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Abstract— The Advanced Framework for Simulation, 
Integration and Modeling (AFSIM) is an engagement and 
mission level simulation environment written in C++ originally 
developed by Boeing and now managed by the Air Force 
Research Laboratory (AFRL). AFSIM was developed to address 
analysis capability shortcomings in existing legacy simulation 
environments as well as to provide an environment built with 
more modern programming paradigms in mind. AFSIM can 
simulate missions from subsurface to space and across multiple 
levels of model fidelity. The AFSIM environment consists of three 
pieces of software: the framework itself which provides the 
backbone for defining platforms and interactions, an integrated 
development environment (IDE) for scenario creation and 
scripting, and a visualization tool called VESPA. AFSIM also 
provides a flexible and easy to use agent modeling architecture 
which utilizes behavior trees and hierarchical tasking called the
Reactive Integrated Planning aRchitecture (RIPR). AFSIM is 
currently ITAR restricted and AFRL only distributes AFSIM 
within the DoD community. However, work is under way to 
modify the base architecture facilitating the maintenance of 
AFSIM versions across multiple levels of releasability.

Index Terms— Simulation Framework, Mission Level Model, 
Artificial Intelligence Framework, Agent Framework

I. INTRODUCTION

AFSIM is a government-approved C++ simulation 
framework for use in constructing engagement and mission-
level analytic simulations for the Operations Analysis 
community, as well as virtual experimentation. The primary 
goal of AFSIM applications is the assessment of new system 
concepts and designs with advanced capabilities not easily 
assessed within traditional engagement and mission level 
simulations. Development activities include modeling weapon 
kinematics, sensor systems, electronic warfare systems, 
communication networks, advanced tracking, correlation, and 
fusion algorithms, and automated tactics and battle 
management software.

In this section, the reasons for the development and history 
of AFSIM are presented. The next section provides an 
overview of the AFSIM architecture, integrated development 

environment, visualization tools and AFSIM’s agent modeling 
architecture. The following section highlights the 
current/planned effort to create a Component Based
Architecture for AFSIM which will allow multiple levels of 
releasability. The last section provides a conclusion on AFSIM 
and its current state.

A. Background
AFSIM is based on The Boeing Company’s Analytic 

Framework for Network-Enabled Systems (AFNES). Under 
contract, Boeing delivered AFNES to the Air Force 
(specifically AFRL/RQQD) with unlimited rights, including 
source code, in February 2013. AFRL/RQQD rebranded 
AFNES as AFSIM and has begun to distribute AFSIM within 
the Air Force and DoD, including DoD contractors.

The Boeing Company developed and funded the AFNES 
simulation framework through internal research and 
development (IR&D) funding from 2003-2014.  Beginning in 
2005, Boeing began developing a customized AFNES 
capability to simulate threat Integrated Air Defense Systems 
(IADS) to assess advanced air vehicle concepts performing 
Precision Engagement missions. The requirements of this new 
IADS simulation capability included being able to match 
results with the Air Force-approved mission level model. The 
reason for developing an AFNES alternative to the Air Force 
IADS modeling capability relates to the limitations associated 
with the Air Force mission level model. Examples of areas in 
which the Air Force mission level model is lacking include: 
expansion of representations of Electronic Warfare (EW) 
techniques; the integration of independent tracking and 
correlation systems; utilization of vendor-supplied auto-routers 
and mission optimization capabilities; net-centric 
communications systems; the contribution of Space assets; and 
integration of special, existing models, such as AGI’s System 
Tool Kit (STK).

The AFNES IADS capability became operational in 2008, 
and is currently being utilized by multiple Boeing development 
programs, as well as government contracted programs, to 
assess the ability of advanced air vehicle design concepts to 
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penetrate advanced Air Defense networks and conduct 
precision engagement missions. In 2010, the AFRL/RQQD 
Aerospace Vehicles Technology Assessment & Simulation 
(AVTAS) Lab (formerly AFRL/RBCD) commissioned a trade 
study of M&S Frameworks for the purpose of assessing 
potential alternatives to replace or augment their current 
constructive simulation environment. The result of the AFRL 
trade study was the selection of AFNES as the best M&S 
framework to meet their air vehicle mission effectiveness 
analysis requirements.

