced the accuracy of modelling although in the 
case of using the RelieFAttributeEval filter three of the 
most insignificant features were removed from used in 
modelling thus impacting positvely on speed. 

3.2 Modelling the ozone concentration   
As previously stated WEKA consists of implementations 

of a large number of classifiers that includes all state-of-the 
art and the popular traditional classifiers, such as, the 
Artificial Neural Networks and the Support Vector 
Machines. Our detailed experiments were designed to test 
all possible classifiers as single classifiers and as combined 
approaches (as appropriate). The purpose of this exhaustive 
investigation was to find the best classifiers / classifier 
combinations that outperformed traditional approaches for 
the prediction of air (Ozone) pollution thus generating new 
and useful knowledge for the community involved in 
environmental science and engineering research.  

The initial exhaustive list was reduced to investigating 16 
learning algorithms in detail from WEKA classifier 
categories, namely, Functions (4 different functions), Lazy 
(3), Meta (2), Rule (2) and Tree (5). The two meta-
classifiers included the two popular Ensemble learning 
approaches Bagging and Random Forests. Furthermore, 
more detailed investigations were conducted with the 
Bagging ensemble classifier due to the initial indication of 
its superiority of performance. Within the detailed 
experiments thus conducted all the single learner classifiers 
initially experimented, were utilised as the base classifier of 
the ensemble classifier, Bagging.   

Within the experimental context of this paper only six 
classification algorithms are analysed and discussed in 
detail. These include the two most popular single learning 
algorithms used in research that focus on air pollution 
analysis, Artificial Neural Networks [ANN] (implemented 
in WEKA as Multi-Layer Perceptron [MLP]) and Support 
Vector Machines [SVM] (implemented in WEKA as 
SMOreg) and the basic Ensemble Classifier, Random 
Forest [RF].   In conducting more detailed performance 
analysis of Bagging, the above three experiments are 
complemented with using them within Bagging as a base-
classifier, namely Bagging with MLP, Bagging with 
SMOreg and Bagging with Random Forest. Although a 
large number of other classifiers and classifier 
combinations were evaluated, the detailed analysis of only 
these algorithms is presented in section-4. The accuracy of 
the algorithms are evaluated using two widely used 
evaluation metrics: Correlation Coefficient, Mean Absolute 
Error. 

To present a fair performance comparison between the 
prediction models presented, optimal parameters for each 
classifier has been examined prior to conducting detailed 
modelling. The CVParameterSelection optimisation 
algorithm of WEKA has been used for this purpose.  

The Explorer GUI environment of WEKA has been used 
to construct individual classifier models using their optimal 
parameters settings. Hence, the performance of different 
classifiers have been analysed and compared, using the 
same dataset (see section 2) using the Explorer.  Since the 
Explorer does not provide the statistical significance of the 
improvements achievable by different classifiers, WEKA’s
Experimenter GUI environment was utilised to obtain 
additional information. A statistical test (Paired T-Tester 
corrected) was used to calculate the statistical significance 
between the different predictive models. The performance 
of the classifiers were examined using 10 fold cross 
validation and was compared using the Correlation 
Coefficient. 

4 Experimental results and analyses
Experiments were conducted to analyse and compare the 
performance of six different classifiers: MLP (WEKA’s 
ANN implementation), SMOreg (WEKA’s SVM 
implementation), Random Forest (RF), Bagged-MLP, 
Bagged-SMOreg and Bagged-RF. Further detailed 
experiments were also conducted to determine the potential 
impact of feature reduction / selection and in the selection 
of classifier parameters in optimising classifiers, in the 
overall accuracy obtainable from each of the six evaluated 
classifiers. Further the original readings recorded for wind 
direction was a measure in the range 0-360 degrees. In 
order to compensate for the fact that 0 and 360 degree 
readings mean the same, we have combined wind direction 
(WD) with wind speed (WS) to replace them with two 
orthogonal components WS×cos(WD) and WS×sin(WD).   

