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Abstract - Monte Carlo simulation is an important method 
with widely applications in real-world problem modeling, 
solving, and analysis.  Random numbers are key part of this 
method. A good random number generator should have the 
following qualities: randomness, speed, simplicity, and large 
period. In this research, we study using pi database to 
generate random numbers. Our study shows that this method 
is efficient and simple with large period. The pi database is a 
free resource on the internet with 12.1 trillion digits.  The 
special structure of the pi random number generator made it 
simple and fast with almost no cost. Is pi a good random 
number generator? The most important thing is the 
randomness. Based on our experiment outputs, the 2D and 3D 
plots indicate that the randomness of pi is pretty good 
comparing with the existing popular LCG pseudo random 
number generates in computer simulation community. Finally 
we use this pi random number generator to simulate the true 
pi value. Our result shows that the pi approximation is very 
accurate. 

Keywords: Monte Carlo Simulation; Random Number 
Generator. 

 

1 Introduction 
   

1.1 History of π:  
 π is an irrational number that is extremely helpful in 
calculating area of a circle. With the ability of calculating 
area of a circle gives us unparalleled ability to apply the idea 
in numerous applications. Such applications include: 
engineering, measuring sound waves, simulation, GPS, and 
pretty much anything that has a “curved” surface. π, more 
specifically, is a ratio of circles’ circumference and diameter  

 
which allows us to closely estimate circumference and area of 
a given circle with radius r: 

 
 

History of  π is extremely rich and diverse and yet still  π hold 
many mysteries that have not yet have been discovered. It is 
not known who has originally come up with concept of  π but 
the earliest record of a civilization trying to find the ratio is 
about 4000 years old belonging to Babylonians and 
Egyptians. It is speculated that a rope was being used to 
measure the circumference and the diameter after which they 

have estimated that π is slightly larger than 3, more 
specifically approximately 3.125. [1]. Next appearance of π is 
in a Egyptian Papyrus dated back 1650BCE. The papyrus 
outlines a list of problems for students to solve one of which 
required a student to figure out an area of a circle inside of a 
square [2]. This problem calculated π to be about 3.1605 or 3 
and 13/81. The approximate value of π as we know it today 
was calculated by Archimedes by taking 2 hexagons and 
doubling the sides 16 times. The final result came to about π 
= 3.1415926535[1]. Fast forwarding to more recent events, 
the creation of computers and the ability to calculate more 
decimal digits of  π the current record holder as of December 
2013 is 12 trillion digits held by Alexander J. Yee & Shigeru 
Kondo[3]. 

1.2 How to calculate π? 

π, being complex number it is, can be fairly easy but 
costly to calculate. The problem lies in how precise of decimal 
places you want it to be. There are multiple ways of 
calculating π. It is possible to compute π using Numerical 
methods such as 22/7 or drawing hexagons and multiplying 
their sides; more sides equal more precise value of π. Another 
way to compute π is to use computers and algorithms to 
automate the process. Last but not least option is by using a 
random number generator to simulate π. Geometrical way of 
calculating π is by inscribing and circumscribing n number of 
polygons and the calculating their perimeter and areas. 
Archimedes used this technique to estimate π being roughly 
3.1416. More modern way of calculating π is using Gregory’s 
formula: 

 

 

Evaluating for x = 1 we get: 

 

This method was used by Abraham Sharp to calculate π to 
72nd decimal place [2]. With computer age the possibilities of 
computing decimal places for π has significantly increased. 
Instead of spending years of computing π to several 
thousandth place early computer could do it in matter of 
hours. One of the computer algorithms using ENIAC in 1950 
to calculate π to the 2037 digits used the following algorithm 
[5]: 
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It has taken the machine 70 hours to finish the computation. 
That record was beaten in 1955 by using the same formula but 
with a better machine. As the computers evolved at 
exponential rate (Moore’s Law) the possibility of calculating 
π to higher number of decimal places has grown along with it. 
Lastly, it is possible to calculate π using simulation; the 
method is called “Monte Carlo π”. The Monte Carlo method 
calculates π/4. We begin by drawing a 1 by 1 square on a 
coordinate plane, and then we inscribe a circle inside of the 
square. Next, use LCG (Linear Congruential Generator) RNG 
to randomly generate X and Y value plotting them in the first 
quadrant. Using a computer algorithm we check if 

 meaning that the point is inside/on the line the 
quarter-circle and we increment our “success” or k counter 
which is represented by red points in picture above. After the 
simulation, depending on number of samples we calculate our 
p̂ where n is number of trials and k is number of successes:  

 
With enough rounds we will start to see that p̂ will begin to 
look like true  value decimal place by decimal place. Due to 
the nature of simulation and equation of standard error: 
 

 

We would have to run the simulation 100 times more in order 
to gain one decimal place accuracy every time. After a while 
it is obvious that calculating decimal places of  using 
simulation can get extremely costly in terms of time and 
resources. 
 

