
The Unified Behavior Framework for
the Simulation of Autonomous Agents

Daniel Roberson∗, Douglas Hodson†, Gilbert Peterson‡, and Brian Woolley§
Department of Electrical and Computer Engineering

Air Force Institute of Technology

Wright-Patterson Air Force Base, Ohio 45433

Email: {daniel.roberson, douglas.hodson, gilbert.peterson, brian.woolley}@afit.edu

Phone: ∗443-504-9177, †937-255-3636 x4719 , ‡937-255-3636 x4281 , §937-255-3636 x4618

Abstract—Since the 1980s, researchers have designed a variety
of robot control architectures intending to imbue robots with
some degree of autonomy. A recently developed architecture, the
Unified Behavior Framework (UBF), implements a variation of
the three-layer architecture with a reactive controller to rapidly
make behavior decisions. Additionally, the UBF utilizes software
design patterns that promote the reuse of code and free designers
to dynamically switch between behavior paradigms. This paper
explores the application of the UBF to the simulation domain.
By employing software engineering principles to implement the
UBF architecture within an open-source simulation framework,
we have extended the versatility of both. The consolidation of
these frameworks assists the designer in efficiently constructing
simulations of one or more autonomous agents that exhibit sim-
ilar behaviors. A typical air-to-air engagement scenario between
six UBF agents controlling both friendly and enemy aircraft
demonstrates the utility of the UBF architecture as a flexible
mechanism for reusing behavior code and rapidly creating
autonomous agents in simulation.

I. INTRODUCTION

The pursuit of autonomous agents is one of the main thrusts

of the artificial intelligence research community. This has

manifested in the robotics community, where development

has progressed towards the creation of robots that can au-

tonomously pursue goals in the real world. Building robots

to explore autonomy is practical, but it requires investment of

time and resources beyond the design and development of the

software. On the other hand, simulation is an effective and

inexpensive way of exploring autonomy that does not require

the hardware, integration effort, and risk of damage inherent in

designing, constructing, and testing robots. Not only that, but

robots can be simulated in a variety of environments that push

the limits of their autonomous capability. The ability to stress

and analyze a robot might otherwise be impractical in a real-

world context. So, it seems that simulation is a good option

for researching and testing applications of autonomous robots.

However, there is a plethora of robot control architectures

available, and simulating each of them individually would

require a huge code base. With the application of software

engineering principles, it is possible to reduce this coding

requirement. Doing so grants the designer access to a wide

range of autonomous architectures within a single, flexible

framework.

The Unified Behavior Framework (UBF) applies such soft-

ware engineering principles by implementing well-established

design patterns and an extensible behavior paradigm. Because

of it’s flexibility, UBF can be used to explore multiple robot

control architectures simultaneously. Currently, UBF has been

implemented mainly on robot platforms [1]. However, due

to it’s adaptability, it is ripe for implementation on other AI

platforms. In this paper, we discuss a basic implementation and

demonstration of UBF within a simulation environment. The

OpenEaagles (Open Extensible Architecture for the Analysis

and Generation of Linked Simulations) is an open-source

framework that simplifies the creation of simulation appli-

cations. Again, by utilizing software engineering principles,

OpenEaagles lends itself to the rapid creation of applica-

tions, and therefore is a copacetic simulation framework in

which to implement the UBF. Additionally, a simple example

of an air engagement scenario was developed in order to

demonstrate the utility of the implementation. This scenario,

known generically as the sweep mission, verifies the ability

for rapid scenario development with UBF-based agents, and it

demonstrates its application in a military context.

In this paper, we will first discuss some relevant background

concerning behavior trees, previous applications of UBF, the

OpenEaagles framework, and a breakdown of a sweep mission

scenario used to test UBF’s implementation in OpenEaagles.

We then delve into this implementation, examining the UBF

structure within OpenEaagles, and the specific implementation

of the sweep mission within the our UBF implementation. We

will discuss the results of our implementation of the sweep

mission, and end with a look at future work and a conclusion.

II. BACKGROUND

A. Behavior trees

While the robotics community has progressed from Sense-

Plan-Act (SPA) architectures, through subsumption, to three

layer architectures for controlling their robotic agents, the

commercial gaming industry has faced similar problems when

trying to create realistic non-player characters (NPCs). Like

robots, these NPCs are expected to be autonomous, acting with

realistic, human-like intelligence within the game environ-

ment. As Isla states, “a ‘common sense’ AI is a long-standing

goal for much of the research AI community.” In pursuit of

Int'l Conf. Scientific Computing | CSC'15 | 49

this goal, Isla introduced an AI concept, colloquially referred

to as “behavior trees,” which was first implemented in the

popular console game Halo 2. More technically, behavior trees

are hierarchical finite state machines (HFSMs) implemented as

directed acyclic graphs (DAGs) [8], [9].

In the same way that recent robot architectures focus on

individual tasks, or behaviors, an agent’s behavior tree exe-

cutes relatively short behavior scripts directly onto the NPC,

so that it exhibits the specified behavior. These scripts are built

into a tree structure that is traversed depth-first node-by-node.

The tree is queried, or “ticked” at a certain frequency, and

behaviors are executed (or not) based on the structure of the

tree and the types of nodes that are being ticked. In order to

facilitate decision-making, the tree contains multiple types of

nodes. As Marzinotto defines them, these node types are either

specified as internal or external (leaf) nodes. The internal node

types are selector, sequence, parallel, and decorator, while the

external/leaf nodes are either actions or conditions. In addition,

after being ticked all nodes will either return a success, failure,

or running condition, indicating whether the behavior was

successful, or if it is still running [9]. Figure 1 provides a

simple example of a behavior tree that utilizes at least one of

each type of node and implements autonomous vehicle-driving

behavior.

