
A Language-Based and Process-Oriented Approach for
Supporting the Knowledge Discovery Processes

Hesham A. Mansour1, Daniel Duchamp1, and Carl-Arndt Krapp2

1Department of Computer Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA
2FJA-US, Inc., 1040 Avenue of the Americas, 4th Floor, New York, NY 10018, USA

Abstract - Knowledge Discovery in Databases (KDD)
processes are complex, highly interactive and iterative. The
similarities between KDD processes and software
development processes suggest that approaches used to
manage the development of software processes are also
applicable and in fact advantageous to KDD processes. In this
paper, we examine the current approaches for supporting
KDD and note to their limitations in providing comprehensive
and effective process support. We propose a language-based
and process-oriented approach for supporting KDD processes
that is based on explicitly representing KDD processes as
process programs that can be analyzed, validated, and
enacted. We illustrate the proposed approach using a novel
process programming language that is designed to describe
general process concepts as well as specific KDD concepts.
Along with the KDD process language, an IDE-style
development environment is proposed to assist in modeling
and enacting KDD processes. The overall approach is
evaluated and illustrated by modeling and enacting a
traditional KDD process.

Keywords: Data Mining, Knowledge Discovery in
Databases, KDD Process, Process Programming.

1 Introduction
Today, KDD projects are typically approached in an

unstructured, ad hoc manner [6]. The lack of systematic
approaches for managing and keeping track of the different
parts of KDD projects means that some steps may
unintentionally be repeated, adding overhead to the
knowledge discovery task. Rudiger et al. [6] have noted major
problems during the development of many KDD projects at
Daimler-Benz due to the lack of a methodology and lack of a
usable process model with proper tool support. Marban et al.
[28], [29] have noted that the number and complexity of data
mining projects has increased in recent years, that nowadays
there isn’t a formal process model for this kind of project, and
that existing approaches are not correct or complete enough.
They also noted that not all projects end successfully. The
failure rate is actually as high as 60%.

In this paper, we proposes the Knowledge Discovery
Process Modeling and Enacting Language (KDPMEL) along

with its Process-Centered Software Environment (PCSE-
KDD) that can be used to develop KDD processes in a way
that is similar to developing software processes: KDD
processes as process programs written in KDPMEL and
exploited by PCSE-KDD to provide execution support and
management for KDD processes.

Considerable value can be gained from materializing
KDD processes via process programming. Novice
participants, in particular, can benefit the most from knowing
and learning their roles in the process and how their work and
contributions would be coordinated and fit with others’ work
and contributions. It has been observed by many KDD
practitioners [22] that the results of KDD projects are often
highly dependent on the experience of the persons doing the
work. This phenomenon would likely be mitigated by having
the work explicitly defined in a way that allows sharing the
experience among the persons doing the work.

2 Current Approaches for Supporting
KDD Processes and Their Limitations
We distinguish three major KDD support approaches

found in the literature: activity-oriented support, KDD support
environments, and process-oriented support.

2.1 KDD Activity-Oriented Support
This approach provides support only for individual

activities such as data preprocessing or algorithm selection
and settings. Examples of such support are proposed by [14]-
[18], [42]. In this approach, the process concept, if used at all,
is only represented in the form of documentation and
guidelines. Also, the tools supporting the process tasks are
isolated without any means of integration that would facilitate
their usage and can enforce consistency conditions among the
produced artifacts.

2.2 KDD Support Environments
The development of software environments supporting

the overall KDD process has been identified by Padhraic [5]
as a grand challenge for KDD. The architectures proposed for
such environments are mainly based on a hardwired process
model such as the traditional KDD process model [1] or the
CRISP-DM [2] model. Some of the research efforts that fall
under this category can be found in [8], [19]-[27], [30], [41].

Int'l Conf. Data Mining | DMIN'15 | 107

Although these environments can be used to define and
execute KDD processes, the provided process support is
mainly derived from the hardwired process model, which
includes major process phases along with their generic tasks
and simple interactions. This sort of guidance is too generic
and clearly insufficient for effectively supporting KDD
processes, where specialized guidance is needed to assist in
selecting valid, desirable, and effective process
configurations. Moreover, the guidance provided by these
systems is limited to a few standard KDD techniques and
prescribed set of supporting tools that are mandated by the
environments. This generic guidance and limited support is
insufficient for a dynamic field such as KDD where scores of
new techniques, guidelines, and tools for data manipulation
and analysis are added on regular basis.