II. AFSIM SOFTWARE SUITE

The AFSIM software suite consists of three distinct pieces 
or applications. The first piece is the framework itself which 
provides the underlying architecture and services allowing the 
creation of simulation applications. The second piece is the 
integrated development environment (IDE) which facilitates
the creation of scenarios. Lastly the Visualization Environment 
for Scenario, Preparation and Analysis (VESPA) application 
allows for post-processing and visualization of scenario 
executions. This section provides detail on all three.

A. Functional Architecture
AFSIM is an object-oriented, C++ simulation environment 

that facilitates the prototyping of customized engagement and 
mission level warfare simulations. AFSIM includes a set of 
software libraries, shown as a functional architecture in Figure 
1, containing routines commonly used to create analytic 
applications. The AFSIM infrastructure includes routines for 
the top-level control and management of the simulation; 
management of time and events within the simulation; 
management of terrain databases; general purpose math and 
coordinate transformation utilities; and support of standard 
simulation interfaces, such as those supporting the Distributed 
Interactive Simulation (DIS) protocol. The AFSIM component
software routines support the definition of entities (platforms) 
to populate scenarios. These software routines contain models 
for a variety of user-defined movers, sensors, weapons, 
processors for defining system behavior and information flow, 
communications and track management.

The top-level characteristics and capabilities of the AFSIM 
framework include:

A class hierarchy of simulation objects, including data 
driven platforms, movers, sensors, communications 
networks, processors, weapons, and simulation 
observers.
Simulation and Event classes to control time and/or 
event processing for AFSIM-based models, and the 
logging of entity data.
Standard math libraries for coordinate systems (WGS-
84, Spherical, ENU, NED), random number 
generation, DIS communication, High-Level 
Architecture (HLA) publish and subscribe, and 
generalized software routines, such as container 
classes for storing objects and data.
A common geo-spatial environment and terrain 
representation, importing standard formats such as 
National Geospatial-Intelligence Agency (NGA) 
Digital Terrain Elevation Data (DTED), ESRI, 
GeoTiff and VMAP database formats.
A general-purpose scripting language to provide 
access to framework objects using text input files (i.e., 
scripts) rather than through the Application 
Programming Interface (API).
Communications network modeling, including basic 
radio transceivers and advanced communications 
algorithms, including addressable nodes, routers, 
multi-access protocols, contention and queuing.
Electronic warfare modeling, including noise and 
deceptive jamming techniques, as well as the ability to 
jam and degrade any type of electro-magnetic 
receiver, including communications systems.
Modeling of information flow and tasking between 
player and system elements to define candidate 
Network Centric Operation (NCO) concepts.
The ability to run any AFSIM application in both 
constructive (batch processing) and virtual (real-time)
modes.
User interface elements for integrated scenario 
generation and post-processor visualization software.

In addition to the AFSIM core, several capabilities are 
available. Additional capabilities include: multitarget tracking 
algorithms; Link-16 modeling of both the physical and 
message layers; and Reactive Integrated Planning 
aRchitecture (RIPR) intelligent agent algorithms for 
implementing complex object behaviors. RIPR utilizes a 
Boeing-developed  Quantum Tasker concept for commander 
subordinate interaction and task de-confliction. Section 3 
provides additional details of the RIPR model. Restricted 
capabilities include missile flyout models.

The baseline AFSIM constructive application is called the 
Simulation of Autonomously Generated Entities (SAGE), 
which was one of the first constructive applications developed 
using the AFSIM framework. SAGE is a simple application 
that reads in a user-defined input file, executes the simulation, 
and outputs any user-defined data files. The original purpose 

Fig. 1.  The AFSIM functional architecture.
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for SAGE was to simulate background air, road or maritime 
traffic. Although SAGE retains the capability to generate 
background traffic, the user can exercise all of the resident 
AFSIM capabilities.