1.3 Trillion digits π value 
       The record as of December 2013 in calculating decimal 
points of π is 12.1 trillion digits achieved by Alexander J. Yee 
& Shigeru Kondo. Yee and Kondo have built a computer [4]. 
Note the amount of RAM memory and HDD space. 
Calculating  to approx. 12 trillionth digit is no easy task and 
requires tremendous resources. The resources required go up 
as the number of digits increases, especially HDD space 
requirements. Yee and Kondo used Chudnovsky algorithm 
displayed below: 

 

 
After the algorithm completes one simply takes the inverse of 
the result giving them the value of  to the  number of 
decimal places. Implementing this algorithm in a computer 
along with some I/O operations to write data it has taken Yee 
and Kondo 94 days to calculate 12.1 trillion digits of … then 
they ran out of HDD space. It is clear that any computer can 

compute  to extremely high number of decimal places, 
however, hardware plays major role in terms of time and 
storage. 
 

2   RNG Testing and Analysis 
2.1  Generating Random number using π 

values 
 Talking about generating π to an astounding number of 
decimal places is great, however, to keep on the to πc we 
must shift our attention to actual random number generators 
(RNG). There are numerous random number generators on 
the market today. Some are quite good (LCG) and some are 
notoriously bad UNIVAC which as only 5 numbers in the 
cycle. The optimal RNG produces truly random number and 
does not have a cycle. Due to the realities of the real world 
and limitations of computer hardware producing truly random 
numbers is extremely difficult. Instead algorithm based RNGs 
were developed. The problem with algorithm RNG is that we 
can predict next random number if we have the seed and the 
iteration number, and that those usually have a cycle. The 
larger the cycle the better RNG is considered due to the fact 
that there are more numbers to pick from. Speaking in terms 
of π, there is no said cycle proven to date in  π. Theoretically 
we can calculate  π infinitely but due to hardware limitations 
we only have 12.1 trillion digits. Even still no strong patterns 
were found in that impressive number. If we continue 
calculating π past the 12 trillion it is going to be nearly 
impossible to predict which values will come next. A good 
RNG is measured on following criteria: 

 Uniform distribution 
 Memory requirement 
 Speed 
 Reconfigurable 
 Portable 
 And implementation easiness 

I am going to run some tests and grade the π generator on 
above mentioned criteria along with some other things. The 
objective of this paper is to determine whether π decimal 
digits can be used as random numbers. To achieve my 
objective I am going to compare my π RNG against a Linear 
Congruential Generator (LCG) which uses a seed and an 
algorithm to generate a random number. My hypothesis is 
that π can be used as a cycle free RNG with similar success as 
the LCG. 

2.1.1 Test 1: 3D uniform distribution of π vs. LCG 
RNG visual comparison 

       All of the Java code to create graph plots can be found on 
my GitHub repository. [8]. The Test method for π RNG is as 
follows: 

 Using y-cruncher ver. 0.5.5. [3] I am going to 
generate 1 billion decimal places of π and save them 
into a text document. Y-cruncher saves database file 
as text file by default. 
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 Use code to read in the π database file 
 Initialize beginning pointer at the beginning of the π 

value (Number 3) 
 Use slice size of 5 digits and  size of 5000, , and 

 resetting RNG back to the beginning of  (Init. 
pointer = 0) beginning every new number of . 

 Output generated RNs into another output file. 
 Using data in the output file I am going to plot the 

resulting number of samples in 3D scatterplot to try 
to identify patterns 

 As I am generating the random number data for a 
specific slice I am keeping track of the pointer 
resetting it only when I am generating numbers for a 
different slice size. 

 Plot the , , and  values using Java code and 
displaying them in a 3D graphs. 
 

Test method for LCG RNG 
 Perform same exact procedures as for π RNG. 

The algorithm for π is outlined below: 
 Initialize all input and output streams and any 

relevant variables. 
 Initialize number array to set number and string array 

to slice number 
 Skip to the initialization decimal place of π database 

file. 
 Loop for number of sets generating first row of 

random numbers and storing them in a number array 
of size set  

o Loop for slice number 
 Read 1 Byte of the file converting 

it from ASCII to a readable 
character 

 If character = ‘.’ 
 Throw away the character 

and read next Byte 
 Add the character to string array 

building a number/character string 
o Convert each containing string to a number 

then divide by  
o Place resulting number in number array[i] 
o Write the number into the file on the same 

row 
 Skip down to next row of the output file 
 Begin main while loop running until number of 

trials-1 or end of input file 
o Loop for number of sets-1 times 

 Copy contents of number 
array[i+1] to number array[i]. That 
leaves last spot open for newly 
generated RN  

o Loop for slice number 

 Read 1 Byte of the file converting 
it from ASCII to a readable 
character 

 If character = ‘.’ 
 Throw away the character 

and read next Byte 
 Add the character to string array 

building a number/character string 
o Add the resulted string to the last spot of the 

number array 
o Loop for the number array length 

 Convert each containing string to a 
number then divide by  

 Write resulting number to output 
file 

o Skip down to next row of the output file 
o Decrement/increment while control variable  