Fig. 1. An example behavior tree implementing autonomous driving behavior
(with the aid of a GPS). Note that the nodes in the tree will be “ticked” from
top to bottom, implying that behaviors higher in the tree have higher priority.

At the leaf level, action nodes are the only nodes that

actually implement control steps upon the agent. When an

action node is ticked, it will execute the control step and return

running until the control step is complete. Once completed,

success or failure return values indicate whether the control

step achieved the desired state.

Condition nodes, like action nodes, evaluate the agent’s

state and return either success or failure, however, they cannot

exercise control over the agent, and therefore cannot return

running.

Internally, selector, sequence, parallel, and decorator nodes

represent different elements of the agent’s decision-making

process. Selector nodes select one child by ticking each child

in order until one of the children returns running or success,

which the selector node also returns. If all children return

failure, the selector node fails.

Sequence nodes execute each child in order, by ticking

each until one of the children returns running or failure.

If none of the sequence node’s children fails, it will return

success, otherwise, it will return running or failure based on

the running/failed child’s return condition.

Parallel nodes tick all children regardless of return condi-

tion, ticking each child node in sequence. The parallel node

maintains a count of the return values of every child. If either

the success or return value counts are greater than established

thresholds, the parallel node will return the respective success

or failure condition. If neither threshold is met, the parallel

node will return running.

Finally, decorator nodes have internal variables and condi-

tions that are evaluated when ticked, and are only allowed one

child node. If the conditions based on the internal variables

of the decorator node are met, the child node is also ticked.

The return value of a decorator node is based on a function

as applied to the node’s internal variables.

Due to their ease of understanding and the ability to quickly

construct large trees, behavior trees are extremely effective

for building AI agents in commercial games. As Marzinotto

demonstrated, with slight modifications, behavior trees can

also be effectively applied to robot control architectures [9].

There are a few limitations when it comes to robot control,

however. First is the necessity for the behavior tree action

nodes to have direct control over the robot’s actuators. This

is less of a problem, as the running return value of nodes

accounts for the time it takes for a node to complete the

relevant behavior. However, in addition to requiring direct

control over the actuators, the entire behavior tree also needs

access to the current world state. In commercial games, these

are not issues, as the NPCs can be given complete and 100%

accurate information about the virtual world at any time,

with no sensors or world model-building required. In the

robot control domain, however, the state of the robot must

be gathered from the sensors and built into some sort of

world model, which is sometimes inaccurate, due to the world

changing. Marzinotto admits that “a large number of checks

has to be performed over the state spaces of the Actions in

the [behavior] tree,” acknowledging this shortfall of behavior

trees for robot control. In his case, Marzinotto works around

this problem of behavior trees by being willing to accept

a delayed state update rather than interrupt the ticking over

the behavior tree [9]. Also, behavior trees lack the flexibility

of behavior-switching and goal-setting provided by sequencer

and deliberator (respectively) of the three layer architecture.

50 Int'l Conf. Scientific Computing | CSC'15 |

B. Unified Behavior Framework

In response to the issues of behavior trees for robot con-

trol, the Unified Behavior Framework (UBF) decouples the

behavior tree from the state and actions. By reintroducing the

controller, the UBF enforces a tight coupling between sensors

and actuators, ensuring the rapid response times of reactive

control architectures. UBF also utilizes the strategy and the

composite design patterns to guarantee design flexibility and

versatility over multiple behavior paradigms [10]. In this way,

UBF reduces latency in the autonomous robots, while offering

implementation flexibility by applying software engineering

principles. Additionally, the modular design of UBF speeds

up the development and testing phases of software design and

promotes the reuse of code [1].

The UBF was initially implemented on robot platforms, as

a way to accomplish real-time, reactive robot control [10],

[1]. In robot control implementations, a driving factor is the

speed with which the robot reacts to the changing environment.

Again, the current methodology for ensuring quick response

time in reactive control is to tightly couple sensors to actuators

through the use of a controller. Figure 2 contains a UML

diagram of the Unified Behavior Framework.

Fig. 2. A UML diagram of the Unified Behavior Framework (UBF) [10].

1) Behavior: The initial success of the subsumption archi-

tecture came from viewing the functional units of the robot

control architecture as individual robot tasks or behaviors,

instead of chronological steps in the robot’s decision making

process. The UBF utilizes this concept, viewing the smallest

units of the architecture as individual behaviors. And, taking

a page from the commercial game industry, these behaviors

are developed individually and added to a tree structure.

However, similar to the three layer architecture, behaviors are

not given access to the robot’s sensors or actuators; instead,

the sensing and actuation is left to the controller, as discussed

next. As expected, these behaviors are the central part of the

agent’s “intelligence,” and they define individual tasks that the

robot intends to perform. In practice, UBF behaviors interpret

the perceived state of the robot (as represented by the UBF

State class). Then, based on the task being performed, the

behavior may test certain conditions or otherwise evaluate the

state passed to it. After interpreting the state, the behavior

recommends a specific action to take. During each traversal

of the UBF tree, every behavior recommends and returns an

action for the robot to take.

