
Using π digits to Generate Random Numbers:
A Visual and Statistical Analysis

Ilya Rogers, Greg Harrell, and Jin Wang

Department of Mathematics and Computer Science
Valdosta State University, Valdosta GA 3198, USA

Abstract - Monte Carlo simulation is an important method
with widely applications in real-world problem modeling,
solving, and analysis. Random numbers are key part of this
method. A good random number generator should have the
following qualities: randomness, speed, simplicity, and large
period. In this research, we study using pi database to
generate random numbers. Our study shows that this method
is efficient and simple with large period. The pi database is a
free resource on the internet with 12.1 trillion digits. The
special structure of the pi random number generator made it
simple and fast with almost no cost. Is pi a good random
number generator? The most important thing is the
randomness. Based on our experiment outputs, the 2D and 3D
plots indicate that the randomness of pi is pretty good
comparing with the existing popular LCG pseudo random
number generates in computer simulation community. Finally
we use this pi random number generator to simulate the true
pi value. Our result shows that the pi approximation is very
accurate.

Keywords: Monte Carlo Simulation; Random Number
Generator.

1 Introduction

1.1 History of π:
 π is an irrational number that is extremely helpful in
calculating area of a circle. With the ability of calculating
area of a circle gives us unparalleled ability to apply the idea
in numerous applications. Such applications include:
engineering, measuring sound waves, simulation, GPS, and
pretty much anything that has a “curved” surface. π, more
specifically, is a ratio of circles’ circumference and diameter

which allows us to closely estimate circumference and area of
a given circle with radius r:

History of π is extremely rich and diverse and yet still π hold
many mysteries that have not yet have been discovered. It is
not known who has originally come up with concept of π but
the earliest record of a civilization trying to find the ratio is
about 4000 years old belonging to Babylonians and
Egyptians. It is speculated that a rope was being used to
measure the circumference and the diameter after which they

have estimated that π is slightly larger than 3, more
specifically approximately 3.125. [1]. Next appearance of π is
in a Egyptian Papyrus dated back 1650BCE. The papyrus
outlines a list of problems for students to solve one of which
required a student to figure out an area of a circle inside of a
square [2]. This problem calculated π to be about 3.1605 or 3
and 13/81. The approximate value of π as we know it today
was calculated by Archimedes by taking 2 hexagons and
doubling the sides 16 times. The final result came to about π
= 3.1415926535[1]. Fast forwarding to more recent events,
the creation of computers and the ability to calculate more
decimal digits of π the current record holder as of December
2013 is 12 trillion digits held by Alexander J. Yee & Shigeru
Kondo[3].

1.2 How to calculate π?

π, being complex number it is, can be fairly easy but
costly to calculate. The problem lies in how precise of decimal
places you want it to be. There are multiple ways of
calculating π. It is possible to compute π using Numerical
methods such as 22/7 or drawing hexagons and multiplying
their sides; more sides equal more precise value of π. Another
way to compute π is to use computers and algorithms to
automate the process. Last but not least option is by using a
random number generator to simulate π. Geometrical way of
calculating π is by inscribing and circumscribing n number of
polygons and the calculating their perimeter and areas.
Archimedes used this technique to estimate π being roughly
3.1416. More modern way of calculating π is using Gregory’s
formula:

Evaluating for x = 1 we get:

This method was used by Abraham Sharp to calculate π to
72nd decimal place [2]. With computer age the possibilities of
computing decimal places for π has significantly increased.
Instead of spending years of computing π to several
thousandth place early computer could do it in matter of
hours. One of the computer algorithms using ENIAC in 1950
to calculate π to the 2037 digits used the following algorithm
[5]:

Int'l Conf. Scientific Computing | CSC'15 | 251

It has taken the machine 70 hours to finish the computation.
That record was beaten in 1955 by using the same formula but
with a better machine. As the computers evolved at
exponential rate (Moore’s Law) the possibility of calculating
π to higher number of decimal places has grown along with it.
Lastly, it is possible to calculate π using simulation; the
method is called “Monte Carlo π”. The Monte Carlo method
calculates π/4. We begin by drawing a 1 by 1 square on a
coordinate plane, and then we inscribe a circle inside of the
square. Next, use LCG (Linear Congruential Generator) RNG
to randomly generate X and Y value plotting them in the first
quadrant. Using a computer algorithm we check if

 meaning that the point is inside/on the line the
quarter-circle and we increment our “success” or k counter
which is represented by red points in picture above. After the
simulation, depending on number of samples we calculate our
p̂ where n is number of trials and k is number of successes:

With enough rounds we will start to see that p̂ will begin to
look like true value decimal place by decimal place. Due to
the nature of simulation and equation of standard error:

We would have to run the simulation 100 times more in order
to gain one decimal place accuracy every time. After a while
it is obvious that calculating decimal places of using
simulation can get extremely costly in terms of time and
resources.

1.3 Trillion digits π value
 The record as of December 2013 in calculating decimal
points of π is 12.1 trillion digits achieved by Alexander J. Yee
& Shigeru Kondo. Yee and Kondo have built a computer [4].
Note the amount of RAM memory and HDD space.
Calculating to approx. 12 trillionth digit is no easy task and
requires tremendous resources. The resources required go up
as the number of digits increases, especially HDD space
requirements. Yee and Kondo used Chudnovsky algorithm
displayed below:

After the algorithm completes one simply takes the inverse of
the result giving them the value of to the number of
decimal places. Implementing this algorithm in a computer
along with some I/O operations to write data it has taken Yee
and Kondo 94 days to calculate 12.1 trillion digits of … then
they ran out of HDD space. It is clear that any computer can

compute to extremely high number of decimal places,
however, hardware plays major role in terms of time and
storage.

2 RNG Testing and Analysis
2.1 Generating Random number using π

values
 Talking about generating π to an astounding number of
decimal places is great, however, to keep on the to πc we
must shift our attention to actual random number generators
(RNG). There are numerous random number generators on
the market today. Some are quite good (LCG) and some are
notoriously bad UNIVAC which as only 5 numbers in the
cycle. The optimal RNG produces truly random number and
does not have a cycle. Due to the realities of the real world
and limitations of computer hardware producing truly random
numbers is extremely difficult. Instead algorithm based RNGs
were developed. The problem with algorithm RNG is that we
can predict next random number if we have the seed and the
iteration number, and that those usually have a cycle. The
larger the cycle the better RNG is considered due to the fact
that there are more numbers to pick from. Speaking in terms
of π, there is no said cycle proven to date in π. Theoretically
we can calculate π infinitely but due to hardware limitations
we only have 12.1 trillion digits. Even still no strong patterns
were found in that impressive number. If we continue
calculating π past the 12 trillion it is going to be nearly
impossible to predict which values will come next. A good
RNG is measured on following criteria:

 Uniform distribution
 Memory requirement
 Speed
 Reconfigurable
 Portable
 And implementation easiness

I am going to run some tests and grade the π generator on
above mentioned criteria along with some other things. The
objective of this paper is to determine whether π decimal
digits can be used as random numbers. To achieve my
objective I am going to compare my π RNG against a Linear
Congruential Generator (LCG) which uses a seed and an
algorithm to generate a random number. My hypothesis is
that π can be used as a cycle free RNG with similar success as
the LCG.

2.1.1 Test 1: 3D uniform distribution of π vs. LCG
RNG visual comparison

 All of the Java code to create graph plots can be found on
my GitHub repository. [8]. The Test method for π RNG is as
follows:

 Using y-cruncher ver. 0.5.5. [3] I am going to
generate 1 billion decimal places of π and save them
into a text document. Y-cruncher saves database file
as text file by default.

252 Int'l Conf. Scientific Computing | CSC'15 |

 Use code to read in the π database file
 Initialize beginning pointer at the beginning of the π

value (Number 3)
 Use slice size of 5 digits and size of 5000, , and

 resetting RNG back to the beginning of (Init.
pointer = 0) beginning every new number of .

