
DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

Advanced Framework for Simulation, Integration and
Modeling (AFSIM)

(Case Number: 88ABW-2015-2258)

Peter D Clive*, Jeffrey A Johnson*, Michael J Moss*, James M Zeh†, Brian M Birkmire†, and Douglas D Hodson‡

*The Boeing Company
St. Louis, MO

†Aerospace Systems Directorate
Air Force Research Laboratory

Wright Patterson Air Force Base, OH
‡Computer Science and Engineering Department

Air Force Institute of Technology, USA

Abstract— The Advanced Framework for Simulation,
Integration and Modeling (AFSIM) is an engagement and
mission level simulation environment written in C++ originally
developed by Boeing and now managed by the Air Force
Research Laboratory (AFRL). AFSIM was developed to address
analysis capability shortcomings in existing legacy simulation
environments as well as to provide an environment built with
more modern programming paradigms in mind. AFSIM can
simulate missions from subsurface to space and across multiple
levels of model fidelity. The AFSIM environment consists of three
pieces of software: the framework itself which provides the
backbone for defining platforms and interactions, an integrated
development environment (IDE) for scenario creation and
scripting, and a visualization tool called VESPA. AFSIM also
provides a flexible and easy to use agent modeling architecture
which utilizes behavior trees and hierarchical tasking called the
Reactive Integrated Planning aRchitecture (RIPR). AFSIM is
currently ITAR restricted and AFRL only distributes AFSIM
within the DoD community. However, work is under way to
modify the base architecture facilitating the maintenance of
AFSIM versions across multiple levels of releasability.

Index Terms— Simulation Framework, Mission Level Model,
Artificial Intelligence Framework, Agent Framework

I. INTRODUCTION

AFSIM is a government-approved C++ simulation
framework for use in constructing engagement and mission-
level analytic simulations for the Operations Analysis
community, as well as virtual experimentation. The primary
goal of AFSIM applications is the assessment of new system
concepts and designs with advanced capabilities not easily
assessed within traditional engagement and mission level
simulations. Development activities include modeling weapon
kinematics, sensor systems, electronic warfare systems,
communication networks, advanced tracking, correlation, and
fusion algorithms, and automated tactics and battle
management software.

In this section, the reasons for the development and history
of AFSIM are presented. The next section provides an
overview of the AFSIM architecture, integrated development

environment, visualization tools and AFSIM’s agent modeling
architecture. The following section highlights the
current/planned effort to create a Component Based
Architecture for AFSIM which will allow multiple levels of
releasability. The last section provides a conclusion on AFSIM
and its current state.

A. Background
AFSIM is based on The Boeing Company’s Analytic

Framework for Network-Enabled Systems (AFNES). Under
contract, Boeing delivered AFNES to the Air Force
(specifically AFRL/RQQD) with unlimited rights, including
source code, in February 2013. AFRL/RQQD rebranded
AFNES as AFSIM and has begun to distribute AFSIM within
the Air Force and DoD, including DoD contractors.

The Boeing Company developed and funded the AFNES
simulation framework through internal research and
development (IR&D) funding from 2003-2014. Beginning in
2005, Boeing began developing a customized AFNES
capability to simulate threat Integrated Air Defense Systems
(IADS) to assess advanced air vehicle concepts performing
Precision Engagement missions. The requirements of this new
IADS simulation capability included being able to match
results with the Air Force-approved mission level model. The
reason for developing an AFNES alternative to the Air Force
IADS modeling capability relates to the limitations associated
with the Air Force mission level model. Examples of areas in
which the Air Force mission level model is lacking include:
expansion of representations of Electronic Warfare (EW)
techniques; the integration of independent tracking and
correlation systems; utilization of vendor-supplied auto-routers
and mission optimization capabilities; net-centric
communications systems; the contribution of Space assets; and
integration of special, existing models, such as AGI’s System
Tool Kit (STK).