2) Controller, State & Action: As with three layer architec-

tures, the controller is the direct interface between the UBF

and the sensors and actuators of the robot. As the layer closest

to the hardware, the controller has two primary responsi-

bilities. First, the controller develops the “world model,” or

the state, by interpreting the incoming sensor data. Then the

controller actuates the robot’s motors and controls based on

the characteristics of the action output by the UBF behavior

tree.

As is the case with any robot control architecture, some

representation of the real world, or the world model, is

present in UBF. This is referred to as the state. Through the

updateState() method, the controller interprets the sensor data

for the robot. Because of the possible inaccuracies and failures

of sensors in robot control applications, the state is described

more accurately as the “perceived state,” as the actual world

state cannot be known, but can only be interpreted based on

input from the sensors.

A quick philosophical aside: although we might imply that

these robots are somehow inferior due to their limitations

in perceiving the world state correctly, we must humble

ourselves; we humans are also limited to the inputs from our

“sensors” - our eyes, ears, mouth, skin, etc. So, in the same

way, our understanding of the world’s state may also be flawed,

despite our inherent trust in our perspective.

As described in the previous section, each behavior in the

UBF tree recommends an action for the robot to take. This

action is a representation of what a behavior is recommending

that the robot do, it does not actually control the motors

on the robot, keeping in line with three layer architectures.

By this method, the UBF behavior tree remains decoupled

from the specifics of the robot, enhancing the flexibility

of the framework for use in different applications. Actions

might represent small adjustments to the robots actuators, but

are typically more abstract representations, such as vectors

indicating a desired direction and magnitude for the robot to

go. As such, the action can be tailored to the desired effect on

the robot, but the details of the actuation of controls is left to

the controller, and is therefore not dealt with inside the UBF

behavior tree.

Because the controller is the only direct link to the sensors

and actuators, other elements of the UBF behavior tree are in-

terchangeable between different robots by making adjustments

Int'l Conf. Scientific Computing | CSC'15 | 51

to the controller. In the same way, differing UBF behavior trees

and architectures can be swapped in and out on the same robot

by retaining the controller. Due to this structuring, the behavior

packages can even be swapped in and out at runtime [10].

3) Arbiter: Because each behavior recommends an action,

multiple actions are being passed up the UBF behavior tree as

return values from behaviors’ children. Therefore, a method

of choosing the “correct” action from child behaviors the UBF

behavior tree is required. This is the reason for the UBF

Arbiter class. The arbiter is contained within UBF behaviors

that are internal nodes in the UBF behavior tree. These internal

behaviors have one or more children that will be recom-

mending actions for the robot to perform. The arbiter acts as

another decision-maker, determining which of its children is

the appropriate action to pass further up the tree to its parent,

until the desired action is returned from the UBF behavior

tree’s root node (which also contains an arbiter). In this way,

the root node of the tree will use its arbiter to recommend a

single action, based on the returned actions of the entire tree.

Arbiters can have differing schemes for determining the

most important action. Simple arbiters, such as a winner-takes-

all (WTA) arbiter, might just choose the highest-voted action

from that behavior’s children nodes. A more complex arbiter

might “fuse” multiple returned actions into one, where the

components of the composite action are weighted by each

individual action’s vote. This is known as a “fusion” arbiter.

In a general sense, fusion arbiters combine one or more

actions returned by its children in the UBF behavior tree.

By “fusing,” a single action will be created and returned

by the fusion arbiter which has elements from multiple of

the child behaviors’ recommended actions. Typically, some

set of the highest-voted actions returned to the fusion arbiter

are selected, and those actions combinable attributes are all

added to a single action which is then returned by the arbiter.

There are varying ways that this can be achieved. One method

would be to select the highest-voted actions, and combine their

non-conflicting attributes. Or, to achieve “fairness” between

the highest-voted actions, their attributes might be weighted

relative to their respective votes before being “fused” into the

arbiter’s returned action. In this way, a fusion arbiter is really

a larger category of arbiters with infinite possibilities of how

to combine the actions returned by the UBF tree.

The variety and customization available for arbitration im-

plementations allows for great flexibility, whereby the entire

behavior of a robot can be modified by using a different

arbitration scheme, even if the rest of the UBF behavior tree

remains unchanged.

C. OpenEaagles Simulation Framework

UBF has been implemented as a robot control architec-

ture, but is clearly ripe for implementation in simulation.

To maintain the flexibility and versatility that UBF pro-

vides, a simulation framework that was also developed using

these principles is necessary. The Open Extensible Architec-

ture for the Analysis and Generation of Linked Simulations

(OpenEaagles) is such a framework. OpenEaagles is open-

source, meaning that the code base is readily accessible. With

the express purpose of “[aiding] the design of robust, scalable,

virtual, constructive, stand-alone, and distributed simulation

applications,” OpenEaagles is a worthwhile tool in which to

add UBF capability [11].

OpenEaagles is an open-source simulation framework that

defines the design pattern shown in Figure 3 for constructing

a wide variety of simulation applications. The framework

itself is written in C++ and leverages modern object-oriented

software design principles while incorporating fundamental

real-time system design techniques to build time sensitive,

low latency, fast response time applications, if needed. By

providing abstract representations of many different system

components (that the object-oriented design philosophy pro-

motes), multiple levels of fidelity can be easily intermixed and

selected for optimal runtime performance. Abstract represen-

tations of systems allow a developer to tune the application

to run efficiently so, for example, interaction latency deadlines

for human-in-the-loop simulations can be met. On the flip side,

constructive-only simulation applications that do not need to

meet time-critical deadlines can use models with even higher

levels of fidelity.

