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Abstract - Knowledge Discovery in Databases (KDD) 
processes are complex, highly interactive and iterative. The 
similarities between KDD processes and software 
development processes suggest that approaches used to 
manage the development of software processes are also 
applicable and in fact advantageous to KDD processes. In this 
paper, we examine the current approaches for supporting 
KDD and note to their limitations in providing comprehensive 
and effective process support. We propose a language-based 
and process-oriented approach for supporting KDD processes 
that is based on explicitly representing KDD processes as 
process programs that can be analyzed, validated, and 
enacted. We illustrate the proposed approach using a novel 
process programming language that is designed to describe 
general process concepts as well as specific KDD concepts. 
Along with the KDD process language, an IDE-style 
development environment is proposed to assist in modeling 
and enacting KDD processes. The overall approach is 
evaluated and illustrated by modeling and enacting a 
traditional KDD process. 

Keywords: Data Mining, Knowledge Discovery in 
Databases, KDD Process, Process Programming.

1 Introduction 
Today, KDD projects are typically approached in an 

unstructured, ad hoc manner [6]. The lack of systematic 
approaches for managing and keeping track of the different 
parts of KDD projects means that some steps may 
unintentionally be repeated, adding overhead to the 
knowledge discovery task. Rudiger et al. [6] have noted major 
problems during the development of many KDD projects at 
Daimler-Benz due to the lack of a methodology and lack of a 
usable process model with proper tool support. Marban et al. 
[28], [29] have noted that the number and complexity of data 
mining projects has increased in recent years, that nowadays 
there isn’t a formal process model for this kind of project, and 
that existing approaches are not correct or complete enough. 
They also noted that not all projects end successfully. The 
failure rate is actually as high as 60%. 

In this paper, we proposes the Knowledge Discovery 
Process Modeling and Enacting Language (KDPMEL) along 

with its Process-Centered Software Environment (PCSE-
KDD) that can be used to develop KDD processes in a way 
that is similar to developing software processes: KDD 
processes as process programs written in KDPMEL and 
exploited by PCSE-KDD to provide execution support and 
management for KDD processes. 

Considerable value can be gained from materializing 
KDD processes via process programming. Novice 
participants, in particular, can benefit the most from knowing 
and learning their roles in the process and how their work and 
contributions would be coordinated and fit with others’ work 
and contributions. It has been observed by many KDD 
practitioners [22] that the results of KDD projects are often 
highly dependent on the experience of the persons doing the 
work. This phenomenon would likely be mitigated by having 
the work explicitly defined in a way that allows sharing the 
experience among the persons doing the work. 

2 Current Approaches for Supporting 
KDD Processes and Their Limitations 
We distinguish three major KDD support approaches 

found in the literature: activity-oriented support, KDD support 
environments, and process-oriented support. 

2.1 KDD Activity-Oriented Support 
This approach provides support only for individual 

activities such as data preprocessing or algorithm selection 
and settings. Examples of such support are proposed by [14]- 
[18], [42]. In this approach, the process concept, if used at all, 
is only represented in the form of documentation and 
guidelines. Also, the tools supporting the process tasks are 
isolated without any means of integration that would facilitate 
their usage and can enforce consistency conditions among the 
produced artifacts. 

2.2 KDD Support Environments 
The development of software environments supporting 

the overall KDD process has been identified by Padhraic [5] 
as a grand challenge for KDD. The architectures proposed for 
such environments are mainly based on a hardwired process 
model such as the traditional KDD process model [1] or the 
CRISP-DM [2] model. Some of the research efforts that fall 
under this category can be found in [8], [19]-[27], [30], [41].
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Although these environments can be used to define and 
execute KDD processes, the provided process support is 
mainly derived from the hardwired process model, which 
includes major process phases along with their generic tasks 
and simple interactions. This sort of guidance is too generic 
and clearly insufficient for effectively supporting KDD 
processes, where specialized guidance is needed to assist in 
selecting valid, desirable, and effective process 
configurations. Moreover, the guidance provided by these 
systems is limited to a few standard KDD techniques and 
prescribed set of supporting tools that are mandated by the 
environments. This generic guidance and limited support is 
insufficient for a dynamic field such as KDD where scores of 
new techniques, guidelines, and tools for data manipulation 
and analysis are added on regular basis. 

2.3 KDD Process-Oriented Support 
KDD process-oriented support assures that activities 

performed within KDD processes are properly controlled and 
data analysis and manipulation techniques are used 
appropriately. Very few researchers [7], [22], [32]-[35] have 
addressed the issue of providing process-oriented support. 