B. AFSIM IDE
AFSIM permits the user to create subsystem definitions in 

separate files and to include those definitions in a hierarchal 
manner to define representations. This enables subsystem 
configuration control and reuse. This flexibility leads to large 
numbers of subsystem definition files when creating scenarios 
with a wide variety of different complex systems. The VESPA 
application facilitates the creation of the scenario initial 
conditions files. It does not, however, address the problems 
associated with defining and integrating system and subsystem 
models or defining system-level relationships such as 
command chains and peers using ASCII data files. Any input 
file errors are not discovered until an AFSIM application is 
executed.

In early 2011, Boeing initiated the development of the 
AFSIM Integrated Development Environment (IDE) to support 
the analyst in defining and integrating system and subsystem 
models. The AFSIM IDE patterns itself on IDEs created for 
use with software development. With software IDEs, a single 
application is used to edit files, compile, link, and run the 
software executable, and view output results or error messages. 
Likewise, the AFSIM IDE permits the analyst to edit input 
files, execute the AFSIM-based application, and visualize the 
output results and any error messages. This iterative process
allows the analyst to receive immediate feedback as system and 
subsystem models are defined and scenarios are created.

Current capabilities of the IDE support input file creation 
including support for syntax highlighting, auto-completion, 
context-sensitive command documentation and a variety of 
scenario browsers. Syntax highlighting makes reading and 
understanding the content easier for the analyst. Unknown 
keywords or commands are underlined in red for easy 
discovery. Examples of unknown keywords or commands 
include misspelling of keywords or using keywords out of 
scope. The auto-completion feature provides a list of 
suggestions for the analyst to choose from, based on the 
context. The analyst can select one of the suggestions, and the 
command will be completed without having to manually type 
the command. Context-sensitive command documentation 
allows the analyst to bring up documentation associated with a 
command to illustrate the scope and use of the command. 
Other IDE capabilities are available to assist the analyst in 
defining system and subsystem models and scenarios.

The IDE can execute any AFSIM-based application using 
the input files defined by the analyst. Any screen output from 
the application is displayed in an IDE output window along 
with any error messages. Current capabilities of the IDE to 
view simulation results include the ability to run the VESPA 
application from the IDE using the AFSIM replay file created 
during the simulation run.

C. Visual Environment for Scenario Preparation and Analysis 
(VESPA)
To support the analyst, Boeing developed tools to facilitate 

scenario generation and post-process data analysis and 
visualization. Specifically, the Visual Environment for 
Scenario Preparation and Analysis (VESPA) software 
application was developed to support the creation of scenario 
initial condition files compatible with any AFSIM-based 
application. In addition, VESPA can be used to visualize object 
positional time histories and other event information generated 
as output from any AFSIM-based application. This allows the 
analyst to quickly understand and analyze the output from the 
simulation.  Since VESPA is a “DIS-listener” visualization 
tool, it may also be used to display real-time entity interactions 
from any real-time simulation that publishes DIS data.

VESPA includes a graphical user interface (GUI) that 
includes a drawing area with a geospatial map and a data input 
area, as shown in Figure 2.

Using VESPA, the analyst can place icons representing 
objects at specific latitude and longitude locations on a 
geospatial map. Initial conditions can then be assigned for each 
selected object. For example, the initial conditions of an 
aircraft could be its speed, heading and altitude. Visual features 
associated with objects, called attachments, can also be created. 
Examples include routes, range rings and zones.

VESPA can be used to display object positional histories 
and events using an AFSIM replay file generated during an 
AFSIM simulation run. The AFSIM replay file is a binary file 
containing the DIS output from the AFSIM simulation. In 
addition, plots can be generated for selected events that 
occurred during the simulation. 