The AFNES IADS capability became operational in 2008,
and is currently being utilized by multiple Boeing development
programs, as well as government contracted programs, to
assess the ability of advanced air vehicle design concepts to

Int'l Conf. Scientific Computing | CSC'15 | 73

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

penetrate advanced Air Defense networks and conduct
precision engagement missions. In 2010, the AFRL/RQQD
Aerospace Vehicles Technology Assessment & Simulation
(AVTAS) Lab (formerly AFRL/RBCD) commissioned a trade
study of M&S Frameworks for the purpose of assessing
potential alternatives to replace or augment their current
constructive simulation environment. The result of the AFRL
trade study was the selection of AFNES as the best M&S
framework to meet their air vehicle mission effectiveness
analysis requirements.

II. AFSIM SOFTWARE SUITE

The AFSIM software suite consists of three distinct pieces
or applications. The first piece is the framework itself which
provides the underlying architecture and services allowing the
creation of simulation applications. The second piece is the
integrated development environment (IDE) which facilitates
the creation of scenarios. Lastly the Visualization Environment
for Scenario, Preparation and Analysis (VESPA) application
allows for post-processing and visualization of scenario
executions. This section provides detail on all three.

A. Functional Architecture
AFSIM is an object-oriented, C++ simulation environment

that facilitates the prototyping of customized engagement and
mission level warfare simulations. AFSIM includes a set of
software libraries, shown as a functional architecture in Figure
1, containing routines commonly used to create analytic
applications. The AFSIM infrastructure includes routines for
the top-level control and management of the simulation;
management of time and events within the simulation;
management of terrain databases; general purpose math and
coordinate transformation utilities; and support of standard
simulation interfaces, such as those supporting the Distributed
Interactive Simulation (DIS) protocol. The AFSIM component
software routines support the definition of entities (platforms)
to populate scenarios. These software routines contain models
for a variety of user-defined movers, sensors, weapons,
processors for defining system behavior and information flow,
communications and track management.

The top-level characteristics and capabilities of the AFSIM
framework include:

A class hierarchy of simulation objects, including data
driven platforms, movers, sensors, communications
networks, processors, weapons, and simulation
observers.
Simulation and Event classes to control time and/or
event processing for AFSIM-based models, and the
logging of entity data.
Standard math libraries for coordinate systems (WGS-
84, Spherical, ENU, NED), random number
generation, DIS communication, High-Level
Architecture (HLA) publish and subscribe, and
generalized software routines, such as container
classes for storing objects and data.
A common geo-spatial environment and terrain
representation, importing standard formats such as
National Geospatial-Intelligence Agency (NGA)
Digital Terrain Elevation Data (DTED), ESRI,
GeoTiff and VMAP database formats.
A general-purpose scripting language to provide
access to framework objects using text input files (i.e.,
scripts) rather than through the Application
Programming Interface (API).
Communications network modeling, including basic
radio transceivers and advanced communications
algorithms, including addressable nodes, routers,
multi-access protocols, contention and queuing.
Electronic warfare modeling, including noise and
deceptive jamming techniques, as well as the ability to
jam and degrade any type of electro-magnetic
receiver, including communications systems.
Modeling of information flow and tasking between
player and system elements to define candidate
Network Centric Operation (NCO) concepts.
The ability to run any AFSIM application in both
constructive (batch processing) and virtual (real-time)
modes.
User interface elements for integrated scenario
generation and post-processor visualization software.

In addition to the AFSIM core, several capabilities are
available. Additional capabilities include: multitarget tracking
algorithms; Link-16 modeling of both the physical and
message layers; and Reactive Integrated Planning
aRchitecture (RIPR) intelligent agent algorithms for
implementing complex object behaviors. RIPR utilizes a
Boeing-developed Quantum Tasker concept for commander
subordinate interaction and task de-confliction. Section 3
provides additional details of the RIPR model. Restricted
capabilities include missile flyout models.