Station SimulationControls
& Displays

Player

Player

Player List

Player

Gimbals/Antennas

R/F Signature

Sensors

Stores/Weapons

Nav Systems

Routes

(Auto) Pilot Model

Dynamics Model

JSBSim

Onboard Computers

Datalinks

Radios

DIS

HLA

Interoperability
Networks

…

Real-time
functions

Ownship Ptr

Controls &
Displays
Interface

Player

Simulation Time

Cycles,Frames,
Phases

Environments

Player

Displays

I/O Devices

OTW

Indicates
Multiple Systems

Fig. 3. A graphical depiction of the structure of the OpenEaagles simulation
framework.

The framework embraces the Model-View-Controller

(MVC) software design pattern by partitioning functional

components into packages. As shown, the Station class serves

as a view-controller or central connection point that associates

simulation of systems (M) with specific views (V) which

include graphics, I/O and networks in the case of a distributed

simulation.

As a simulation framework, OpenEaagles is not an appli-

cation itself applications which are stand-alone executable

software programs designed to support specific simulation

experiments are built leveraging the framework.

52 Int'l Conf. Scientific Computing | CSC'15 |

Currently, OpenEaagles has a sophisticated autopilot sys-

tem, but that is the extent of built-in mechanisms for player or

entity autonomy. Other than that, no AI exists in the framework

for making simulation entities autonomous. Due to UBF’s

abstract design structure, it was implemented within OpenEaa-

gles as a set of cooperating classes to define agents which can

be attached to Players (i.e., entities) to provide more intelligent

features than currently available. Within this structure, UBF

agents have access to Player state (world model) and all Player

systems which are attached as components such as antennas,

sensors, weapons, etc. The Players themselves also include a

sophisticated autopilot system which can be used to augment

and provide low level control functionality.

III. METHODS & RESULTS

To demonstrate and test our implementation of UBF within

OpenEaagles, we defined a sweep mission scenario. Due

to differences between a robot platform and a simulation

environment, appropriate adjustments had to be made before

implementing UBF. After a discussion concerning revision

made to UBF, we revisit the sweep mission to discuss details

of bringing it to life. Finally, we will discuss the specific

UBF behaviors built and utilized by our agents to successfully

navigate this defined scenario.

A. Scenario Description

A simple military mission known as a “sweep” was defined

to demonstrate and test UBF-based agents. In this mission, a

flight of friendly aircraft navigate towards enemy-controlled

or contested airspace. The friendly aircraft search for and

engage any enemy aircraft encountered, leaving the area upon

destruction of the enemies or an emergency condition being

met. The mission is split into four phases: Ingress, Beyond Vi-

sual Range (BVR) Engagement, Within Visual Range (WVR)

Engagement, and Egress. Figure 4 and Figure 5 depict

graphically the progression of the typical sweep mission.

Fig. 4. A graphical depiction of the sweep mission phases.

1) Ingress Phase: The ingress phase of the sweep mission

consists of navigating along a set of waypoints to the desig-

nated mission area. The flight of friendly aircraft follows the

flight lead in formation towards the mission area, watching

and evaluating their radar for potential enemy target aircraft.

Upon acquiring a target, the friendly aircraft proceed to the

engagement phase of the mission.

2) Engagement Phase: Engagement is the mission phase

upon which the friendly aircraft launch missiles and fire guns

against the enemy targets in attempt to shoot down those

aircraft. Engagement is broken into two sub-phases based on

the distance to the target.

a) Beyond Visual Range: The beyond visual range

(BVR) phase of engagement consists of any combat that

occurs when an enemy target is not visible to the friendly

pilot through the windscreen, only on radar and signal warning

systems. If targets are not detected until they are visible to

the friendly pilots, it is possible to skip the BVR phase of

engagement. While BVR, the friendly aircraft will confirm

that the radar targets are indeed enemy aircraft, and then will

engage the target(s) with long-range missiles. If the targets

are not destroyed while BVR, and they become visible to the

pilots, the within visual range engagement phase is entered.

b) Within Visual Range: Within Visual Range (WVR)

combat occurs when enemy aircraft are close enough that

the friendly pilots can see them from the cockpit, and not

exclusively on radar or signal warning systems. Within visual

range combat tends to involve more complicated aircraft

maneuvering in order to achieve an advantageous position

relative to the enemy aircraft. When an advantageous position

is attained, the friendly aircraft may engage the enemy with

short range missiles or guns.

3) Egress Phase: The egress phase of the mission occurs

after the desired mission objective is completed; namely, if the

mission area is clear of enemies. Egress may also be necessary

if other emergency conditions are met. If friendly aircraft are

low on fuel, or if multiple flight members have been shot down

by enemy aircraft, it might be necessary to exit the mission

area as quickly as possible. During egress, remaining friendly

aircraft proceed to the home airfield, again, sometimes by way

of navigation waypoints exiting the mission area, or possibly

by the most direct route to base.

B. The UBF Implementation in OpenEaagles

Using the basic structure of UBF as described in section

II-B, the architecture was built on top of the object system

defined by OpenEaagles. Then, abstract classes defined by the

architecture were extended to provide specific functionality

(i.e., behaviors, arbiters) relevant to the sweep mission being

implemented. Some changes were made to the original UBF

structure to tailor it to the OpenEaagles simulation environ-

ment, which are described in detail in the following sections.

Figure 6 contains a UML diagram of the UBF including the

changes that were made in the OpenEaagles implementation.