2.3 KDD Process-Oriented Support
KDD process-oriented support assures that activities

performed within KDD processes are properly controlled and
data analysis and manipulation techniques are used
appropriately. Very few researchers [7], [22], [32]-[35] have
addressed the issue of providing process-oriented support.

The project CITRUS [22] has extended a commercial
knowledge discovery tool, CLEMENTINE, to enhance its
user support capabilities by providing a process support
interface. The main limitations of CITRUS are its dependency
on CLEMENTINE and its supported process model and
offered techniques; and its high-level process guidance.

Osterweil et al. [7] were the first to propose the use of
process programming to address the coordination of KDD
techniques. This process-oriented approach is illustrated using
the Little-JIL language. Little-JIL is a visual language derived
from a subset of JIL, a “process language” originally
developed for software development processes [9]. Although
the use of Little-JIL to specify a representative bivariate
regression process has shown that many coordination aspects
of the process can be easily expressed, it has uncovered some
deficiencies in the language. Although this attempt is very
promising, it concentrates on supporting only the coordination
aspect of the process. In addition to the discovered
deficiencies in Little-JIL, only the simplest processes can be
modeled visually using Little-JIL.

Collaboration is another process-oriented aspect that has
been recently adopted by some KDD support proposals [32]-
[35], which are based on the paradigm of Service-Oriented
Architecture (SOA). Collaborative KDD (CKDD) is an
emerging field that seeks to cope with the distributed structure
of modern organizations and the consequent increased
complexity of the knowledge discovery process [31].
Although CKDD is beyond the scope of our work, it’s worth
noting that our process-oriented approach, which employs a
process-centered environment, inherently promotes the
collaboration aspect.

2.4 The Need for a more Comprehensive
Approach for Supporting KDD Processes

As discussed previously, the current state of KDD
support is that the first approach (activity-oriented) supports
only fragments of the KDD process, the second approach
(KDD support environments) supports only a particular KDD
process model, and the third approach (process-oriented)
supports only certain process aspects of the KDD process.

Each of these half measures is inadequate. The support
needed for a KDD process varies greatly based on the
specifications of the concrete KDD process, and cannot be
based purely on a generic process model. A KDD process
might have many different configurations and can be
instantiated in a number of ways, and each configuration
might require different support.

Highly specialized KDD process support presently takes
the form of technical documentation that specifies desirable
and effective configurations for the process steps in an
informal way [7]. This requires KDD practitioners to learn
and apply these specifications manually. While this may be
acceptable for experienced KDD practitioners who can cope
with only high level guidance, it is not suitable for the less
sophisticated KDD practitioners who participate in the
development and enactment of the majority of KDD
processes. We believe that the guidance necessary for the
typical user can be achieved by explicitly representing the
concrete KDD process using a flexible and rigorous
formalism provided by the language-based approach of
process programming. Further, explicit representation of the
KDD process can be exploited by a process-aware
environment to support process execution and guide users in
carrying out their duties.

3 The Knowledge Discovery Process
Modeling and Enacting Language
(KDPMEL)
KDPMEL is a novel process programming language for

modeling and enacting KDD and data analysis activities along
with their resources, interactions, and coordination.

The process aspects of the language such as process
structuring and task ordering are similar to those found in
general process languages, such as JIL [9], Little-JIL [7], and
PML [11]. The KDD aspects of the language are specific
features for modeling KDD artifacts, tools, and tasks.

KDPMEL supports modeling KDD tasks at different
levels of detail and abstraction in order to specify both generic
and specialized tasks. Specialized KDD tasks are defined in
KDPMEL through external commands that are modeled in the
program and executed through a flexible plug-in mechanism
for the tools of these commands.

KDPMEL provides special control constructs to
explicitly model task dependencies on other tasks. This

108 Int'l Conf. Data Mining | DMIN'15 |

feature is particularly important for KDD and is intended to
effectively manage the dependencies between KDD
techniques. Having these dependencies explicitly defined can
assure that they are appropriately handled.

A process program written in KDPMEL is organized
into three major sections that specify the resources (artifacts,
roles, and tools) of the process, general information about the
process (goal, input, outcome, and assessment), and the steps
(activity, action, and command) of the process along with
their sequencing (sequence, parallel, choice, and loop) and
dependencies (disallow, require, and enable).

3.1 Language Goals
The major goals of the KDPMEL are the simplicity,

flexibility, expressiveness, and generality.