The baseline AFSIM constructive application is called the
Simulation of Autonomously Generated Entities (SAGE),
which was one of the first constructive applications developed
using the AFSIM framework. SAGE is a simple application
that reads in a user-defined input file, executes the simulation,
and outputs any user-defined data files. The original purpose

Fig. 1. The AFSIM functional architecture.

74 Int'l Conf. Scientific Computing | CSC'15 |

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

for SAGE was to simulate background air, road or maritime
traffic. Although SAGE retains the capability to generate
background traffic, the user can exercise all of the resident
AFSIM capabilities.

B. AFSIM IDE
AFSIM permits the user to create subsystem definitions in

separate files and to include those definitions in a hierarchal
manner to define representations. This enables subsystem
configuration control and reuse. This flexibility leads to large
numbers of subsystem definition files when creating scenarios
with a wide variety of different complex systems. The VESPA
application facilitates the creation of the scenario initial
conditions files. It does not, however, address the problems
associated with defining and integrating system and subsystem
models or defining system-level relationships such as
command chains and peers using ASCII data files. Any input
file errors are not discovered until an AFSIM application is
executed.

In early 2011, Boeing initiated the development of the
AFSIM Integrated Development Environment (IDE) to support
the analyst in defining and integrating system and subsystem
models. The AFSIM IDE patterns itself on IDEs created for
use with software development. With software IDEs, a single
application is used to edit files, compile, link, and run the
software executable, and view output results or error messages.
Likewise, the AFSIM IDE permits the analyst to edit input
files, execute the AFSIM-based application, and visualize the
output results and any error messages. This iterative process
allows the analyst to receive immediate feedback as system and
subsystem models are defined and scenarios are created.

Current capabilities of the IDE support input file creation
including support for syntax highlighting, auto-completion,
context-sensitive command documentation and a variety of
scenario browsers. Syntax highlighting makes reading and
understanding the content easier for the analyst. Unknown
keywords or commands are underlined in red for easy
discovery. Examples of unknown keywords or commands
include misspelling of keywords or using keywords out of
scope. The auto-completion feature provides a list of
suggestions for the analyst to choose from, based on the
context. The analyst can select one of the suggestions, and the
command will be completed without having to manually type
the command. Context-sensitive command documentation
allows the analyst to bring up documentation associated with a
command to illustrate the scope and use of the command.
Other IDE capabilities are available to assist the analyst in
defining system and subsystem models and scenarios.

The IDE can execute any AFSIM-based application using
the input files defined by the analyst. Any screen output from
the application is displayed in an IDE output window along
with any error messages. Current capabilities of the IDE to
view simulation results include the ability to run the VESPA
application from the IDE using the AFSIM replay file created
during the simulation run.

C. Visual Environment for Scenario Preparation and Analysis
(VESPA)
To support the analyst, Boeing developed tools to facilitate

scenario generation and post-process data analysis and
visualization. Specifically, the Visual Environment for
Scenario Preparation and Analysis (VESPA) software
application was developed to support the creation of scenario
initial condition files compatible with any AFSIM-based
application. In addition, VESPA can be used to visualize object
positional time histories and other event information generated
as output from any AFSIM-based application. This allows the
analyst to quickly understand and analyze the output from the
simulation. Since VESPA is a “DIS-listener” visualization
tool, it may also be used to display real-time entity interactions
from any real-time simulation that publishes DIS data.

VESPA includes a graphical user interface (GUI) that
includes a drawing area with a geospatial map and a data input
area, as shown in Figure 2.

Using VESPA, the analyst can place icons representing
objects at specific latitude and longitude locations on a
geospatial map. Initial conditions can then be assigned for each
selected object. For example, the initial conditions of an
aircraft could be its speed, heading and altitude. Visual features
associated with objects, called attachments, can also be created.
Examples include routes, range rings and zones.

VESPA can be used to display object positional histories
and events using an AFSIM replay file generated during an
AFSIM simulation run. The AFSIM replay file is a binary file
containing the DIS output from the AFSIM simulation. In
addition, plots can be generated for selected events that
occurred during the simulation.