It is noted that all of the classifiers investigated (i.e. 
regardless of whether the classifier is of the single classifier 
type or the ensemble classifier type) consist of a number of 
input parameters that may have a vital impact on the 
accuracy of predictions obtainable. Although WEKA 
provides default parameter values for each classifier, our 
preliminary experiments suggested that these values do not 
result in optimised prediction. Therefore it was vital to 
select a set of parameters which provide optimal prediction 
accuracy. For this purpose we made use of WEKA’s 
CVParameterSelection filter.  Table III tabulates the 
prediction accuracy obtainable via each approach in terms 
of correlation coefficient. The results indicate that the 
optimal parameter selection has a positive impact only 
when use the single classifiers MLP (i.e. ANN) and 
SMOreg (i.e. SVM for regression). When using ensemble 
classifiers Random Forest and Bagging, the optimal 
parameter selection algorithm has no impact, indicated by 
the accuracy figures that remain unchanged. It is noted that 
even though the CVParameterSelection filter changes some 
parameters in its attempt to optimise the accuracy, no 
change is indicated in comparison to the accuracy 
obtainable using default settings.  

For clarity of comparison Table IV tabulates overall 
prediction accuracies obtainable by each classifier 
presented in terms of the Co-relation Coefficient and Mean 
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Absolute Error with both using the default parameter 
settings of WEKA and with optimised parameter settings.  

Fig.2 illustrates graphs representing the actual Ozone 
concentration vs the predicted Ozone concentrations. The 
graphs illustrate the better prediction capability of Bagged 
Random Forest classification approach as compared to the 
others. Data points lie closer to the line of approximation 
(less spread) than in the other graphs. 

  

Table V tabulates the accuracy values obtained when 
using four different attribute filtering approaches 
implemented within WEKA, namely, CFS Subset Evaluator, 
with Best First and Greedy Stepwise search, Relief Attribute 
Evaluator and Principle Component Analysis. The results 
indicate that no improvement of accuracy is achieved in 
comparison with using all attributes. We also investigated 
the impact of removing wind direction from being 
considered, taking only the wind speed into account (from 
the original data recorded). It was seen that the wind 
direction has negligible impact on the Ozone concentration 
prediction accuracy. This is justifiable as the measurements 
for Ozone was done across the road, i.e. at its source, as it 
was vehicular traffic that was suspected to create the Ozone 
from the Nitrogen Dioxide emissions.  

TABLE III
EXPERIMENTS TO OPTIMISE THE CLASSIFIERS

Classifier Name Default  settings Correlation 
Coefficient Optimal Parameters Correlation 

Coefficient
MLP Learning Rate (L)=0.3

Momentum /(M)=0.2
Hidden layer= a (attribute/class)/2

0.85 Learning Rate(L)=0.1
Momentum (M)=0.1
Hidden layer= 5 

0.88

Bagged MLP Bagging:
bag size percent (P)=100
Number of iteration(I)=10
Seed (S)=1
num-slots =1

MLP:
Learning Rate (L)=0.3
Momentum /(M)=0.2
Hidden layer= a (attribute/class)/2

0.90 Bagging:
bag size percent (P)=100
Number of iteration(I)=10
Seed (S)=1
num-slots =1

MLP:
Learning Rate(L)=0.1
Momentum (M)=0.1
Hidden layer= 5 

0.90

Random Forest NumTree (I)=10
NumFeature (K)=0

0.92 NumTree (I)=20
NumFeature (K)=0

0.92

Bagged RandomForest Bagging:
bag size percent (P)=100
Number of iteration(I)=10
Seed (S)=1
num-slots =1

Random Forest:
NumTree (I)=10
NumFeature (K)=0

0.92 Bagging:
bag size percent (P)=100
Number of iteration(I)=10
Seed (S)=1
num-slots =1

Random Forest:
NumTree (I)=20

NumFeature (K)=0

0.92

SMOreg C:1.0
Kernal: polyKernel   

0.84 C:1.0
Kernel: NormalizedPolyKernel

0.89

Bagged SMOreg Bagging:
bag size percent (P)=100
Number of iteration(I)=10
Seed (S)=1
num-slots =1