3.2 Language Approaches
KDPMEL combines both the graphical and process

language modeling approaches. It employs a number of
graphical modeling editors on top of a textual process
programming language designed specifically for KDD. The
goal of the modeling editors is to facilitate the construction
and presentation of certain process components, as
represented by four types of graphs that display the overall
process (process graph), the resources of the process
(resources graph), a graph for each activity (activity graph),
and a graph for each action (action graph). Furthermore, a
read-only graph that shows the progress of the artifacts within
the process (artifact flow graph) is provided. The process
graph indicates process information such as goal, input,
outcome, etc. The resources graph shows the artifacts, tools,
and roles/actors of the process. Each activity graph shows the
activity’s constituent actions while each action graph provides
information such as tools utilized by the action, the artifacts
consumed and produced by the action, and the actor assigned
to the action. In addition to the graphical editors, a number of
form-based editors exist (process form, activity form, artifact
form, role/actor form, and tool form) to present and update
certain information that is best shown and updated in a form-
based style.

Combining different types of editors and views in
source-based, graph-based, and form-based styles is novel and
allows both technical and non-technical users to participate in
the modeling phase of the process. This hybrid modeling
approach combines the benefits of the underlying approaches
and enables specification of high-level process models as well
as more complex ones in a manner that is convenient for both
technical and non-technical users.

3.3 KDPMEL Meta-Model (Abstract Syntax)
KDPMEL is defined in terms of a meta-model [38]

based on the OMG’s SPEM [13] and CWM [37] meta-
models, which represents the abstract syntax and static
semantics of the language. The KDPMEL meta-model
consists of a Core meta-model upon which the other meta-

models depend, a Process meta-model representing the
process aspects, and a KDD meta-model representing the
KDD aspects.

3.4 KDPMEL Concrete Syntax
The concrete syntax of KDPMEL is provided in two

flavors, textual and graphical, to serve different purposes. The
textual concrete syntax is useful when specific complex
details must be specified. The graphical concrete syntax is
easy to understand and use, and is useful for communicating
structural and higher level views of the process. Also, a form-
based interface is provided for process components to allow
for presenting and updating their properties.

3.4.1 KDPMEL Textual Concrete Syntax (Grammar)
The Process meta-model provides process specific

entities such as Process, Activity, and Action. The syntax for
defining these constructs is given by the following rules:

<process> ::= “process” <IDENTIFIER> “{“…”}”
<activity> ::= “activity” <IDENTIFIER> “{“…”}”
<action> ::= “action” <IDENTIFIER> “{“…”}”

Process Syntax

A process can be decomposed into an ordered collection
of activities. The activities can be grouped using one of the
control constructs sequence, parallel, choice, or loop. The
process syntax is defined as follows:

<process> ::= “process” <IDENTIFIER> “{“ …
(<activitySequencing> | <activity>)*

 “}”
Activity Syntax

An activity represents a composite task and it is mainly
intended to represent the phases of the KDD process. An
activity may have pre-conditions and post-conditions to guard
entry into and exit from the activity. An activity may consume
and produce some artifacts during its performance, which is
monitored by an actor. An activity can be decomposed into
smaller units of sub-activities and/or actions. The activity
syntax is defined as follows:

<activity> ::= “activity” <IDENTIFIER> “{“
[“preconds” <constraint> (“,” <constraint>)*]

 [“postconds” <constraint> (“,” <constraint>)*]
 [<consumedArtifacts>] [<producedArtifacts>]
 [<performer>]

[“sub-activities” “{” (<activity>)+ “}”]
 (<actionSequencing> | <action>)*
 “}”

Actions within an activity can be grouped using one of
the control constructs sequence, parallel, choice, or loop. The
following defines an activity that has two actions grouped by
the parallel construct:
activity DataMining {

Int'l Conf. Data Mining | DMIN'15 | 109

parallel predict {
action buildDecisionTreeModel {…}
action buildNeuralNetModel {…}

}
}

The decomposition of an activity allows for defining the
tasks of the activity. The activity sub-activity decomposition
provides a strict control, whereas the activity action
decomposition provides both strict (e.g., sequence/loop) and
loose control (e.g., choice/parallel).