 Output generated RNs into another output file.
 Using data in the output file I am going to plot the

resulting number of samples in 3D scatterplot to try
to identify patterns

 As I am generating the random number data for a
specific slice I am keeping track of the pointer
resetting it only when I am generating numbers for a
different slice size.

 Plot the , , and values using Java code and
displaying them in a 3D graphs.

Test method for LCG RNG
 Perform same exact procedures as for π RNG.

The algorithm for π is outlined below:
 Initialize all input and output streams and any

relevant variables.
 Initialize number array to set number and string array

to slice number
 Skip to the initialization decimal place of π database

file.
 Loop for number of sets generating first row of

random numbers and storing them in a number array
of size set

o Loop for slice number
 Read 1 Byte of the file converting

it from ASCII to a readable
character

 If character = ‘.’
 Throw away the character

and read next Byte
 Add the character to string array

building a number/character string
o Convert each containing string to a number

then divide by
o Place resulting number in number array[i]
o Write the number into the file on the same

row
 Skip down to next row of the output file
 Begin main while loop running until number of

trials-1 or end of input file
o Loop for number of sets-1 times

 Copy contents of number
array[i+1] to number array[i]. That
leaves last spot open for newly
generated RN

o Loop for slice number

 Read 1 Byte of the file converting
it from ASCII to a readable
character

 If character = ‘.’
 Throw away the character

and read next Byte
 Add the character to string array

building a number/character string
o Add the resulted string to the last spot of the

number array
o Loop for the number array length

 Convert each containing string to a
number then divide by

 Write resulting number to output
file

o Skip down to next row of the output file
o Decrement/increment while control variable

 Flush and close all output/input streams

The algorithm for LCG U16807 RNG:

 Initialize all input and output streams and all relevant
variables

 Initialize , , and to , , and
respectively; is seed variable for the RNG.

 Initialize number array to set size
 Loop for number of sets generating first row of

random numbers (Explained in while loop) and
storing them in a number array of size set

o Calculate a temp variable using equation:

o Copy temp variable to variable
o Write the number into the file on the same

row
 Skip down to next row of the output file
 Begin main while loop running until number of

trials-1
o Loop for number of sets-1 times

 Copy contents of number
array[i+1] to number array[i]. That
leaves last spot open for newly
generated RN

o Calculate a temp variable using equation:

o Copy temp variable to variable
o Fill in last spot of the number array with

 value
o Loop for the number array length

 Write contents of the number array
to file as 1 row

o Skip down to next row of the output file
o decrement/increment while control variable

 Flush and close all output/input streams
We generate 3D graphs where , , and

. First I am going to display the distribution of slice =

Int'l Conf. Scientific Computing | CSC'15 | 253

5 and sample size = 5000, , and for π RNG in figures
3-5 respectively. Graphs generated by the U16870 Generator
are displayed in figures 6-8. Do note each set of graphs are
displayed from different angles of view.

Figure 1. U(0,1) Slice = 5 and Sample size = 5000

Figure 2. U(0,1) Slice = 5, Sample size = 10,000

Figure 3. U(0,1) Slice = 5, Sample Size = 100,000

Figure 4. U(0,1) w0 = 1, Sample size = 5000

254 Int'l Conf. Scientific Computing | CSC'15 |

Figure 5. U(0,1) w0 = 1, size = 10,000

Figure 6. U(0,1) w0 = 1, Sample size = 100,000

Test 1 Summary:

Comparing the uniform distribution graphs of the π and
U16807 generators there is a minimal difference. The
distribution is uniform across all of the tests. If done for
higher number of iterations a solid rectangle would appear
indicating that the distribution is all the way across U(0,1).
There are no observable patterns indicating any cycles or
“preferred” numbers. Final assessment is that π RNG is

identical to U16807 in terms of uniform distribution and does
generate good random numbers.

