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Abstract— Coordinates rotation is widely used in science
and engineering. It has applications on astronomy, im-
age processing, robotics, power electronics, etc. This pa-
per presents an efficient algorithm to calculate a rotation
transform using digital devices. The method is based on
the rational trigonometry. Unlike conventional trigonometry
which is based on the concepts of angle and distance, the
rational trigonometry is based on the concepts of spread and
quadrature. In is also presented an analysis of the number of
operation that can be saved using a standard math library
in a typical situation.
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1. Introduction
Coordinate transform is a key concept in mathematics and

a very useful tool in engineering. Particularly, coordinate

rotation transform is widely employed in image processing,

robotics and power electronics among others industrial and

scientific applications [1], [2]. Typical application in these

areas could require hundreds of rotation transforms per

second. The most standard method to carry out a rotation

transform is to multiply the original coordinates times a

special matrix called rotation matrix. The elements of such

matrix are trigonometric functions of the rotation angle.

Numerical methods are necessary to calculate trigonomet-

ric functions using digital devices. In general, first power

terms of the power series is employed. For example to

calculate sin(α) the first five terms of its Taylor series

can be used if α ∈ [−π, π]. However, if the angle is

not in this interval the error increase rapidly. Hence it is

necessary to preprocess the angle before using the Taylor

series. Furthermore, calculation of the five terms of Taylor

series, depending on the variable type (float, frac, etc.),

requires additional calculations to obtain the coefficients for

each term.

The fact that evaluation of several trigonometric functions

is necessary to calculate a single rotation matrix together

with the high number of rotation transforms per second that

are necessary to perform in a typical application make the

use of high power computing devices mandatory for such

applications. In power electronics for example, the need of

many rotation transform per second prevent the use of low

cost microcontrollers for common industrial applications like

inverters, active filters and motor drives. This circumstance

could be changed with a more efficient methods to perform

a rotation transform. The search for efficient methods to

perform coordinates rotation has a long history [3] and

still continues. The cordic method for example has attracted

many effort in the past decades [3], [4], [5], [6].

Recently, some mathematicians have questioned the need

of real numbers in math [7], [8]. They say that all math

ideas could be expressed with rationals and some irrational

numbers. Seeking to solve trigonometrical problems without

using real numbers the concept of spread has been intro-

duced [7], [8]. Spread substitutes the angle notion and hence

eliminates the necessity of using transcendental functions as

sin and cos. These ideas has risen a debate about whether

the real numbers are necessary or not. No matter how

this debate ends, in this paper it is shown that the spread

concept has practical implications. The spread concept is

extended to perform rotation transforms more efficiently

than the standard method. As a consequence, the time for

these transformations are significantly reduced. Moreover,

the proposed method is easier to program and requires less

memory.

The paper is organized as follows. In Section 2 the

standard method to perform a rotation transform is revisited.

To keep the figures simple the two dimensional case is used.

Nevertheless the tree dimensional case is very similar. In

Section 3 the spread concept is explained. In this Section is

also shown how the spread concept allow to solve trigono-

metric problems without transcendental functions and why

it is necessary to extend the concept to make it useful for

coordinates rotation. In Section 4 the spread concept is ex-

tended to allow rotation transforms. In Section 5 an analysis

is carried out to precise the performance improvement that

could be expected with the proposed method in comparison

with the standard method. Finally some conclusions are
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given.

2. The 2d rotation matrix
Let a = (x, y) a point in the coordinate system XY (see

Figure 1). Let consider another coordinate system X ′Y ′ with

the same origin but rotated an angle α. The coordinates

rotation problem is to find the coodinates of a = (x′y′)
in the new coordinate system.

Fig. 1: Coordinates rotation

The usual method to solve this problem is as follows.

From Figure 1 note that

x = r cos(θ) (1a)

y = r sin(θ) (1b)

where

r =
√
x2 + y2, tan−1(θ) =

y

x
(2)

From Figure 1 can also be observed that

x′ = r cos(θ − α) (3a)

y′ = r sin(θ − α) (3b)

Using trigonometric identities for cos(θ−α) and sin(θ−α)
results

x′ = r (cos(θ) cos(α) + sin(θ) sin(α)) (4a)

y′ = r (sin(θ) cos(α)− cos(θ) sin(α)) (4b)

using (1) in (4) yields

x′ = x cos(α) + y sin(α) (5a)

y′ = −x sin(α) + y cos(α) (5b)

which can be written as[
x′

y′

]
=

[
cos(α) sin(α)
− sin(α) cos(α)

] [
x
y

]
(6)

That is, coordinates (x′, y′) can be obtained multiplying

coordinates (x, y) by a Matrix. Such matrix is called the

rotation matrix.