The project CITRUS [22] has extended a commercial 
knowledge discovery tool, CLEMENTINE, to enhance its 
user support capabilities by providing a process support 
interface. The main limitations of CITRUS are its dependency 
on CLEMENTINE and its supported process model and 
offered techniques; and its high-level process guidance. 

Osterweil et al. [7] were the first to propose the use of 
process programming to address the coordination of KDD 
techniques. This process-oriented approach is illustrated using 
the Little-JIL language. Little-JIL is a visual language derived 
from a subset of JIL, a “process language” originally 
developed for software development processes [9]. Although 
the use of Little-JIL to specify a representative bivariate 
regression process has shown that many coordination aspects 
of the process can be easily expressed, it has uncovered some 
deficiencies in the language. Although this attempt is very 
promising, it concentrates on supporting only the coordination 
aspect of the process. In addition to the discovered 
deficiencies in Little-JIL, only the simplest processes can be 
modeled visually using Little-JIL. 

Collaboration is another process-oriented aspect that has 
been recently adopted by some KDD support proposals [32]- 
[35], which are based on the paradigm of Service-Oriented 
Architecture (SOA). Collaborative KDD (CKDD) is an 
emerging field that seeks to cope with the distributed structure 
of modern organizations and the consequent increased 
complexity of the knowledge discovery process [31]. 
Although CKDD is beyond the scope of our work, it’s worth 
noting that our process-oriented approach, which employs a 
process-centered environment, inherently promotes the 
collaboration aspect. 

2.4 The Need for a more Comprehensive 
Approach for Supporting KDD Processes 

As discussed previously, the current state of KDD 
support is that the first approach (activity-oriented) supports 
only fragments of the KDD process, the second approach 
(KDD support environments) supports only a particular KDD 
process model, and the third approach (process-oriented) 
supports only certain process aspects of the KDD process. 

Each of these half measures is inadequate. The support 
needed for a KDD process varies greatly based on the 
specifications of the concrete KDD process, and cannot be 
based purely on a generic process model. A KDD process 
might have many different configurations and can be 
instantiated in a number of ways, and each configuration 
might require different support. 

Highly specialized KDD process support presently takes 
the form of technical documentation that specifies desirable 
and effective configurations for the process steps in an 
informal way [7]. This requires KDD practitioners to learn 
and apply these specifications manually. While this may be 
acceptable for experienced KDD practitioners who can cope 
with only high level guidance, it is not suitable for the less 
sophisticated KDD practitioners who participate in the 
development and enactment of the majority of KDD 
processes. We believe that the guidance necessary for the 
typical user can be achieved by explicitly representing the 
concrete KDD process using a flexible and rigorous 
formalism provided by the language-based approach of 
process programming. Further, explicit representation of the 
KDD process can be exploited by a process-aware 
environment to support process execution and guide users in 
carrying out their duties. 

3 The Knowledge Discovery Process 
Modeling and Enacting Language 
(KDPMEL) 
KDPMEL is a novel process programming language for 

modeling and enacting KDD and data analysis activities along 
with their resources, interactions, and coordination. 

The process aspects of the language such as process 
structuring and task ordering are similar to those found in 
general process languages, such as JIL [9], Little-JIL [7], and 
PML [11]. The KDD aspects of the language are specific 
features for modeling KDD artifacts, tools, and tasks. 

KDPMEL supports modeling KDD tasks at different 
levels of detail and abstraction in order to specify both generic 
and specialized tasks. Specialized KDD tasks are defined in 
KDPMEL through external commands that are modeled in the 
program and executed through a flexible plug-in mechanism 
for the tools of these commands. 

KDPMEL provides special control constructs to 
explicitly model task dependencies on other tasks. This 
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feature is particularly important for KDD and is intended to 
effectively manage the dependencies between KDD 
techniques. Having these dependencies explicitly defined can 
assure that they are appropriately handled. 

A process program written in KDPMEL is organized 
into three major sections that specify the resources (artifacts,
roles, and tools) of the process, general information about the 
process (goal, input, outcome, and assessment), and the steps 
(activity, action, and command) of the process along with 
their sequencing (sequence, parallel, choice, and loop) and 
dependencies (disallow, require, and enable).

3.1 Language Goals 
The major goals of the KDPMEL are the simplicity,

flexibility, expressiveness, and generality. 