III. REACTIVE INTEGRATED PLANNING ARCHITECTURE (RIPR)
RIPR is the framework included with AFSIM that enables

behavior modeling. RIPR is agent based, meaning that each
agent acts according to its own knowledge; however, it is
common for agents to cooperate and communicate with each
other. RIPR is best thought of as a collection of utilities and
algorithms that are used to construct intelligent agents. Most

Fig. 2. The VESPA GUI.

Int'l Conf. Scientific Computing | CSC'15 | 75

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

modern RIPR agents, however, do contain a Perception
Processor and a Quantum Tasker Processor. The agent senses
the world by querying the platform and its subsystems, for
information. The agent builds knowledge internally, makes
decisions, and then takes action by controlling its platform
accordingly. Most platform queries and control actions take
place inside of the AFSIM scripting language. The knowledge-
building and decision-making actions that RIPR performs are
aided by various artificial intelligence technologies described
in this section.

A. Cognitive Model
A RIPR agent maintains its own perception of threats,

assets, and peers. This represents an agent’s limited brain and
the information can be delayed or erroneous. To represent
players of varying skill, each agent has its own tunable
cognitive model. For example, an “expert” pilot agent can
maintain knowledge of 16 threats that he updates (looks at
radar) every 5 seconds. Much of the cognitive model’s ability
is contained within the Perception Processor.

B. Quantum Tasker
The RIPR Quantum

Tasker is used for
commander subordinate
interaction and task de-
confliction. The Quantum
Tasker comprises task
generator(s), task-asset
pair evaluator(s), an
allocation algorithm, and
various strategy settings
(such as how to handle
rejected task assignments).
Each component
(generator, evaluator,
allocator) can be selected
from pre-defined options,
or custom created in
script. The RIPR Quantum Tasker tasking system is also
compatible with platforms using the older task manager
(WSF_TASK_MANAGER and WSF_TASK_PROCESSOR).
It can send and/or receive tasks to/from other RIPR agents and
other task manager platforms. Figure 3 illustrates the various
pieces of the Quantum Tasker and their connections.

The Quantum Tasker’s method of operation:
Acquire perception of assets from cognitive model for
matrix columns.
Acquire perception of threats from cognitive model
Generator generates tasks for matrix rows.
Strategy dictates how previously assigned tasks,
rejected tasks, or new tasks are handled.
Evaluator calculates values for possible asset-task
pairs for matrix body.
The allocator runs on the task-asset matrix to find
appropriate task allocation, e.g. greedy, optimal, etc.

Tasks are assigned over comm, handshaking
performed for acceptance/rejection.

C. Behavior Tree
RIPR agents typically make use of a RIPR behavior tree to

define their behavior. A behavior is a compact modular piece
of script that performs some unique action. Behaviors should
be parameterized and reusable. A behavior tree allows
connection of behaviors in interesting ways so they perform in
certain orders or subsets. The whole tree aggregates the
behaviors to model an agent’s behavior. Figure 4 provides an
example of a RIPR behavior tree.

RIPR behavior trees provide five different intermediate
connector-node types:

Selector - chooses and performs first child behavior to
pass its precondition check.
Sequence - performs all child behaviors in sequence
until one fails its precondition check.
Parallel - performs all child behaviors whose
precondition check passes.
Weight Random - makes a weighted random selection
from its child behaviors.
Priority Selector - selects the child behavior who
returns the largest precondition value.

Behavior trees provide for maximum utility for developing
and editing agents. A properly constructed behavior tree allows
a user to find relevant script fast, and swap in other behaviors
at appropriate places. For example: try separating out behaviors
for choosing desired heading, altitude, and speed from the
behavior that actually performs the flight task. When you
develop a new flying behavior, e.g. one that used a new route
finder, you can swap that for the old one while keeping the
logic in place for calculating desired direction.

D. Cluster Manager
Some RIPR agents take advantage of the Cluster Manager

to perform clustering on threat or asset perception in order to
think of these larger sets as smaller groups. For example, it is
common for a commander to group incoming threats into two
clusters so it can send each of its two squadrons after separate

Fig. 3. Quantum tasker mode of
operation.