 Flush and close all output/input streams 
 
The algorithm for LCG U16807 RNG: 

 Initialize all input and output streams and all relevant 
variables 

 Initialize , , and  to , , and  
respectively;  is seed variable for the RNG. 

 Initialize number array to set size 
 Loop for number of sets generating first row of 

random numbers (Explained in while loop) and 
storing them in a number array of size set 

o Calculate a temp variable using equation: 
         

o Copy temp variable to  variable 
o Write the number into the file on the same 

row 
 Skip down to next row of the output file 
 Begin main while loop running until number of 

trials-1 
o Loop for number of sets-1 times 

 Copy contents of number 
array[i+1] to number array[i]. That 
leaves last spot open for newly 
generated RN  

o Calculate a temp variable using equation: 
 

o Copy temp variable to  variable 
o Fill in last spot of the number array with 

 value 
o Loop for the number array length 

 Write contents of the number array 
to file as 1 row 

o Skip down to next row of the output file 
o decrement/increment while control variable  

 Flush and close all output/input streams 
We generate 3D graphs where , , and 

. First I am going to display the distribution of slice = 
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5 and sample size = 5000, , and  for  π RNG in figures 
3-5 respectively. Graphs generated by the U16870 Generator 
are displayed in figures 6-8. Do note each set of graphs are 
displayed from different angles of view. 
 

Figure 1. U(0,1) Slice = 5 and Sample size = 5000 
 

 

 
 
 

Figure 2. U(0,1) Slice = 5, Sample size = 10,000 

 

 
 
 
 
 

Figure 3. U(0,1) Slice = 5, Sample Size = 100,000   

 

 
 
 

Figure 4. U(0,1) w0 = 1, Sample size = 5000 
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Figure 5. U(0,1) w0 = 1, size = 10,000 

 
 

 
Figure 6. U(0,1) w0 = 1, Sample size = 100,000 

 

 
Test 1 Summary: 
 

Comparing the uniform distribution graphs of the π and 
U16807 generators there is a minimal difference. The 
distribution is uniform across all of the tests. If done for 
higher number of iterations a solid rectangle would appear 
indicating that the distribution is all the way across U(0,1). 
There are no observable patterns indicating any cycles or 
“preferred” numbers. Final assessment is that π RNG is 

identical to U16807 in terms of uniform distribution and does 
generate good random numbers. 

2.1.2 Generating π Monte Carlo method using U16807 
and π RNG and statistical analysis 

       Second test I am going to perform is Monte Carlo π. I am 
going to use both RNGs to emulate a real world problem. I am 
going to use π and LCG RNGs to generate π. I am going to 
use a circle inscribed inside 1 by 1 square method to 
approximate π. Each RNG will run for , and  
iterations then will be compared in terms of p̂ vs. true  π value 
using swing digit method to approximate cut-off decimal 
place. Swing digit method works by removing unnecessary 
decimal places for generated p̂ value. Suppose: 
 

 
 

 
Look at ste value from left to right and count all the zeros 
without break. If a non-zero digit is encountered stop and that 
is how many fist digits of p̂ we will keep. Idea is that the first 
non-zero digit is where the actual uncertainty error is so the p̂ 
will fluctuate that that decimal place which is not what we 
want. 
 

 
 
Method (Same for both generators): 

 Each generator will be run for , , and  
iterations. 

o Due to the fact that I have to run 100 times 
more got get extra decimal point 

 LCG will start at  and  π RNG will start at 
pointer location 0 for each iteration test. 

 π RNG will have a slice of 5 for each RN 

 All data will be imported from corresponding RNG 
output files 

o Must generate 2 times number of samples 
due to reading  and  value per iteration. 

 1bn  π number is just enough to do 
large test 

o Single set 

 Each RN sample set will be run through  π simulator 

 Success counter will be incremented only if 
condition is  

o  

  standard error will be calculated at the end of the 
run 

o  =  

o  
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 Results will be recorded for comparison where  will 
be cut off using swing digit method. 