3.2 Language Approaches 
KDPMEL combines both the graphical and process 

language modeling approaches. It employs a number of 
graphical modeling editors on top of a textual process 
programming language designed specifically for KDD. The 
goal of the modeling editors is to facilitate the construction 
and presentation of certain process components, as 
represented by four types of graphs that display the overall 
process (process graph), the resources of the process 
(resources graph), a graph for each activity (activity graph), 
and a graph for each action (action graph). Furthermore, a 
read-only graph that shows the progress of the artifacts within
the process (artifact flow graph) is provided. The process 
graph indicates process information such as goal, input, 
outcome, etc. The resources graph shows the artifacts, tools, 
and roles/actors of the process. Each activity graph shows the 
activity’s constituent actions while each action graph provides 
information such as tools utilized by the action, the artifacts 
consumed and produced by the action, and the actor assigned 
to the action. In addition to the graphical editors, a number of 
form-based editors exist (process form, activity form, artifact 
form, role/actor form, and tool form) to present and update 
certain information that is best shown and updated in a form-
based style. 

Combining different types of editors and views in 
source-based, graph-based, and form-based styles is novel and 
allows both technical and non-technical users to participate in 
the modeling phase of the process. This hybrid modeling 
approach combines the benefits of the underlying approaches 
and enables specification of high-level process models as well 
as more complex ones in a manner that is convenient for both 
technical and non-technical users. 

3.3 KDPMEL Meta-Model (Abstract Syntax) 
KDPMEL is defined in terms of a meta-model [38]

based on the OMG’s SPEM [13] and CWM [37] meta-
models, which represents the abstract syntax and static 
semantics of the language. The KDPMEL meta-model 
consists of a Core meta-model upon which the other meta-

models depend, a Process meta-model representing the 
process aspects, and a KDD meta-model representing the 
KDD aspects.

3.4 KDPMEL Concrete Syntax 
The concrete syntax of KDPMEL is provided in two 

flavors, textual and graphical, to serve different purposes. The 
textual concrete syntax is useful when specific complex 
details must be specified. The graphical concrete syntax is 
easy to understand and use, and is useful for communicating 
structural and higher level views of the process. Also, a form-
based interface is provided for process components to allow 
for presenting and updating their properties.

3.4.1 KDPMEL Textual Concrete Syntax (Grammar) 
The Process meta-model provides process specific 

entities such as Process, Activity, and Action. The syntax for 
defining these constructs is given by the following rules: 

<process> ::= “process” <IDENTIFIER>  “{“…”}” 
<activity> ::= “activity” <IDENTIFIER>  “{“…”}”
<action> ::= “action” <IDENTIFIER>  “{“…”}”

Process Syntax 

A process can be decomposed into an ordered collection 
of activities. The activities can be grouped using one of the 
control constructs sequence, parallel, choice, or loop. The 
process syntax is defined as follows: 

<process> ::=  “process” <IDENTIFIER>  “{“ …
(<activitySequencing>  | <activity>)* 

     “}”
Activity Syntax 

An activity represents a composite task and it is mainly 
intended to represent the phases of the KDD process. An 
activity may have pre-conditions and post-conditions to guard 
entry into and exit from the activity. An activity may consume 
and produce some artifacts during its performance, which is 
monitored by an actor. An activity can be decomposed into 
smaller units of sub-activities and/or actions. The activity 
syntax is defined as follows: 

<activity> ::= “activity” <IDENTIFIER> “{“ 
[“preconds” <constraint> (“,” <constraint>)*]

    [“postconds” <constraint> (“,” <constraint>)*]
    [<consumedArtifacts>] [<producedArtifacts>] 
    [<performer>]  

[“sub-activities” “{” (<activity>)+ “}”]
       (<actionSequencing> | <action>)* 
     “}”

Actions within an activity can be grouped using one of 
the control constructs sequence, parallel, choice, or loop. The 
following defines an activity that has two actions grouped by 
the parallel construct: 
activity DataMining { 
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parallel predict { 
action buildDecisionTreeModel {…} 
action buildNeuralNetModel {…} 

} 
} 

The decomposition of an activity allows for defining the 
tasks of the activity. The activity sub-activity decomposition 
provides a strict control, whereas the activity action 
decomposition provides both strict (e.g., sequence/loop) and 
loose control (e.g., choice/parallel).