1) Agent: As discussed in section II-B, UBF within a robot

control application provides flexibility between platforms by

utilizing different controllers that interface to hardware. Within

a simulation environment, hardware is simulated, and can be

accessed through the OpenEaagles object system. Therefore,

a controller isn’t implemented in the same way as it would be

on a robot. Also, within OpenEaagles, player entities are built

using the composite design pattern; each entity is a composite

of many individual components, which each are composites

Int'l Conf. Scientific Computing | CSC'15 | 53

Fig. 5. A birds-eye-view depiction of the sweep mission.

of their own components. To maintain consistency with this

design pattern, UBF needed an overarching component object

that contains the whole of the UBF structure. The most

effective method was to create an Agent class that contains

multiple elements of the UBF, namely, the controller, the root

behavior, and the state. This UBF agent can be added - as

a component - to an (intended) autonomous player entity in

order to add UBF functionality. Through the periodic time

phase updates of the Simulation, the agent trickles down

requests for updates to the state, and requests for execution

of the actions on the autonomous player entity.

2) Controller: Since direct hardware access is not neces-

sary when using a software framework like OpenEaagles, the

controller was implemented somewhat differently. Not only

does the controller no longer directly update the state of

UBF, it is also implemented as a method in the Agent class,

Fig. 6. A UML diagram of the OpenEaagles implementation of the Unified
Behavior Framework (UBF).

rather than its own class separate from actions. This structure

retains the decoupling between the UBF behavior tree and the

controller, and it enables actions/controllers to be tailored to

a specific (simulated) platform. This is more appropriate for

simulation: unlike robot architectures, the variety of platforms

available in simulation means that different platforms will not

only have different control mechanisms, but the actions that

can logically be performed between them might be drastically

different. For instance, increasing altitude on an aircraft is a

logical action for that aircraft, but trying to use that Action

on a ground vehicle does not make sense. In this case, it is

more appropriate to have different versions of the action class

in addition to differing controllers.

By implementing the controller as an action method, the

UBF agent’s “perceived” state is also no longer tied to the

controller, but is separated into its own state class, which will

be discussed in detail in the next section.

3) State: As an abstraction, state actually contains no data

other than that specific to the OpenEaagles object system.

Within individual implementations, state can be populated with

world model information that is important to a specific agent.

The controller previously contained the updateState() method,

as it alone had access to the robot hardware, specifically,

the sensors needed to evaluate the state. The OpenEaagles

framework, allows for much wider access to the simulation

environment details that might be important to a UBF agent.

Therefore, updating the state in practice might occur differ-

ently than on a robot. An update can occur by evaluating the

simulated sensors’ input data, emulating the operation of a

robot control application. However, software-simulated entities

generally have privileged access to true (though simulated)

54 Int'l Conf. Scientific Computing | CSC'15 |

world state details. In the interest of simplifying a scenario,

state was granted this privileged access to the actual simulation

state. On the other hand, there is flexibility to implement

a more true-to-life state update, one that emulates a robot’s

state update process, if desired. By separating state into it’s

own class, rather than relegating it to the controller, the state

update can be implementation-defined, adding to the flexibility

of UBF in the OpenEaagles simulation environment.

It should also be noted that in OpenEaagles (as in most real-

time simulation frameworks), simulation occurs via discrete

time steps. Therefore, the State class contains the updateState()

method that is tied to the simulation’s time-step process,

received as requests from the Agent class’ controller() method,

by which the state is updated as the simulation progresses.

4) Action: As aforementioned, the OpenEaagles implemen-

tation of the Action class includes a execute() method that

interprets the details of the action and then executes it by

“actuating” the relevant controls within the simulated player

entity. As is the case with the state, the action/execute()

combination allows for more flexibility in the implementation

of UBF to specific platforms.

5) Behavior: Behaviors are the smallest functional unit

of the UBF, in accordance with the original principles of

the subsumption architecture. Behaviors comprise individual

tasks that a player entity might perform, which might be as

simple as flying straight, or as complicated as following an

enemy aircraft. As the UBF’s design originally intended, UBF

behaviors in OpenEaagles accept the state of the UBF agent’s

player entity and return an action via the genAction() method.

Each internal behavior node also passes the state down the tree

to its children, so that every behavior in the tree will receive an

updated state every time the UBF tree is polled for an action.

Based on the specific behavior involved, each behavior returns

a recommended action. Associated with each action is a vote,

which indicates the priority of that action as determined by

the behavior. A higher value vote indicates a higher priority

action. As the returned actions are passed up the tree, arbiters

must decide which of the actions (or which combination) will

be returned further up the UBF behavior tree.

6) Arbiter: Unlike the original UBF design, arbiters are not

a component of internal behavior nodes in the OpenEaagles

UBF implementation. Instead, the Arbiter class is subclassed

off of the Behavior class, so that the arbiters are the internal

behavior nodes, though a more specific version of a behavior.

In a nutshell, this implementation combines “arbiter” function-

ality with the composite behavior. This facilitates the selection

of actions as behaviors return actions up the UBF tree. Each

arbiter, as described, has some decision scheme that selects or

constructs the action that is returned up the UBF behavior

tree. In the OpenEaagles implementation, the Arbiter class

includes a genComplexAction() method, which is the method

for returning an action based on the recommendations of its

children.

C. Scenario Implementation

1) Reducing the complexity: Complexity is a very relevant

issue when trying to build a well-software-engineered product.