2.1.2 Generating π Monte Carlo method using U16807
and π RNG and statistical analysis

 Second test I am going to perform is Monte Carlo π. I am
going to use both RNGs to emulate a real world problem. I am
going to use π and LCG RNGs to generate π. I am going to
use a circle inscribed inside 1 by 1 square method to
approximate π. Each RNG will run for , and
iterations then will be compared in terms of p̂ vs. true π value
using swing digit method to approximate cut-off decimal
place. Swing digit method works by removing unnecessary
decimal places for generated p̂ value. Suppose:

Look at ste value from left to right and count all the zeros
without break. If a non-zero digit is encountered stop and that
is how many fist digits of p̂ we will keep. Idea is that the first
non-zero digit is where the actual uncertainty error is so the p̂
will fluctuate that that decimal place which is not what we
want.

Method (Same for both generators):

 Each generator will be run for , , and
iterations.

o Due to the fact that I have to run 100 times
more got get extra decimal point

 LCG will start at and π RNG will start at
pointer location 0 for each iteration test.

 π RNG will have a slice of 5 for each RN

 All data will be imported from corresponding RNG
output files

o Must generate 2 times number of samples
due to reading and value per iteration.

 1bn π number is just enough to do
large test

o Single set

 Each RN sample set will be run through π simulator

 Success counter will be incremented only if
condition is

o

 standard error will be calculated at the end of the
run

o =

o

Int'l Conf. Scientific Computing | CSC'15 | 255

 Results will be recorded for comparison where will
be cut off using swing digit method.

Algorithm:
The algorithm is largely the same for both π and U16807. Due
to both programs grabbing values from pre-generated list of
random numbers

 Pass in the file containing a list of pre-generated
random numbers

o For π it’s the list generated with π RNG and
with U16807 is the list generated with
U16807 RNG

 Initialize file reader

 Take input on how many iterations to perform

 Initialize success variables

 Start while loop running for entered number of
iterations

o = first random number read from the list

o = second random number read from the
list

o If
 Increment success variable

o Increment/decrement loop control variable

 Calculate and store p̂
o Success/iterations

 Calculate and store true
o Use system provided variable for π. Java =

Math.PI Due to the fact that we are only
generating to 2-4 decimal places there is no
need to have a large decimal point of π.

 Calculate and store standard

o

 Return a string/print all above mentioned variables.

Results:
Table 1. Results for sample size , slice = 5, and = 1.

RNG Raw True Swing digit Time (ms)
 3.14151212 3.141592653589793 1.6422393491489316E-4 3.1415 117152.0

U16807 3.14143824 3.141592653589793 1.642290700292035E-4 3.1414 205539.0

Table 2. Results for sample size , slice = 5, and = 1.

RNG Raw True Swing digit Time (ms)
 3.142004 3.141592653589793 0.0016418973366151735 3.142 3846.0

U16807 3.142096 3.141592653589793 0.0016418333431819441 3.142 11836.0

Table 3. Results for sample size , slice = 5, and = 1.
RNG Raw True Swing digit Time (ms)

 3.1528 3.141592653589793 0.01634335387856483 3.15 1787.0
U16807 3.1496 3.141592653589793 0.016365878650411655 3.14 1622.0

Test 2 Summary:

For all tests U16807 and π RNG performed calculations in the
similar manner have produced rather close results. Overall,
both RNGs calculated π to the same STE thus calculating
same “accurate”. Do take note that the smaller the sample size
that I used the less accurate swing digit p̂ became indicating
that in order for us to get 1 extra decimal place accuracy we
have to run the simulation 100 times more than previous trial.
Both generators have performed at the same success rate and
efficiency. One thing to mention is time. Due to U16807
producing larger decimal place numbers it has taken slightly
longer to process opposed to π RNG where it was calculated
to 5 decimal places. Overall result is that π and U16807 RNG
performed the same.