Action Syntax 

An action represents a primitive task and it is intended to 
represent the generic tasks of the KDD process. An action 
may have pre-conditions and post-conditions. An action is 
performed by an actor with the help of some tools. An action 
may consume and produce some artifacts. To help perform an 
action, guidance information for the actor may be associated 
with the action. Finally, an action may have dependencies 
with other actions. The action syntax is defined as follows: 

<action> ::= “action” <IDENTIFIER> “{“ 
  [“preconds” <constraint> (“,” <constraint>)*]

    [“postconds” <constraint> (“,” <constraint>)*]
    [<consumedArtifacts>] [<producedArtifacts>] 
    [<performer>] [<utilizedTools>]
    [<dependencyDecl>] [<guidanceDecl>]

      “}”
The following example is a KDD task for building a 

decision tree model that specifies that the task is performed by 
a data mining analyst with the help of a particular mining tool 
over a specific dataset: 
action buildDecisionTreeModel { 

consume sampleDataset;  
produce sampleDecisionTreeModel; 
performer dmAnalyst; utilize { call miningTool } 

} 

3.4.2 KDPMEL Graphical Syntax 
The Process, Activity, and Action constructs, in addition 

to the process resources are represented in the graphical 
syntax. In addition to the graph-based notation, a form-based 
interface is provided. The source-based, graph-based, and 
form-based notations of the process program share a common 
object model for the process that is updated by and translated 
into the various representations of the process program. 

3.5 KDPMEL Semantics 

3.5.1 Control Flow and Ordering 
The activities within a process and the actions within an 

activity can be grouped using one of the control constructs 
sequence, parallel, choice, or loop. The default grouping is 
sequence. Additionally, activities may be decomposed into a 
hierarchy of sub-activities and actions. 

3.5.2 Dependency Control Constructs 
The states of KDPMEL tasks and their dependency 

requirements are recorded during the execution of the tasks. 
Upon beginning the execution of a task, a test is performed 
against the completed actions to check whether their disallow
dependency prohibit execution of the task. The enable
dependency is checked only for the choice control construct to 
determine if one of the choices has been enabled by a 
completed action. If that was the case, the actor making the 
choice will be notified. Another test is performed upon 
beginning the execution of an action to check its require
dependency against the completed tasks to determine if the 
action can be executed. An action can only be executed if its 
required tasks are completed.  

We believe that this is a novel approach for managing 
KDD task dependencies that are dynamically reflected at 
runtime, as opposed to statically structuring these tasks 
according to their dependencies at modeling time [7], which 
provides more flexibility not only in modeling time but in 
execution time also. In addition, it also leads to much shorter 
programs. 

3.5.3 Action Specialized KDD Tasks 
KDPMEL models specialized KDD tasks through the 

use of external commands that can be associated with an 
action and a tool. Each tool that is associated with an external 
command is represented by a plug-in module that is invoked to 
execute the command. 

3.5.4 Task States and Transitions 
The states and transitions of KDPMEL tasks are 

implemented using the State Pattern [40]. Tasks within a 
KDPMEL program go through several states during the 
execution of the program. The state of a task changes based on 
the control flow of the program, the availability of the 
resources needed by a task, and the explicit response from 
human actors. KDPMEL adopts states similar to those of 
Little-JIL--posted, started, completed, terminated, and 
retracted--- and adds the two new states suspended and 
resumed that have been suggested by Lee [12]. Figure 1 
illustrates KDPMEL task states and their transitions as 
suggested in [12]. 

Fig. 1. Task State Transitions in KDPMEL [12] 

When a KDPMEL task becomes available for execution, 
a task instance is created and its state is set to posted. A 
posted task instance is started by an explicit start action from 
the task performer (actor), which sends a start event to the 
task controller to change the state of the task instance to 
started. A posted task instance can also be temporarily 

Completed

Terminated

SuspendedPosted Started Resumed

Retracted
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retracted by a retract action. A started task instance is 
completed by an explicit complete action.  A completed task 
indicates that the task has successfully finished execution. 
This causes the enactment engine to continue executing the 
rest of the program by finding and posting the next available 
task. A started task instance can also be terminated by an 
explicit terminate action. A terminated task indicates an 
exception that caused the task not to be finished successfully. 
The handling of a terminated task varies depending on the 
type of control construct governing the task. For instance, 
while a terminated task in a sequence or loop control 
construct causes the termination of the other tasks in the 
construct, a terminated task in a choice control construct 
causes the enactment engine to offer the construct alternatives 
to the actor to select a task. 

4 The KDD Process-Centered Support 
Environment (PCSE-KDD) 
PCSE-KDD is an Integrated Development Environment 

that is built around KDPMEL, with an IDE-style approach to 
facilitate the development, execution, and management of 
KDPMEL programs. The environment offers a variety of 
services, similar to those offered by PCSEEs, but directed 
toward KDD processes. 