Action Syntax

An action represents a primitive task and it is intended to
represent the generic tasks of the KDD process. An action
may have pre-conditions and post-conditions. An action is
performed by an actor with the help of some tools. An action
may consume and produce some artifacts. To help perform an
action, guidance information for the actor may be associated
with the action. Finally, an action may have dependencies
with other actions. The action syntax is defined as follows:

<action> ::= “action” <IDENTIFIER> “{“
 [“preconds” <constraint> (“,” <constraint>)*]

 [“postconds” <constraint> (“,” <constraint>)*]
 [<consumedArtifacts>] [<producedArtifacts>]
 [<performer>] [<utilizedTools>]
 [<dependencyDecl>] [<guidanceDecl>]

 “}”
The following example is a KDD task for building a

decision tree model that specifies that the task is performed by
a data mining analyst with the help of a particular mining tool
over a specific dataset:
action buildDecisionTreeModel {

consume sampleDataset;
produce sampleDecisionTreeModel;
performer dmAnalyst; utilize { call miningTool }

}

3.4.2 KDPMEL Graphical Syntax
The Process, Activity, and Action constructs, in addition

to the process resources are represented in the graphical
syntax. In addition to the graph-based notation, a form-based
interface is provided. The source-based, graph-based, and
form-based notations of the process program share a common
object model for the process that is updated by and translated
into the various representations of the process program.

3.5 KDPMEL Semantics

3.5.1 Control Flow and Ordering
The activities within a process and the actions within an

activity can be grouped using one of the control constructs
sequence, parallel, choice, or loop. The default grouping is
sequence. Additionally, activities may be decomposed into a
hierarchy of sub-activities and actions.

3.5.2 Dependency Control Constructs
The states of KDPMEL tasks and their dependency

requirements are recorded during the execution of the tasks.
Upon beginning the execution of a task, a test is performed
against the completed actions to check whether their disallow
dependency prohibit execution of the task. The enable
dependency is checked only for the choice control construct to
determine if one of the choices has been enabled by a
completed action. If that was the case, the actor making the
choice will be notified. Another test is performed upon
beginning the execution of an action to check its require
dependency against the completed tasks to determine if the
action can be executed. An action can only be executed if its
required tasks are completed.

We believe that this is a novel approach for managing
KDD task dependencies that are dynamically reflected at
runtime, as opposed to statically structuring these tasks
according to their dependencies at modeling time [7], which
provides more flexibility not only in modeling time but in
execution time also. In addition, it also leads to much shorter
programs.

3.5.3 Action Specialized KDD Tasks
KDPMEL models specialized KDD tasks through the

use of external commands that can be associated with an
action and a tool. Each tool that is associated with an external
command is represented by a plug-in module that is invoked to
execute the command.

3.5.4 Task States and Transitions
The states and transitions of KDPMEL tasks are

implemented using the State Pattern [40]. Tasks within a
KDPMEL program go through several states during the
execution of the program. The state of a task changes based on
the control flow of the program, the availability of the
resources needed by a task, and the explicit response from
human actors. KDPMEL adopts states similar to those of
Little-JIL--posted, started, completed, terminated, and
retracted--- and adds the two new states suspended and
resumed that have been suggested by Lee [12]. Figure 1
illustrates KDPMEL task states and their transitions as
suggested in [12].

Fig. 1. Task State Transitions in KDPMEL [12]

When a KDPMEL task becomes available for execution,
a task instance is created and its state is set to posted. A
posted task instance is started by an explicit start action from
the task performer (actor), which sends a start event to the
task controller to change the state of the task instance to
started. A posted task instance can also be temporarily

Completed

Terminated

SuspendedPosted Started Resumed

Retracted

110 Int'l Conf. Data Mining | DMIN'15 |

retracted by a retract action. A started task instance is
completed by an explicit complete action. A completed task
indicates that the task has successfully finished execution.
This causes the enactment engine to continue executing the
rest of the program by finding and posting the next available
task. A started task instance can also be terminated by an
explicit terminate action. A terminated task indicates an
exception that caused the task not to be finished successfully.
The handling of a terminated task varies depending on the
type of control construct governing the task. For instance,
while a terminated task in a sequence or loop control
construct causes the termination of the other tasks in the
construct, a terminated task in a choice control construct
causes the enactment engine to offer the construct alternatives
to the actor to select a task.

4 The KDD Process-Centered Support
Environment (PCSE-KDD)
PCSE-KDD is an Integrated Development Environment

that is built around KDPMEL, with an IDE-style approach to
facilitate the development, execution, and management of
KDPMEL programs. The environment offers a variety of
services, similar to those offered by PCSEEs, but directed
toward KDD processes.

4.1 Architecture
The environment implements the process

definition/instantiation/enactment paradigm, found in
PCSEEs, and includes a number of modeling editors for
modeling KDD processes, an Enactment Engine for providing
runtime process execution support, and a Repository for
providing persistency support to both process artifacts and
process execution states. Figure 2 illustrates the high level
architecture of the environment.