In some applications, such as the control of electrical

machines, the rotation transform must be performed hun-

dreds of times per second. A cos and a sin functions has

to be calculated at every time that a rotation transform is

performed. Calculation of trigonometric function takes many

clock cycles. Hence, a device with high computing power is

usually necessary for these applications.

Aimed to reduce the computing power neccesary for some

power electronics and electrical machines control applica-

tions, in what follows a more efficient method to perform a

rotation transform is proposed.

3. Spread and Quadratures
3.1 The spread concept

Consider the right triangle of Figure 2. The “spread” S1

is defined as

S1 =
y2

h2
(7)

where h2 = (x2 + y2). That is squared oposite leg over

squared hypotenuse.

Note that the spread S2 is given by

S2 =
x2

h2
(8)

An easy to obtain property but an important one is

S2 = 1− S1 (9)

It is important to point out that

S1 = sin2(θ) (10)

and

S2 = cos2(θ) (11)

Note that S1 and S2 are always positive and sin and cos
are squared in (10-11). As it is explained below, this fact pre-

vent the use of spread for coordinates transformation. That

is why it is necesary to introduce the extension presented in

Section 4

Fig. 2: The spread definition
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It can be observed that for a right triangle if a two legs

or a leg and spread is known all other data (legs or spread)

can be calculated. For example, given x and h (see Figure

2) then S2 can be calculated from (8). Having S2, S1 can

be calculated from (9). Finally y can be calculated from (7).

Hence, it can be said that it is possible to solve trigonometric

problems using the spread concept. Furthermore, trascenden-

tal functions are not needed and all the numbers are rational.

That is the cause for this trigonometry is called rational.

3.2 The quadrature concept
It is possible to extend the spread concept for not right

triangles. Consider three points on a line as it is shown in

Fig. 3. Let the distances

q1 = p2 − p1, q2 = p3 − p2, q3 = p3 − p1 (12)

The cuadrature is defined as the squared distance, that is

Q1 = q21 , Q2 = q22 , Q3 = q23 , (13)

Since the distance q1, q2 and q3 there is a relation between

quadratures. From Fig. 3, it can be observed that

Q3 = Q1 +Q2 + 2Q (14)

and

Q =
√

Q1

√
Q2 (15)

Sustituting (15) in (14) yields the so called quadrature

equation

(Q3 −Q1 −Q2)
2 = 4Q1Q2 (16)

Fig. 3: Quadrature definition.

Now it will be shown that from (16) and the spread

concept it is possible to solve trigonometric problems for

not right triangles.

First note that any non right triangles can be splitted in

two right triangles (see Fig. 4). Using the Pithagoras theorem

and the spread, quadratures Qa, Qb and Qh can be expressed

as

Qa = Q1 −Qh (17a)

Qb = Q3 −Qh (17b)

Qh = S3Q1 (17c)

As Qa, Qb and Q2 are the quadratures fo three distances in

a line, then (16) can be used, yielding

(Q2 +Qb −Qa)
2 = 4Q2Qb (18)

Substituting (17) in (18) results

(Q1 +Q2 −Q3)
2 = 4Q1Q2(1 + S3) (19)

Fig. 4: Quadratures of a triangle

Using (19) it is possible to calculate the spread of two

non parallels lines if a point of each line is known. This is a

consequence that the intersection point and a point of each

line form a triangle (not necessarily a right triangle). The

algebra to find the spread of two lines that intersect on the

origin is easy and yields

S =
(x2y1 − x1y2)

2

(x2
1 + y21)(x

2
2 + y22)

(20)

where (x1, y1) and (x2, y2) are the coordinates of a point in

line 1 and line 2 respectively.