4.1 Architecture 
The environment implements the process 

definition/instantiation/enactment paradigm, found in 
PCSEEs, and includes a number of modeling editors for 
modeling KDD processes, an Enactment Engine for providing 
runtime process execution support, and a Repository for 
providing persistency support to both process artifacts and 
process execution states. Figure 2 illustrates the high level 
architecture of the environment. 

The PUI exposes the various services offered by the 
environment. Through the PUI, users are able to define, 
update, and persist process models during the modeling phase, 
instantiate a process model for enactment, participate in the 
enactment phase by performing interactive tasks in the 
process, are notified by the enactment engine about the status 
of the process being enacted, and are guided by the enactment 
engine about what to do next. 

The Enactment Engine is responsible for executing 
KDPMEL programs. It guides and supports users in 
performing their assigned tasks, controls the invocation of 
tools, accesses the process artifacts, and maintains the process
execution states. It includes three significant components: 
KDPMEL Interpreter, the Repository Management Unit 
(RMU), and the Tool Invocation Unit (TIU). The KDPMEL 
Interpreter implements the semantics of the language. The 
RMU maintains the process data. The TIU manages the 
invocation of tools specified in the process program. 

Fig. 2. The high level architecture of the PCSE-KDD

5 An Example for Developing a 
Traditional KDD Process in PCSE-
KDD 
The example process is used for predicting the 

likelihood that bank customers will reply to a mailing 
campaign for buying a Personal Equity Plan (PEP) [36].

5.1 The Example Process Specification 
Data Selection 
The data is available in a comma-separated value (CSV) file. 

Data Preparation 
This stage includes steps to transform the selected dataset file 
into its WEKA dataset representation, remove unnecessary 
attributes, and construct the training and test datasets. 

Data Mining 
A decision-tree technique using the C4.5 (J48) WEKA 
classifier [39] is used to predict the PEP value (YES/NO). 

Interpretation/Evaluation 
The results are evaluated using a tree visualization technique 
to display the decision-tree graph model in addition to 
inspecting the detailed results using a text editor. 

5.2 The KDPMEL Prediction Process Program 

5.2.1 Process Resources 
Figure 3 illustrates the process resources as they are 

depicted in the Resources Graph. 
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Fig. 3. The Example Process Resources Graph 

Artifacts 
Figure 4 illustrates the process artifacts as they are depicted in 
the Artifact Flow Graph. 

Fig. 4. The Example Process Artifact Flow Graph 

Tools 
The tools utilized by the process are Microsoft Excel for the 
data selection tasks, the WEKA data mining framework [39] in 
both the interactive and command-line modes for the Data 
Preparation, Data Mining, and Interpretation tasks, and the 
text editor TextPad for some of the Interpretation tasks. Figure 
5 illustrates the utilized tools. 

Fig. 5. The Example Process Utilized Tools 

Roles/Actors 
Three different roles--database, data mining, and business 
analysts--are fulfilled by three different actors are defined in 
the program. Figure 6 illustrates the process roles/actors. 

Fig. 6. The Example Process Roles/Actors 

5.2.2 The Process Phases 
The process includes four phases for data selection, data 

preparation, data mining, and interpretation. Each phase is 
defined using a KDPMEL activity construct as follows: 
process PredictionKDDProcessExample { … 

activity DataSelection {...}  
activity DataPreparation {...} 
activity DataMining {...} 
activity Interpretation {...} 

} 

Figure 7 illustrates the phases of the process as they are 
depicted in the Process Graph. 

Fig. 7. The Process Graph of the Example Process 

Each phase includes a number of generic and specialized 
tasks that are defined using KDPMEL action and command
constructs. For instance, the DataPreparation phase is defined 
in KDPMEL as follows: 
activity DataPreparation { 

action transformCsvData { ...  
command transformCSVDataCommand {...}  ... 

} 
action viewTransformedCsvData {...} 
action constructMainDataset { ...  

command transformCSVDataCommand {...} ...  
} 
action viewConstructedDataset {...} 
action buildTrainingAndTestDatasets { ...  

command buildTrainingDatasetCommand {...} 
command buildTestDatasetCommand {...}  ... 

} 
} 
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The DataPreparation activity (Figure 8) includes a 
sequence of five tasks for transforming the CSV data to its 
WEKA representation, viewing the transformed data, 
constructing the main dataset, viewing the constructed dataset, 
and constructing the training and test datasets. 