The PUI exposes the various services offered by the
environment. Through the PUI, users are able to define,
update, and persist process models during the modeling phase,
instantiate a process model for enactment, participate in the
enactment phase by performing interactive tasks in the
process, are notified by the enactment engine about the status
of the process being enacted, and are guided by the enactment
engine about what to do next.

The Enactment Engine is responsible for executing
KDPMEL programs. It guides and supports users in
performing their assigned tasks, controls the invocation of
tools, accesses the process artifacts, and maintains the process
execution states. It includes three significant components:
KDPMEL Interpreter, the Repository Management Unit
(RMU), and the Tool Invocation Unit (TIU). The KDPMEL
Interpreter implements the semantics of the language. The
RMU maintains the process data. The TIU manages the
invocation of tools specified in the process program.

Fig. 2. The high level architecture of the PCSE-KDD

5 An Example for Developing a
Traditional KDD Process in PCSE-
KDD
The example process is used for predicting the

likelihood that bank customers will reply to a mailing
campaign for buying a Personal Equity Plan (PEP) [36].

5.1 The Example Process Specification
Data Selection
The data is available in a comma-separated value (CSV) file.

Data Preparation
This stage includes steps to transform the selected dataset file
into its WEKA dataset representation, remove unnecessary
attributes, and construct the training and test datasets.

Data Mining
A decision-tree technique using the C4.5 (J48) WEKA
classifier [39] is used to predict the PEP value (YES/NO).

Interpretation/Evaluation
The results are evaluated using a tree visualization technique
to display the decision-tree graph model in addition to
inspecting the detailed results using a text editor.

5.2 The KDPMEL Prediction Process Program

5.2.1 Process Resources
Figure 3 illustrates the process resources as they are

depicted in the Resources Graph.

Int'l Conf. Data Mining | DMIN'15 | 111

Fig. 3. The Example Process Resources Graph

Artifacts
Figure 4 illustrates the process artifacts as they are depicted in
the Artifact Flow Graph.

Fig. 4. The Example Process Artifact Flow Graph

Tools
The tools utilized by the process are Microsoft Excel for the
data selection tasks, the WEKA data mining framework [39] in
both the interactive and command-line modes for the Data
Preparation, Data Mining, and Interpretation tasks, and the
text editor TextPad for some of the Interpretation tasks. Figure
5 illustrates the utilized tools.

Fig. 5. The Example Process Utilized Tools

Roles/Actors
Three different roles--database, data mining, and business
analysts--are fulfilled by three different actors are defined in
the program. Figure 6 illustrates the process roles/actors.

Fig. 6. The Example Process Roles/Actors

5.2.2 The Process Phases
The process includes four phases for data selection, data

preparation, data mining, and interpretation. Each phase is
defined using a KDPMEL activity construct as follows:
process PredictionKDDProcessExample { …

activity DataSelection {...}
activity DataPreparation {...}
activity DataMining {...}
activity Interpretation {...}

}

Figure 7 illustrates the phases of the process as they are
depicted in the Process Graph.

Fig. 7. The Process Graph of the Example Process

Each phase includes a number of generic and specialized
tasks that are defined using KDPMEL action and command
constructs. For instance, the DataPreparation phase is defined
in KDPMEL as follows:
activity DataPreparation {

action transformCsvData { ...
command transformCSVDataCommand {...} ...

}
action viewTransformedCsvData {...}
action constructMainDataset { ...

command transformCSVDataCommand {...} ...
}
action viewConstructedDataset {...}
action buildTrainingAndTestDatasets { ...

command buildTrainingDatasetCommand {...}
command buildTestDatasetCommand {...} ...

}
}

112 Int'l Conf. Data Mining | DMIN'15 |

The DataPreparation activity (Figure 8) includes a
sequence of five tasks for transforming the CSV data to its
WEKA representation, viewing the transformed data,
constructing the main dataset, viewing the constructed dataset,
and constructing the training and test datasets.

Fig. 8. The Example Process DataPreparation Activity Graph

5.2.3 The Process Actions and Commands
The process includes a number of generic and

specialized tasks. For instance, the DataPreparation activity
includes a specialized task that is used to transform the CSV
data file to its WEKA format. This is defined as follows:
action transformCsvData { …

utilize {
 call weka_Script_Tool {

 command transformCSVDataCommand { …
 input bank_Selected_Data; output …
 operation “weka.core.converters.CSVLoader”;
 parameters “”;

 }
 }

}
}

5.3 Enacting the Example Process Program
The PCSE-KDD Enactment Engine establishes a process

instance and presents it in the Enactment Perspective. The
Enactment Perspective displays the overall process execution
flow organized by the actors. Each actor is presented with its
assigned tasks in a tree view. The description of each task is
presented in a form view. A GUI mechanism to apply
appropriate transition states (e.g., a start command to execute
a posted task) for each task is provided to the actor.