While any project will become more complex as it grows,

the intent is generally to reduce complexity and maintain

simplicity. In this case, reducing the complexity of the scenario

was necessary to obtain an effective demonstration.

To reduce the complexity, some sacrifices were made with

regard to the pilot mental model fidelity. Where pilots might

fly specific maneuvers in order to pursue an enemy aircraft,

the UBF agent essentially turns on the autopilot and sets it to

follow the enemy aircraft. In the same way, the pilots defensive

maneuvering is limited to a break maneuver, whereas a human

pilot likely has a large repertoire of defensive maneuvers at

his/her disposal to defend against an incoming missile or a pur-

suing enemy. These sacrifices were necessary to successfully

implement the desired scenario, but with more work and study

on a human pilots decision making, a much more accurate

representation of the pilots mind could be obtained with the

UBF tree.

In addition to the mental model fidelity, complexity was

also reduced with regards to the maneuverability of the

aircraft. The OpenEaagles simulation framework includes a

very detailed aerodynamics model called JSBSim. In order to

create a more manageable implementation, however, this UBF

agent utilizes a more simplistic aerodynamics model called

the LaeroModel. While the LaeroModel prevents hands-on-

stick-and-throttle (HOTAS) control of the aircraft allowing

for detailed maneuvers and upside down flight, the simplicity

of the model interface greatly reduces the UBF action code

required. This was a necessary and acceptable sacrifice in

order to implement the sweep mission scenario. As with any

simulation, detail is a function of the defined experiment.

2) Scenario Arbiters, State, and Action classes:
a) Arbiters: As mentioned in section II-B3, there are a

variety of arbitration schemes available to facilitate decision

making in the UBF behavior tree. In our scenario, two separate

Arbiters were designed. Unfortunately, due to time constraints,

only one was tested and verified with the sweep mission

scenario.

b) Winner-takes-all Arbiter: The winner-takes-all (WTA)

arbiter simply selects the action with the highest vote. This

is the simpler of the two arbiters implemented, not requiring

any special manipulation of returned actions. Because of its

simplicity, the WTA was the arbiter used in the scenario

implementation. This allowed for straightforward construction

of the UBF behavior tree and unambiguous confirmation that

behaviors were responding as expected.

c) Fusion Arbiter: In addition to the WTA arbiter, a

simple fusion arbiter was implemented, but again, it was

not tested or verified. Our arbiter takes an extremely basic

approach, simply averaging the altitude, velocity, and heading

components of each action, and launching a missile if there is

a highly-voted action recommending weapons-release.

d) PlaneState: For the OpenEaagles implementation, the

PlaneState class was subclassed off of the generic State class.

This class contains useful information to an aircraft such as

Int'l Conf. Scientific Computing | CSC'15 | 55

heading, altitude, velocity, missiles onboard, etc. During the

updateState() routine, the PlaneState class polls the simulation

to ascertain and populate the PlaneState object. Each of the

UBF agents has a state created when the agent is initialized,

and the state is not destroyed, rather it is changed as it is

updated with the simulation time steps.

e) PlaneAction: The PlaneAction class is the subclass

of Action that implements actions for the aircraft agent. Some

leniency had to be taken with this class in order to simplify

the flying of the aircraft. While specific controls such as the

throttle or control column could be actuated to direct the

aircraft to the desired vector or location, this is clearly an

extremely complicated way of flying the aircraft. Essentially,

a UBF agent would require the flying skill of an experienced

pilot in order to even perform basic flight maneuvers. As

implemented, however, actions are able to use more effec-

tive, if less realistic control methods, without requiring an

experienced pilot’s flying ability. OpenEaagles provides a

simplistic aerodynamic model that will “fly” the plane absent

of any actual inputs to the simulated controls; only a basic

understanding of some elements of flight (altitude, velocity,

and heading) is required. In this manner, the PlaneActions

controller() method stores the details of the intended action,

and modifies the heading, velocity, altitude, launches missiles,

engages the autopilot, etc., to allow the aircraft to act according

to the agents desire.

Again, the inherent flexibility of this implementation

method allows for a future implementation to utilize a more

accurate emulation of the original UBF’s design, if desired.

Fig. 7. The UBF behavior tree for the sweep mission scenario.

3) UBF behaviors: In designing the scenario, multiple

behaviors were created so that the pilot agents could seek out

their sweep mission goal of destroying the enemy aircraft.

These behaviors are implemented for the agent’s navigation,

missile evasion, pursuit of the enemy, and weapons release.

They are discussed individually in the sections below. Figure 7

shows the UBF tree structure for the sweep mission scenario.

a) Navigate: In order to successfully complete the mis-

sion, the UBF agent needs a way of navigating along a mission

path towards the intended mission area. In a real sweep

mission, the intended waypoints would be known and planned

ahead of mission execution, and the pilot would follow those

waypoints until the engagement phase. In this way, the mission

waypoints were programmed into the navigation computer of

the aircraft before the mission started. The UBF agent turns

on the autopilot, instructing it to follow those waypoints, in

order to execute the navigation required for the mission.
b) Follow the Lead: Following is a behavior that is

necessary for formation flight. While having all of the friendly

UBF agents navigating to the same waypoints might imitate

this behavior, it does not truly replicate how a pilot would

behave, keeping track of the lead aircraft and following his

movements. That being said, however, all of the friendly UBF

agents in our scenario were given knowledge of the waypoints

within their navigation computers. This allowed for an agent

to take over as the flight lead if the current one was shot down.
Because a particular formation is specified, the wall for-

mation (shown in figure 8), the UBF agents can use their

flight ranking to determine their physical position in relation

to the flight lead. In this way, the UBF agent can tell its flight

ranking based on the players predefined name assigned when

constructing the simulation. To make things simpler, a naming

convention of “(flight name)(rank)” was used to identify which

flight the agent is a part of, and their intended rank in the flight.