III. REACTIVE INTEGRATED PLANNING ARCHITECTURE (RIPR)
RIPR is the framework included with AFSIM that enables 

behavior modeling. RIPR is agent based, meaning that each 
agent acts according to its own knowledge; however, it is 
common for agents to cooperate and communicate with each 
other.  RIPR is best thought of as a collection of utilities and 
algorithms that are used to construct intelligent agents. Most 

Fig. 2.  The VESPA GUI.
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modern RIPR agents, however, do contain a Perception 
Processor and a Quantum Tasker Processor. The agent senses 
the world by querying the platform and its subsystems, for 
information. The agent builds knowledge internally, makes 
decisions, and then takes action by controlling its platform 
accordingly. Most platform queries and control actions take 
place inside of the AFSIM scripting language. The knowledge-
building and decision-making actions that RIPR performs are 
aided by various artificial intelligence technologies described 
in this section.

A. Cognitive Model
A RIPR agent maintains its own perception of threats, 

assets, and peers. This represents an agent’s limited brain and 
the information can be delayed or erroneous. To represent 
players of varying skill, each agent has its own tunable 
cognitive model. For example, an “expert” pilot agent can 
maintain knowledge of 16 threats that he updates (looks at 
radar) every 5 seconds.  Much of the cognitive model’s ability 
is contained within the Perception Processor.

B. Quantum Tasker
The RIPR Quantum 

Tasker is used for 
commander subordinate 
interaction and task de-
confliction. The Quantum 
Tasker comprises task 
generator(s), task-asset 
pair evaluator(s), an 
allocation algorithm, and 
various strategy settings 
(such as how to handle 
rejected task assignments). 
Each component 
(generator, evaluator, 
allocator) can be selected 
from pre-defined options, 
or custom created in 
script. The RIPR Quantum Tasker tasking system is also 
compatible with platforms using the older task manager 
(WSF_TASK_MANAGER and WSF_TASK_PROCESSOR). 
It can send and/or receive tasks to/from other RIPR agents and 
other task manager platforms. Figure 3 illustrates the various 
pieces of the Quantum Tasker and their connections.

The Quantum Tasker’s method of operation:
Acquire perception of assets from cognitive model for 
matrix columns.
Acquire perception of threats from cognitive model
Generator generates tasks for matrix rows.
Strategy dictates how previously assigned tasks, 
rejected tasks, or new tasks are handled.
Evaluator calculates values for possible asset-task 
pairs for matrix body.
The allocator runs on the task-asset matrix to find 
appropriate task allocation, e.g. greedy, optimal, etc.

Tasks are assigned over comm, handshaking
performed for acceptance/rejection.

C. Behavior Tree
RIPR agents typically make use of a RIPR behavior tree to 

define their behavior. A behavior is a compact modular piece 
of script that performs some unique action. Behaviors should 
be parameterized and reusable. A behavior tree allows 
connection of behaviors in interesting ways so they perform in 
certain orders or subsets. The whole tree aggregates the 
behaviors to model an agent’s behavior. Figure 4 provides an 
example of a RIPR behavior tree.

RIPR behavior trees provide five different intermediate 
connector-node types:

Selector - chooses and performs first child behavior to 
pass its precondition check.
Sequence - performs all child behaviors in sequence 
until one fails its precondition check.
Parallel - performs all child behaviors whose 
precondition check passes.
Weight Random - makes a weighted random selection 
from its child behaviors.
Priority Selector - selects the child behavior who 
returns the largest precondition value.

Behavior trees provide for maximum utility for developing 
and editing agents. A properly constructed behavior tree allows 
a user to find relevant script fast, and swap in other behaviors 
at appropriate places. For example: try separating out behaviors 
for choosing desired heading, altitude, and speed from the 
behavior that actually performs the flight task. When you 
develop a new flying behavior, e.g. one that used a new route 
finder, you can swap that for the old one while keeping the 
logic in place for calculating desired direction.

D. Cluster Manager
Some RIPR agents take advantage of the Cluster Manager 

to perform clustering on threat or asset perception in order to 
think of these larger sets as smaller groups. For example, it is 
common for a commander to group incoming threats into two 
clusters so it can send each of its two squadrons after separate 

Fig. 3.  Quantum tasker mode of 
operation.