Figure 9 illustrates the enactment of the
transformCsvData action. When selecting the start command,
the Enactment Engine starts the action and identifies its
utilized tool and specialized command and offers to invoke
them through dialogs. The actor confirms the invocation.

Fig. 9. The transformCsvData Action execution dialogs

5.4 Evaluation and Lessons Learned
Our experience using KDPMEL to specify the example

KDD process, as well as other KDD processes, supports our
first hypothesis that a language-based and process-oriented
approach is a flexible and effective approach to precisely and
explicitly specify KDD processes as process programs that
can be manipulated by programming techniques to reason
about the process and support its correct execution.

KDPMEL simplicity goal is achieved by having simple
syntax. KDPMEL flexibility goal is mainly achieved by
providing various levels for representing tasks at different
levels of detail. The generality goal is mainly achieved by not
making KDPMEL and PCSE-KDD bound to any particular
process models, techniques, or tools. KDPMEL
expressiveness goal is achieved by providing constructs to
represent both generic and specialized tasks along with their
sequencing and dependencies, consumed and/or produced
artifacts, utilized tools, and performing actors.

Our experience using KDPMEL and PCSE-KDD to
represent and execute the example process supports our
second hypothesis that effective support and customized
guidance, which depend on the concrete process itself rather
than its generic process model, can be achieved by
manipulating the explicit representation of the process in

Int'l Conf. Data Mining | DMIN'15 | 113

order to manage its various components and support its
performance.

6 Conclusions
KDPMEL provides a hybrid modeling approach for

specifying KDD processes, mixing different types of editors
and views in source-based, graph-based, and form-based
styles to allow both technical and non-technical users to
participate in the development of KDD processes.

PCSE-KDD is an Integrated Development Environment
for KDPMEL. It has been prototyped in Java plus a number of
open source libraries and tools. It has the look and feel of
Eclipse IDE and has a similar Workbench that includes three
different Perspectives, similar to Eclipse’s Perspectives, for
its Modeling, Enactment, and Management functionalities.

In PCSE-KDD/KDPMEL the process concept is
supported and enforced according to a specialized KDD
process that includes specific tasks organized according to
their sequencing, dependencies, and alternatives. In PCSE-
KDD, tools are loosely integrated through a flexible and
expandable plug-in mechanism. They are launched
automatically and dynamically according to the execution
order of the process tasks. PCSE-KDD provides a centralized
repository for maintaining and managing the process artifacts.
PCSE-KDD employs an engineering approach to develop
KDD processes. It is a language-based and process-driven
approach. The process is explicitly defined as a program in
KDPMEL and manipulated by PCSE-KDD to support its
analysis and execution. Specialized user guidance during
execution is extracted from the interpretation of the process
program. Users are offered their assigned tasks and supported
in executing them. In this language-based approach, KDD
processes are managed. Their specifications can evolve and
executions can be repeated. Moreover, they are validated
according to standard programming techniques.

Our future work includes modeling a wide range of
KDD processes and increase the level of sophistication of
those processes, expanding the support for more detailed
KDD artifacts, and continuing the development of KDPMEL
and PCSE-KDD to provide more enhanced and expanded
graphical modeling to cover the entire process, better user
interaction during process enactment, and to expand the
integration with a wider range of external process resources.

7 References
[1] Fayyad U. M., Piatetsky-Shapiro, G., and P. Smyth.
“Knowledge Discovery and Data Mining: Towards a Unifying
Framework”. MIT press, Cambridge, Mass., 1996.
[2] Colin Shearer. “The CRISP-DM Model: The New
Blueprint for Data Mining”. Journal of Data Warehousing,
Volume 5, Number 4, 2000.
[3] Graham J. Williams and Zhexue Huang. “Modeling the
KDD Process”. 1996.