As rank could change if flight leaders were shot down, there

was a mechanism built into PlaneStates updateState() method

that determines the actual current ranking, rather than just the

original predefined ranking.
To actually follow the flight leader in proper formation, the

autopilot was again utilized for the convenient functionality

provided within OpenEaagles. The autopilot has a following

mode built in, which allows the user to define who to follow,

and the position relative to the leader. For instance, in our

scenario, “eagle2” followed 6000 feet left, 1000 feet behind,

and 500 feet below eagle1.
Utilizing this autopilot functionality, along with the naming

convention that defines a flight and its members, the follow

behavior was implemented that allows the “eagle” flight (and

the enemy “bogey” flight) to fly in wall formation during any

non-engagement portions of the scenario.

Fig. 8. A graphical depiction of the “wall” flight formation.

c) Pursue an Enemy: Pursuing the enemy is a behavior

that is necessary for eventually attacking the enemy, which

ultimately is the purpose of the sweep mission. To implement

this behavior, again, the autopilot following functionality was

utilized. This, while not an accurate representation of how a

pilot might maneuver to engage an enemy, does provide a

56 Int'l Conf. Scientific Computing | CSC'15 |

simple, convenient way to implement the pursuing behavior.

This is certainly an area for future improvement, whereas a

complex model that is more representative of an actual pilot

could be implemented.

In this case, the UBF agent first detects the enemy using its

onboard radar systems. After detecting the enemy, the agent

is given special access to simulation information about the

enemy player in order to provide the data necessary for the

autopilot to enter following mode against that enemy.

d) Release Weapon: As it is the ultimate mission of the

sweep mission, the UBF agent requires a behavior that decides

when to release a weapon against an enemy target. A pilot

would normally have some idea of how probable a kill is based

on the location of the enemy aircraft in relation to his own

aircraft. The term for the region with the highest probability

of a kill is a weapons employment zone, or WEZ.

The UBF agent evaluates whether an enemy target is visible

(on radar), and then whether that target is within the agents

WEZ. If so, the behavior recommends the release of a weapon,

which is performed through the stores management system of

the UBF agents player.

e) Break (Defensive Maneuver): Finally, a maneuver

that attempts to evade incoming missiles is necessary. This

behavior detects a missile based on its radar track. As with the

pursuit of an enemy aircraft, this behavior could be modified

to be more accurate to a true pilots behavior. In the meantime,

the detection of the missile is performed within the simulation,

which of course has omniscience about whether the radar track

is a missile or not.

Once detected, the incoming missile also needs to be

determined to be coming at the UBF agent interested in it.

As before, the simulation is polled to determine the missiles

target. If the target is the current UBF agents player entity, the

UBF agent knows that the missile is pursuing it, and can then

initiate defensive maneuvering.

In order to be simple, the current defensive maneuver

implementation has two phases. The first phase occurs if the

missile is detected outside of a two nautical mile radius of the

UBF agent. When the missile is far away, as determined by

this arbitrary boundary, the UBF agent maneuvers his plane

towards the incoming missile, and increases altitude. This is

designed as a preparation phase for when the missile is danger

close, within the two nautical mile radius. Upon the missile

breaching two nautical miles, the UBF agent then performs

a break maneuver, or a hard, diving turn (to either side,

depending on the angle of the incoming missile).

IV. ASSESSMENT

Through the development and implementation of the Uni-

fied Behavior Framework within the OpenEaagles simulation

framework, we have demonstrated the potential for creating

simulated autonomous agents in a military simulation context.

Some specific issues that arose during the process were the

granularity of behaviors, and the contrast between UBF and

behavior trees. In this section, we will briefly discuss these

issues as they relate to our implementation.

A. Granularity of behaviors

A difficult design decision presented itself when building

the UBF tree of behaviors for our scenario. Behaviors can

be as “simple” as performing a basic stick or throttle control

change, but they can also be very complex, attempting to

attain a specific heading, altitude and velocity by a long

series of control input changes. When designing behaviors,

it is necessary to make some decisions about how complex,

or “granular,” the individual UBF behaviors will be. The

granularity of the behaviors will also have a direct effect on the

size of the UBF behavior tree, and it can affect the arbitration

scheme drastically. As the behaviors become simpler and

smaller, the UBF tree will grow, and vice versa. WTA arbiters

are useful for “large grain” behaviors and small trees, while

a fusion arbiter becomes much more interesting as the UBF

tree grows and includes “small grain” behaviors that can be

fused in interesting ways.

In this case, the design decision was made to allow for very

complex, “large grain” behaviors. In this way, the scenario

behavior tree remained fairly small in size. This decision was

due to the exponential jump in complexity of breaking some

tasks down into multiple behaviors. In addition, behaviors

that utilized the autopilot navigation and follow modes would

have been much more complex if not using the autopilot,

and instead building multiple less-complex, autopilot-lacking

behaviors. Instead of having a large UBF sub-tree dedicated to

navigating to the next waypoint, the UBF agent only required

one behavior that turned on the autopilot when navigation was

the desired behavior. Though it results in a much more com-

plex exhibited behavior, by choosing this level of granularity,

the behavior was actually much simpler to implement.