SMOreg:
C:1.0
Kernal: polyKernel

0.84 Bagging:
bag size percent (P)=100
Number of iteration(I)=10
Seed (S)=1
num-slots =1

SMOreg:
C:1.0
Kernal: NormalizedPolyKernel

0.89

TABLE IV
RESULTS OF THE PREDICTION MODELS

Default Parameters Optimal Parameters
Classifier Correlation

Coefficient 
Mean 

Absolute 
Error

Correlation
Coefficient

Mean 
Absolute 

Error
MLP 0.85 9.81 0.88 8.51
SMOreg 0.84 9.54 0.89 8.05
RandomForest 0.91 7.52 0.92 7.16
Bagged MLP 0.90 7.64 0.91 7.27
Bagged 
RandomForest 0.92 7.08 0.92 7.05

Bagged 
SMOreg 0.84 9.54 0.89 8.04

152 Int'l Conf. Data Mining |  DMIN'15  |



(a) MLP
(b) Bagged MLP

(c) Random Forest (d) Bagged Random Forest

(e) SMOreg (f) Bagged SMOreg

Fig. 2.  Scatter Plots of the actual and predicted Ozone for 6 Models

TABLE V
RESULTS OF APPLYING FEATURE SELECTION

MLP SMOreg Random 
Forest

Bagged 
MLP

Bagged 
SMOreg

Bagged 
RandomForest

CFS-Best First 0.82 (-3) 0.82 (-2) 0.89 (-3) 087  (-3) 0.82 (-2) 0.90  (-2)

CFS-Greedy 
Stepwise

0.81 (-4) 0.82 (-2) 0.88 (-4) 0.86 (-4) 0.82 (-2) 0.90  (-2) 

Relief Att. Eval. 0.83 (-2) 0.83 (-1) 0.91 (-1) 0.89 (-1) 0.83 (-1) 0.92  ( 0)

PCA 0.84 (-1) 0.83 (-1) 0.87 (-5) 0.89 (-1) 0.83 (-1) 0.89  (-3)

Using All 
Attributes 0.85 0.84 0.92 0.90 0.84 0.92
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Ensemble learning is an approach that uses different 
classification techniques to build up a single model. 
Proposed by Breiman, 1996, Bootstrap Aggregation 
(Bagging) is a common type of an ensemble learning 
approach. Bagging resamples the original data, by using the 
bootstrap method, randomly, but with replacement (some 
can be selected repeatedly while other may not). The data 
produced are different from each other, however, the size of 
these samples are equal. Subsequently, a tree is built up 
from each sample. Later a classification model is developed 
from each sample using a single learning algorithm. 
Subsequently the outputs of different models are integrated 
into a single predication model. It uses either the weighted 
vote or average vote, depending on the type of task (i.e., a 
classification task or regression task, respectively). Due to 
the above process adopted by Bagging it resolves the data 
over-fitting problem associated with most classifiers, in this 
case with MLP and SVM in particular. 

This is the reason for the significantly better prediction 
accuracies obtainable from using the Ensemble Classifier 
Bagging as against the accuracies obtainable from the 
traditional single classifiers commonly used in predicting 
Ozone, ANN and SVM. 

5 Conclusion and future works
In this paper we have compared the performance of six 

machine learning algorithms in predicting the ground level 
atmospheric ozone concentrations. The prediction was based 
on concentrations of seven gases (NO2, SO2, and BTX 
(Benzene, Toluene, o-,m-,p-Xylene) and six meteorological 
parameters (ambient temperature, air pressure, wind speed, 
wind direction, global radiation, and relative humidity). 
Results prove the ability of ensemble learning algorithms, 
Random Forests and Bagging to perform significantly better 
than the traditional single classifier based learning 
algorithms, Artificial Neural Networks and Support Vector 
Machines.  

We are currently extending the research presented within 
this paper to predict Ozone concentration variations over 
long periods of time, extending beyond a five year period, 
attempting to identify patterns and trends.  
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