2.2 Technical Issues

 π generator was a unique generator to implement. It has
required me to extend my Java knowledge to new levels. First
major issue was generating the actual π number. Due to
calculation intensity it has taken me substantial amount of
resources to calculate π to 1 billion decimal places. Not to say
I have a bad computer but it was extremely surprising to see
that that calculation has taken up almost all of my RAM
memory 6/8GB which resulted in my computer nearly halting
for the duration of the calculation. After the calculation
finished in roughly 5 min I was surprised to find a file size of
1GB+ in my directory. For commercial implementation π will
have to be calculated to much greater decimal places in
comparison resulting in numerous terabytes or even petabytes
of space being taken. Transferring 1 GB file between

256 Int'l Conf. Scientific Computing | CSC'15 |

directories on 7200RPM HDD was tedious in terms that it
would take the computer some minutes to copy the file
somewhere else. Next issue I have encountered was actually
reading such big file. Instead of Java Scanner class I was
forced to use file input streams due to Java running out of
heap memory. Using input streams has its advantages
however, now my code can read files of theoretically
unlimited size. Last major issue was again, the file size except
in this scenario it was my output files. I, again, had to use
buffered output streams to properly write output files. In some
instances generating my RN sets from 1GB file yielded 2-
4GB files which could pose much greater issue in commercial
sense. Writing to those file have also given me some issues
specifically by buffered output streams. For buffered output or
input one must flush the stream before exiting the stream,
otherwise, you will end up with incomplete set of RNs in your
output file. Overall computer hardware plays an immense role
in success of π RNG. The relation of computer hardware,
specifically RAM, CPU, and HDD to π RNG is that the better
the hardware the better π RNG you will have.

2.3 Is π a good random number generator?

 In summary, I have performed three tests, each has put π
RNG against one of the more popular U16807 RNG. π RNG
has proven to be competitive in visual test, iteration (π value
calculation) test, and probability calculation test. In terms of
uniform distribution both generators perform the same.
Memory requirement U16807 has the advantage due to when
we generate RNs using Chudnovsky formula we use quite a
bit of memory and other resources. To generate 1 billion digits
of π it has taken my computer over 8GB of memory; the
higher value of decimal numbers I wanted that memory
requirement gone up. In terms of speed π generator loses to
U16807 in the same manner as mentioned in memory
requirement. The more RNs I want the heavier calculations
have become. π wins the reconfiguration criteria over
U16807. π I can specify start point and slice size giving me
different random numbers each time where U 16807 I can
only specify w0 which will only place me as some point of the
cycle giving me the same RNs if I run it long enough. U16807
is more portable than π generator. π generator requires huge
database size, 12.1 trillion ≥ 20TB, in order to have a decent
pick of random number whereas U16807 is limited by
computers word size and is not backed by database. π
generator wins in ease of implementation. If I have a large
database all I need to do is read it where in U16807 I have to
implement a function for it run properly.

3 Summary
 π RNG is an unconventional random number generator
however it offers unprecedented speed and accuracy of
commercially created RNGs; assuming database is not an
issue. π generator certainly has great potential however, there
are few issues that can keep it from being as “convenient” as
U16807. As already mentioned, π RNG requires a very large
database to read the random numbers from in order for it to
work well and indefinitely. Due to π having no proven strong
patterns in its number sequence to date π does give us luxury
of having a good cycle free generator. Overall, provided that
the π digit database is large enough or resources for
calculating π as you generate RNs is not a factor π can be
considered an excellent random number generator.

4 References

[1] http://www.math.rutgers.edu/~cherlin/History/Papers20
00/wilson.html

[2] http://www.math.tamu.edu/~dallen/masters/alg_numthe
ory/ π.pdf

[3] http://www.numberworld.org/misc_runs/ π-
10t/details.html

[4] http://mathforum.org/library/drmath/view/57045.html

[5] http://www.jstor.org/stable/pdfplus/1403789.pdf?&acce
ptTC=true&jpdConfirm=true

[6] http://mathfaculty.fullerton.edu/mathews/n2003/montec
arlo πmod.html

[7] https://code.google.com/p/jmathplot/ -- JMathPlot A Π
For 3D Java plotting

[8] https://github.com/ikrogers/Operations-Research- π-
RNG-Java-Source

Int'l Conf. Scientific Computing | CSC'15 | 257