Fig. 4. Example RIPR behavior tree.

76 Int'l Conf. Scientific Computing | CSC'15 |

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

groups. The Cluster Manager can cluster based on desired
similarity thresholds or based on the desired number of
clusters. Similarity measurements can be based on ground
distance, 3D distance, or 3D distance and speed. The Cluster
Manager can use one of three clustering algorithms:

Hierarchical Tree Max - default, guaranteed to be
optimal, no cluster member dissimilar to any other
member past the threshold (this method provides for
tighter “classic” groups of members)
Hierarchical Tree Min - guaranteed to be optimal, no
cluster member dissimilar to at least one other
member past the threshold (this method allows for
long “stringy” chains of members)
K-Means - not guaranteed to be optimal, fastest,
clusters are centered on K different mean points.

E. Example Agent Interaction
Below is an example sequence of interactions within the

RIPR architecture for a group of agents:
1. A commander agent obtains threats from his cognitive

model (Perception Processor).
2. Commander’s Quantum Tasker generator clusters

threats into groups and creates a task for each group.
3. Commander’s Quantum Tasker evaluator scores his

squadrons (assets) against each group.
4. Commander’s Quantum Tasker allocator finds

optimal task assignment.
5. Commander assigns task(s) to subordinate flight leads

over comm.
6. Flight lead uses asset and threat perception from

cognitive model while interpreting task.
7. Flight lead agent’s Quantum Tasker generates,

evaluates, allocates, and assigns tasks to pilot agents.
8. Pilot agent uses peer and threat perception from

cognitive model.
9. Pilot agent’s behavior tree checks for evade,

disengage, bingo conditions.
10. Pilot agent’s behavior tree flies to intercept and

eventually engages threat from task.
11. Pilot agent uses route finder to fly around SAM zones

during ingress towards target.

IV. FUTURE WORK

The current state of the AFSIM framework only allows
distribution to DoD agencies and DoD contractor’s due to
International Traffic in Arms Regulations (ITAR) restrictions.
It is the desire of the AFRL to allow wider dissemination of the
framework in order to provide more modeling and simulation
collaboration opportunities. However, the current architecture
of AFSIM does not easily lend itself to maintaining multiple
versions across multiple release restrictions, which is why an
architecture rework is underway to create a Component Based
Architecture.

A. Component Based Architecture
Figure 5 details the current base level architecture of

AFSIM. Since the base components of AFSIM are directly
named in code this makes it difficult to add or remove base
component types. Also it is currently difficult to extend other
non-platform components.

In order to better facilitate the ability to add and remove
base components work is underway to create a Component
Based Architecture, which relies on an underlying generic
component class where all components can be derived from.
This architecture allows access via naming for components that
already exist and will ease the addition and removal of certain
component types. This solution maximizes commonality with
the original architecture while at the same time providing a
means to maintain a release version with no weapons or
electronic warfare capabilities included as well as an ITAR
release, which would include those components. The new
architecture is shown in Figure 6.

V. CONCLUSION

In this paper we have provided a high level overview of the
AFSIM simulation environment. AFSIM has been under
development by Boeing under IR&D funds for more than 10
years. Under contract, Boeing delivered AFSIM to the Air
Force (specifically AFRL/RQQD) with unlimited government
rights (including source code) in February 2013. AFRL has
now begun to distribute AFSIM within the DoD community.
The AFSIM distribution comes with three pieces of software:
the framework itself, an IDE and the visualization tool VESPA.
Although AFSIM is currently ITAR restricted future work is
planned to modify the underlying architecture to facilitate
maintaining multiple versions with varying releasability. Under
AFRL management AFSIM will continue to grow as a valuable
modeling and simulation tool.

Fig. 5. Existing AFSIM base level architecture.

Fig. 6. New AFSIM Component Based Architecture.

Int'l Conf. Scientific Computing | CSC'15 | 77