3.3 The problem of rotation transform using
spread and quadratures

Although expressions (7-9) and (20) allow us to solve

trigonometric problems, in its current form they are not use-

ful to perform rotation transforms because two restrictions

• Spread is only defined in the interval [0 − 1] (that is

0− 90o degrees).
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• Spread between two lines does not distinguis which line

has more spread (or angle) with respect to X-axis.

These restrictions cause that the four cases depicted in

Fig. 5 are indistiguisable in terms of spread because all of

them yields the same value. In the next Section the spread

concept is equiped with other consideration to distinguish

the four cases of Figure 5.

Fig. 5: Four indistinguishable cases

4. Extending the spread concept to allow
rotation transforms

In order to distinguish each case of Figure 5 let first

distinguish if the vector is in the shaded or non-shaded area

of Figure 6.

Consider a point (x1, y1) on the positive side of X ′ axis

(see Figure 6). Note that any point (x, y) on the X ′ axis

satifies

y =
y1
x1

x (21)

or

xy1 − x1y = 0 (22)

From 22, any point on the shaded area satisfies

y1x− x1y < 0 (23)

on the other hand any point on the non-shaded area acom-

plish

y1x− x1y > 0 (24)

From (10) and (23-24) it can be obtained the following

equivalence

sin(θ) = − sign(y1x− x1y)
√

(S) (25)

Defining v1 = − sign(y1x− x1y), (25) becomes

sin(θ) = v1
√
(S) (26)

Consider now the Figure 7 and a point on the Y ′ axis.

Such a point can be obtained from the point (x1, y1) as

follows [
x1⊥
y1⊥

]
=

[
0 (−1)
(1) 0

] [
x
y

]
(27)

Having the point (x1⊥, y1⊥), it can be seen that any point

on the Y ′ axis satisfies

y =
y1⊥
x1⊥

x (28)

or

xy1⊥ − x1⊥y = 0 (29)

From Figure 7 any point (x, y) on the shaded area satisfies

y1⊥x− x1⊥y < 0 (30)

and the points on the non-shaded area acomplish

y1⊥x− x1⊥y > 0 (31)

From (11) and (30-31) it can be obtained the equivalence

cos(θ) = sign(y1⊥x− x1⊥y)
√

(1− S) (32)

defining v2 = sign(y1⊥x− x1⊥y), (32) becomes

cos(θ) = v2
√

(1− S) (33)

Substituting (26) and (33) in (6) results in
[

x′

y′

]
=

[
v2
√
1− S

√
x2 + y2

−v1
√
S
√
x2 + y2

]
(34)

where S is given by (20)

Note that the rotation matrix given by (34) only requires

aritmetic operation, two sign and two square root extraction.

It does not require any preprocessing, hence is easier to

program and requires less memory.

5. A typical application
To compare the proposed method and the standar proce-

dure a typical engineering problem is considered. Suppose

there are two vectors v1 = (x1, y1) and v2 = (x2, y2).
Consider the problem of decomposing v2 in two compo-

nents, one parallel and one orthogonal to v1 (see Figure 8).

Such problem arise in many power electronics applications.

The usuall way to proceed is first to calculate the angle

θ between the two vectors and then to find the proyection

of v2 on v1 and its orthogonal vector. In the first step the

calculus of a tan−1 function is necesary or a sin and a

cos. The second step requires calculation of at least one

sin and one cos. Because digital systems use power series

to evaluate trigonometric functions, a significant amount of

time is required to solve this problem. On the other hand only
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Fig. 6: Establishing the equivalence of sin and S

Fig. 7: Establishing the equvalence of cos and S

19 aritmetic operation and two sign operations are needed

using the spread concept.

For comparison the two methods were programmed in a

Freescale board FRDM-K64F @60MHz using the standard

C math library. The test carried out with and without floating

point unit (FPU) [9]. Without the FPU the performance of

the proposed method was 2.68 times faster than the standar

method. When the FPU was used the proposed method is

2.28 faster.

Fig. 8: Typical application of coordinates rotatio

6. Conclusions
Use of spread instead of angles to solve trigonometrical

problems has the advantage of only requiring aritmetic

oprations. However the spread only works for a quadrant in

the plane. In this paper the spread concept has been extended

to work in the entire plane. As a result a new rotation

matrix that not use sin and cos functions was obtained. The

proposed method is faster, easy to program and requires less

memory.
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