Fig. 8. The Example Process DataPreparation Activity Graph 

5.2.3 The Process Actions and Commands 
The process includes a number of generic and 

specialized tasks. For instance, the DataPreparation activity 
includes a specialized task that is used to transform the CSV 
data file to its WEKA format. This is defined as follows: 
action transformCsvData { … 

utilize {  
 call weka_Script_Tool { 

   command transformCSVDataCommand { … 
  input bank_Selected_Data; output … 
  operation “weka.core.converters.CSVLoader”; 
  parameters “”; 

   } 
 } 

} 
} 

5.3 Enacting the Example Process Program 
The PCSE-KDD Enactment Engine establishes a process 

instance and presents it in the Enactment Perspective. The 
Enactment Perspective displays the overall process execution 
flow organized by the actors. Each actor is presented with its 
assigned tasks in a tree view. The description of each task is 
presented in a form view. A GUI mechanism to apply 
appropriate transition states (e.g., a start command to execute 
a posted task) for each task is provided to the actor. 

Figure 9 illustrates the enactment of the 
transformCsvData action. When selecting the start command, 
the Enactment Engine starts the action and identifies its 
utilized tool and specialized command and offers to invoke 
them through dialogs. The actor confirms the invocation. 

Fig. 9. The transformCsvData Action execution dialogs 

5.4 Evaluation and Lessons Learned 
Our experience using KDPMEL to specify the example 

KDD process, as well as other KDD processes, supports our 
first hypothesis that a language-based and process-oriented 
approach is a flexible and effective approach to precisely and 
explicitly specify KDD processes as process programs that 
can be manipulated by programming techniques to reason 
about the process and support its correct execution. 

KDPMEL simplicity goal is achieved by having simple 
syntax. KDPMEL flexibility goal is mainly achieved by 
providing various levels for representing tasks at different 
levels of detail. The generality goal is mainly achieved by not 
making KDPMEL and PCSE-KDD bound to any particular 
process models, techniques, or tools. KDPMEL 
expressiveness goal is achieved by providing constructs to 
represent both generic and specialized tasks along with their 
sequencing and dependencies, consumed and/or produced 
artifacts, utilized tools, and performing actors. 

Our experience using KDPMEL and PCSE-KDD to 
represent and execute the example process supports our 
second hypothesis that effective support and customized 
guidance, which depend on the concrete process itself rather 
than its generic process model, can be achieved by 
manipulating the explicit representation of the process in 
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order to manage its various components and support its 
performance. 

6 Conclusions 
KDPMEL provides a hybrid modeling approach for 

specifying KDD processes, mixing different types of editors 
and views in source-based, graph-based, and form-based 
styles to allow both technical and non-technical users to 
participate in the development of KDD processes. 

PCSE-KDD is an Integrated Development Environment 
for KDPMEL. It has been prototyped in Java plus a number of 
open source libraries and tools. It has the look and feel of 
Eclipse IDE and has a similar Workbench that includes three 
different Perspectives, similar to Eclipse’s Perspectives, for 
its Modeling, Enactment, and Management functionalities. 

In PCSE-KDD/KDPMEL the process concept is 
supported and enforced according to a specialized KDD 
process that includes specific tasks organized according to 
their sequencing, dependencies, and alternatives. In PCSE-
KDD, tools are loosely integrated through a flexible and 
expandable plug-in mechanism. They are launched 
automatically and dynamically according to the execution 
order of the process tasks. PCSE-KDD provides a centralized 
repository for maintaining and managing the process artifacts. 
PCSE-KDD employs an engineering approach to develop 
KDD processes. It is a language-based and process-driven 
approach. The process is explicitly defined as a program in 
KDPMEL and manipulated by PCSE-KDD to support its 
analysis and execution. Specialized user guidance during 
execution is extracted from the interpretation of the process 
program. Users are offered their assigned tasks and supported 
in executing them. In this language-based approach, KDD 
processes are managed. Their specifications can evolve and 
executions can be repeated. Moreover, they are validated 
according to standard programming techniques. 

Our future work includes modeling a wide range of 
KDD processes and increase the level of sophistication of 
those processes, expanding the support for more detailed 
KDD artifacts, and continuing the development of KDPMEL 
and PCSE-KDD to provide more enhanced and expanded 
graphical modeling to cover the entire process, better user 
interaction during process enactment, and to expand the 
integration with a wider range of external process resources. 
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