[4] SK Gupta, Vasudha Bhatnagar, and SK Wasan. “A
Proposal for Data Mining Management System”. Dept. of
Computer Science and Engineering, Indian Institute of
Technology, 2001.
[5] Padhraic Smyth. “Breaking Out of the Black-Box:
Research Challenges in Data Mining”. The 2001 ACM
SIGMOD Workshop on Research Issues in Data Mining and
Knowledge Discovery, 2001.
[6] Rudiger Wirth and Jochen Hipp. “CRISP-DM: Towards
a Standard Process Model for Data Mining”. DaimlerChrysler
Research & Technology.
[7] David Jensen, Yulin Dong, Barbara S. Lerner, Eric K.
McCall, Leon J. Osterweil, Stanley M. Sutton, Jr., and
Alexander Wise. “Coordinating Agent Activities in
Knowledge Discovery Processes”. Department of Computer
Science, University of Massachusetts Amherst, 1999.
[8] C. Zeng, Y. Jiang, L. Zheng, J. Li, L. Li, H. Li, C. Shen,
W. Zhou, T. Li, B. Duan, M. Lei, and P. Wang. “FIU-Miner:
A Fast, Integrated, and User-Friendly System for Data Mining
in Distributed Environment”. In Proc. of the Nineteenth ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2013.
[9] Sutton Jr, Stanley M., and Leon J. Osterweil. “The
design of a next-generation process language”. In Software
Engineering—ESEC/FSE'97, pp. 142-158. Springer Berlin
Heidelberg, 1997.
[10] Fayyad U. M., Piatetsky-Shapiro, G., and Uthurusamy,
R. “Summary from the KDD-03 Panel – Data Mining: The
Next 10 Years”. The 9th International Conference on Data
Mining and Knowledge Discovery (KDD-03), 2003.
[11] Noll, J. and Scacchi, W. “Specifying process-oriented
hypertext for organizational computing”. Journal of Network
and Computer Applications 24, 39-61, 2001.
[12] Lee, H. “Evaluation of Little-JIL 1.0 with ISPW-6
Software Process Example”. Department of Computer
Science, University of Massachusetts, Amherst, March 1999.
[13] OMG, Inc. “Software Process Engineering Metamodel
Specification”.URL:http://www.omg.org/technology/documen
ts/formal/spem.htm, Version 1.1, January, 2005.
[14] Abraham Bernstein, Foster Provost, Shawndra Hill.
“Toward Intelligent Assistance for a Data Mining Process: An
Ontology-Based Approach for Cost-Sensitive Classification”.
IEEE Transactions on Knowledge and Data Engineering, vol.
17, no. 4, pp. 503-518, April, 2005.
[15] Robert Engles, Guido Linder, and Rudi Studer. “A
Methodology for Providing User Support for Developing
Knowledge Discovery Applications”.
URL:http://www.aifb.uni-karlsruhe.de/WBS/publications/
[16] Blake, M. B. and Williams, A. B. “Development and
Operational Processes for Agent-Oriented Database
Navigation for Knowledge Discovery”. In Proc. of the 15th
International Conference on Software Engineering &
Knowledge Engineering (SEKE ’2003), 2003.
[17] Petr Aubrecht, Petr Miksovsky, and Lubos Kral.
“SumatraTT: a Generic Data Pre-processing System”. 14th