Fig. 4.  Example RIPR behavior tree.
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groups. The Cluster Manager can cluster based on desired 
similarity thresholds or based on the desired number of 
clusters. Similarity measurements can be based on ground 
distance, 3D distance, or 3D distance and speed. The Cluster 
Manager can use one of three clustering algorithms:

Hierarchical Tree Max - default, guaranteed to be 
optimal, no cluster member dissimilar to any other 
member past the threshold (this method provides for 
tighter “classic” groups of members)
Hierarchical Tree Min - guaranteed to be optimal, no 
cluster member dissimilar to at least one other 
member past the threshold (this method allows for 
long “stringy” chains of members)
K-Means - not guaranteed to be optimal, fastest, 
clusters are centered on K different mean points.

E. Example Agent Interaction
Below is an example sequence of interactions within the 

RIPR architecture for a group of agents:
1. A commander agent obtains threats from his cognitive 

model (Perception Processor).
2. Commander’s Quantum Tasker generator clusters 

threats into groups and creates a task for each group.
3. Commander’s Quantum Tasker evaluator scores his 

squadrons (assets) against each group.
4. Commander’s Quantum Tasker allocator finds 

optimal task assignment.
5. Commander assigns task(s) to subordinate flight leads 

over comm.
6. Flight lead uses asset and threat perception from 

cognitive model while interpreting task.
7. Flight lead agent’s Quantum Tasker generates, 

evaluates, allocates, and assigns tasks to pilot agents.
8. Pilot agent uses peer and threat perception from 

cognitive model.
9. Pilot agent’s behavior tree checks for evade, 

disengage, bingo conditions.
10. Pilot agent’s behavior tree flies to intercept and 

eventually engages threat from task.
11. Pilot agent uses route finder to fly around SAM zones 

during ingress towards target.

IV. FUTURE WORK

The current state of the AFSIM framework only allows 
distribution to DoD agencies and DoD contractor’s due to 
International Traffic in Arms Regulations (ITAR) restrictions. 
It is the desire of the AFRL to allow wider dissemination of the 
framework in order to provide more modeling and simulation 
collaboration opportunities. However, the current architecture 
of AFSIM does not easily lend itself to maintaining multiple 
versions across multiple release restrictions, which is why an 
architecture rework is underway to create a Component Based
Architecture.

A. Component Based Architecture
Figure 5 details the current base level architecture of 

AFSIM. Since the base components of AFSIM are directly 
named in code this makes it difficult to add or remove base 
component types. Also it is currently difficult to extend other 
non-platform components.

In order to better facilitate the ability to add and remove 
base components work is underway to create a Component 
Based Architecture, which relies on an underlying generic 
component class where all components can be derived from. 
This architecture allows access via naming for components that 
already exist and will ease the addition and removal of certain 
component types. This solution maximizes commonality with 
the original architecture while at the same time providing a 
means to maintain a release version with no weapons or 
electronic warfare capabilities included as well as an ITAR 
release, which would include those components. The new 
architecture is shown in Figure 6.

V. CONCLUSION

In this paper we have provided a high level overview of the 
AFSIM simulation environment. AFSIM has been under 
development by Boeing under IR&D funds for more than 10 
years. Under contract, Boeing delivered AFSIM to the Air 
Force (specifically AFRL/RQQD) with unlimited government 
rights (including source code) in February 2013. AFRL has 
now begun to distribute AFSIM within the DoD community. 
The AFSIM distribution comes with three pieces of software: 
the framework itself, an IDE and the visualization tool VESPA. 
Although AFSIM is currently ITAR restricted future work is 
planned to modify the underlying architecture to facilitate 
maintaining multiple versions with varying releasability. Under 
AFRL management AFSIM will continue to grow as a valuable 
modeling and simulation tool.

Fig. 5.  Existing AFSIM base level architecture.

Fig. 6. New AFSIM Component Based Architecture.
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