B. UBF versus Behavior Trees

A question that arose when implementing our sweep mis-

sion scenario using UBF was, would the sweep mission

be easier to implement with Behavior Trees? The answer,

of course, is complicated. When thinking about the sweep

mission scenario, the behaviors desired from the pilot agent are

well-understood and well-defined. This lends itself to behavior

trees, with behaviors that are expected and scripted, rather than

unexpected, or “emergent” behaviors. Clearly, the benefits of

UBF are lost on such a simple and well-defined scenario. On

the other hand, the design elements of UBF lend it to future

experimentation within the simulation environment. With the

UBF framework in place, the opportunity to simulate pilot

agents that exhibit unpredictable behavior is now ripe for

exploration. Instead of defining a scenario based on detailed

pilot procedures, agents can be designed to behave like we

would expect a pilot to in various situations, and then put those

agents through their paces to understand how an agent might

behave under unpredictable circumstances. While behavior

trees would presumably produce consistent behavior, the UBF

agents would allow for emergence of behaviors that give

deeper insight into agent design.

Int'l Conf. Scientific Computing | CSC'15 | 57

V. FUTURE WORK

One of the major benefits of the Unified Behavior Frame-

work’s arbiter scheme, is the opportunity for emergent be-

havior. Emergent behavior is somewhat of a misnomer; in

truth, the actions are emergent. Specific behaviors in the

UBF tree are deterministic when considered on their own.

When utilizing an arbitration scheme that allows for actions to

combine multiple behaviors returned actions, such as fusion,

those deterministic responses can now become unpredictable,

or emergent. While this may produce odd and possibly detri-

mental behavior, it also provides for complex combinations of

actions that may have been unexpected. By introducing this

element of unpredictability and randomness, the capability of

the UBF agent grows beyond that of the scripted nature of

behavior trees.

A fusion arbiter was developed as part of this effort, but it

was not utilized as part of the scenario. Along with increasing

the fidelity of the pilot mental model, the fusion arbiter is

certainly ready for future work.

VI. CONCLUSION

Three layer architectures demonstrate the usefulness of sep-

arating complex planning algorithms from the reactive control

mechanisms needed for rapid action in dynamic environments.

In our scenario, these higher-level planning activities were not

necessary, as our agents were seeking a very specific goal:

destroy any enemies encountered. On the other hand, a real-

world pilot would likely come across situations that required

a change of goal; an emergency condition or a change of way-

points. While our agents’ single-mindedness did not affect the

results of the simulation, it demonstrates a lack of capability

that could be remedied with the addition of a sequencer to

the OpenEaagles UBF agent. In later implementations, adding

a sequencer would be an effective way to define planning

abilities, so that agents could switch between UBF behavior

trees if a goal change was necessary during the middle of a

mission.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of

David P. Gehl of L-3 Communications for his support in

understanding the design and organization of the OpenEaagles

framework.

REFERENCES

[1] B. G. Woolley, G. L. Peterson, and J. T. Kresge, “Real-time behavior-
based robot control,” Autonomous Robots, vol. 30, no. 3, pp. 233–242,
2011.

[2] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology,
ser. Bradford Books. MIT Press, 1986. [Online]. Available:
http://books.google.com/books?id=7KkUAT q sQC

[3] N. J. Nilsson, “Shakey the robot,” DTIC Document, Tech. Rep., 1984.
[4] E. Gat et al., “On three-layer architectures,” 1998.
[5] R. A. Brooks, “A robust layered control system for a mobile robot,”

Robotics and Automation, IEEE Journal of, vol. 2, no. 1, pp. 14–23,
1986.

[6] R. C. Arkin, “Survivable robotic systems: Reactive and homeostatic
control,” in Robotics and remote systems for hazardous environments.
Prentice-Hall, Inc., 1993, pp. 135–154.

[7] R. Peter Bonasso, R. James Firby, E. Gat, D. Kortenkamp, D. P. Miller,
and M. G. Slack, “Experiences with an architecture for intelligent,
reactive agents,” Journal of Experimental & Theoretical Artificial In-
telligence, vol. 9, no. 2-3, pp. 237–256, 1997.

[8] D. Isla, “Gdc 2005 proceeding: Handling complexity in the halo 2 ai,”
Retrieved October, vol. 21, p. 2009, 2005.

[9] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards a
unified behavior trees framework for robot control,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on, 2014.

[10] B. G. Woolley and G. L. Peterson, “Unified behavior framework for
reactive robot control,” Journal of Intelligent and Robotic Systems,
vol. 55, no. 2-3, pp. 155–176, 2009.

[11] D. D. Hodson, D. P. Gehl, and R. O. Baldwin, “Building distributed sim-
ulations utilizing the eaagles framework,” in The Interservice/Industry
Training, Simulation & Education Conference (I/ITSEC), vol. 2006,
no. 1. NTSA, 2006.

[12] M. Cutumisu and D. Szafron, “An architecture for game behavior ai:
Behavior multi-queues.” in AIIDE, 2009.

[13] A. September, “Ieee standard glossary of software engineering termi-
nology,” Office, vol. 121990, no. 1, p. 1, 1990.

[14] R. E. Johnson and B. Foote, “Designing reusable classes,” Journal of
object-oriented programming, vol. 1, no. 2, pp. 22–35, 1988.

58 Int'l Conf. Scientific Computing | CSC'15 |