114 Int'l Conf. Data Mining | DMIN'15 |

International Workshop on Database and Expert Systems
Applications (DEXA’03), 2004.
[18] Kamil Matousek and Petr Aubrecht. “Data Modeling
and Pre-processing for Efficient Data Mining in Cardiology”.
IEEE ITAB’06, Ioannina, October 28, 2006.
[19] S.K. Gupta, V.Bhatnagar, S.K. Wasan, and DVLN
Somayajulu. “Intension Mining: A New Paradigm in
Knowledge Discovery”. Dept. of Computer Science and
Engineering, Indian Institute of Technology, 2000.
[20] M.C. Fernandex, O. Delgado, J. I. Lopez, M. A. Luna, et
al. “DAMISYS: An Overview”. In Proc. of 1st Int’l Conf. on
Data Warehousing and Knowledge Discovery, Aug 1999.
[21] R. Meo, G. Psaila, and S. Ceri. “A Tightly-Coupled
Architecture for Data Mining”. In Proc. of 1st Int’l Conf. on
Data Warehousing and Knowledge Discovery, Aug 1999.
[22] Rudiger Wirth et al. “Towards Process-Oriented Tool
Support for Knowledge Discovery in Databases”.
DaimlerChrysler Research & Technology, 1997.
[23] S.K. Gupta, V.Bhatnagar, and SK Wasan. “Architecture
for knowledge discovery and knowledge management”.
Knowledge and Information Systems, Volume 7, Issue 3, pp.
310-336, 2005.
[24] Martin Spott and Detelf Nauck. “Intelligent Data
Analysis: Developing New Methodologies Through Pattern
Discovery and Recovery”. Chapter I: Automatic Intelligent
Data Analysis, Copyright ©, 2009, IGI Global, ISBN: 978-1-
59904-982-3, 2008.
[25] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. “YALE: Rapid Prototyping for Complex Data
Mining Tasks”. In Proc. of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD-06), 2006.
[26] J. Alcalá-Fdez, L. Sánchez, S. García, M.J. del Jesus, S.
Ventura, J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V.M.
Rivas, J.C. Fernández, and F. Herrera. “KEEL: A Software
Tool to Assess Evolutionary Algorithms for Data Mining
Problems”. Soft Computing 13:3 (2009) 307-318, 2009.
[27] A. Romei, S. Ruggieri, and F. Turini. “KDDML: a
middleware language and system for knowledge discovery in
databases”. In Data and Knowledge Engineering. Vol 57,
Issue 2, pages 179-220, May 2006.
[28] Marban, O., Mariscal, G., Menasalvas, E., and Segovia,
J. “An Engineering Approach to Data Mining Projects”.
Intelligent Data Engineering and Automated Learning –
IDEAL 2007, LNCS 4881, pp. 578-588, 2007.
[29] Marban, O., Segovia, J., Menasalvas, E., and Fernndex-
Baizn, C. “Toward data mining engineering: A software
engineering approach”. Information Systems 34 (1), 2009.
[30] Vincenzo Cannella, Giuseppe Russo, Daniele Peri,
Roberto Pirrone, and Edoardo Ardizzone. “Towards MKDA:
A Knowledge Discovery Assistant for Researches in
Medicine”. In Proc. of the 10th Conf. of the Italian
Association for Artificial Intelligence, pp. 773-780, 2007.
[31] Diamantini, C., Potena, D., and Smari, W.
“Collaborative Knowledge Discovery in Databases: A

Knowledge Exchange Perspective”. AAAI 2006 Fall
Symposium on Semantic Web for Collaborative Knowledge
Acquisition, 2006.
[32] Diamantini, C., Potena, D, and Panti, M. “Developing an
open knowledge discovery support system for a network
environment”. In Proc. of the IEEE International Symposium
on Collaborative Technologies and Systems, pages 274-281,
Saint Louis, MO, USA, May 18-19, 2005.
[33] Diamantini, C. and Potena, D. “Representing Service
Information in a Collaborative KDD Environment”. In Proc.
of the International Symposium on Collaborative
Technologies and Systems, pages 331-338, Irvine, CA, USA,
May 19-23, 2008.
[34] Diamantini, C., Potena, D., and Storti, E. “Collaborative
management of a repository of KDD processes”. International
Journal of Metadata, Semantics and Ontologies, 9(4), 299-
311, 2014.
[35] Esmin, A. A., Pereira, D. A., Pereira, M. R., & Araújo,
D. L. “SMINER–a platform for data mining based on service-
oriented architecture”. International Journal of Business
Intelligence and Data Mining, 8(1), 1-18, 2013.
[36] DePaul University, Chicago, IL, Classification via
Decision Trees in WEKA. URL:
http://maya.cs.depaul.edu/classes/ect584/WEKA/classify.html
[37] OMG, Inc., Common Warehouse Metamodel (CWM)
Specification, URL:
http://www.omg.org/technology/documents/formal/cwm.htm,
Version 1.1, March 2003.
[38] Greg Nordstrom, Janos Sztipanovits, Gabor Karsai, and
Akos Ledeczi. “Metamodeling - Rapid design and evolution
of domain-specific modeling environments”. IEEE
Engineering of Computer Based Systems (ECBS), Nashville,
TN, pp. 68-74, April 1999.
[39] University of Waikato, New Zealand. “Weka 3: Data
Mining Software in Java”. URL:
http://www.cs.waikato.ac.nz/ml/weka/. Version 3.6, 2010.
[40] Open Source, The State Machine Compiler (SMC)
Framework, URL: http://smc.sourceforge.net/
[41] Nurdatillah Hasim and Norhaidah Abu Haris. “A study
of open-source data mining tools for forecasting”. In Proc. of
the 9th International Conference on Ubiquitous Information
Management and Communication (IMCOM '15), 2015.
[42] Serban, F., Vanschoren, J., Kietz, J.-U., and Bernstein,
A. “A survey of intelligent assistants for data analysis”. ACM
Computing Surveys (CSUR) v.45 n.3, p.1-35, June 2013.

Int'l Conf. Data Mining | DMIN'15 | 115