 
Algorithm: 
The algorithm is largely the same for both π and U16807. Due 
to both programs grabbing values from pre-generated list of 
random numbers 

 Pass in the file containing a list of pre-generated 
random numbers 

o For  π it’s the list generated with π RNG and 
with U16807 is the list generated with 
U16807 RNG 

 Initialize file reader 

 Take input on how many iterations to perform 

 Initialize success variables 

 Start while loop running for entered number of 
iterations 

o  = first random number read from the list 

o  = second random number read from the 
list 

o If  
 Increment success variable 

o Increment/decrement loop control variable 

 Calculate and store p̂ 
o Success/iterations  

 Calculate and store true  
o Use system provided variable for π. Java = 

Math.PI Due to the fact that we are only 
generating to 2-4 decimal places there is no 
need to have a large decimal point of π. 

 Calculate and store standard  

o  

 Return a string/print all above mentioned variables. 
 

Results: 
Table 1. Results for sample size ,  slice = 5, and  = 1. 

RNG Raw  True   Swing digit  Time (ms) 
 3.14151212 3.141592653589793 1.6422393491489316E-4 3.1415 117152.0 

U16807 3.14143824 3.141592653589793 1.642290700292035E-4 3.1414 205539.0 

 
Table 2. Results for sample size ,  slice = 5, and  = 1. 

RNG Raw  True   Swing digit  Time (ms) 
 3.142004 3.141592653589793 0.0016418973366151735 3.142 3846.0 

U16807 3.142096 3.141592653589793 0.0016418333431819441 3.142 11836.0 
 

Table 3. Results for sample size ,  slice = 5, and  = 1. 
RNG Raw  True   Swing digit  Time (ms) 

 3.1528 3.141592653589793 0.01634335387856483 3.15 1787.0 
U16807 3.1496 3.141592653589793 0.016365878650411655 3.14 1622.0 

 
Test 2 Summary: 
 
For all tests U16807 and π RNG performed calculations in the 
similar manner have produced rather close results. Overall, 
both RNGs calculated π to the same STE thus calculating 
same “accurate”. Do take note that the smaller the sample size 
that I used the less accurate swing digit p̂ became indicating 
that in order for us to get 1 extra decimal place accuracy we 
have to run the simulation 100 times more than previous trial. 
Both generators have performed at the same success rate and 
efficiency. One thing to mention is time. Due to U16807 
producing larger decimal place numbers it has taken slightly 
longer to process opposed to π RNG where it was calculated 
to 5 decimal places. Overall result is that π and U16807 RNG 
performed the same. 

2.2 Technical Issues 

       π generator was a unique generator to implement. It has 
required me to extend my Java knowledge to new levels. First 
major issue was generating the actual π number. Due to 
calculation intensity it has taken me substantial amount of 
resources to calculate π to 1 billion decimal places. Not to say 
I have a bad computer but it was extremely surprising to see 
that that calculation has taken up almost all of my RAM 
memory 6/8GB which resulted in my computer nearly halting 
for the duration of the calculation. After the calculation 
finished in roughly 5 min I was surprised to find a file size of 
1GB+ in my directory. For commercial implementation π will 
have to be calculated to much greater decimal places in 
comparison resulting in numerous terabytes or even petabytes 
of space being taken. Transferring 1 GB file between 
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directories on 7200RPM HDD was tedious in terms that it 
would take the computer some minutes to copy the file 
somewhere else. Next issue I have encountered was actually 
reading such big file. Instead of Java Scanner class I was 
forced to use file input streams due to Java running out of 
heap memory. Using input streams has its advantages 
however, now my code can read files of theoretically 
unlimited size. Last major issue was again, the file size except 
in this scenario it was my output files. I, again, had to use 
buffered output streams to properly write output files. In some 
instances generating my RN sets from 1GB file yielded 2-
4GB files which could pose much greater issue in commercial 
sense. Writing to those file have also given me some issues 
specifically by buffered output streams. For buffered output or 
input one must flush the stream before exiting the stream, 
otherwise, you will end up with incomplete set of RNs in your 
output file. Overall computer hardware plays an immense role 
in success of π RNG. The relation of computer hardware, 
specifically RAM, CPU, and HDD to π RNG is that the better 
the hardware the better π RNG you will have. 
 
2.3 Is π a good random number generator? 

       In summary, I have performed three tests, each has put π 
RNG against one of the more popular U16807 RNG. π RNG 
has proven to be competitive in visual test, iteration (π value 
calculation) test, and probability calculation test. In terms of 
uniform distribution both generators perform the same. 
Memory requirement U16807 has the advantage due to when 
we generate RNs using Chudnovsky formula we use quite a 
bit of memory and other resources. To generate 1 billion digits 
of π it has taken my computer over 8GB of memory; the 
higher value of decimal numbers I wanted that memory 
requirement gone up. In terms of speed π generator loses to 
U16807 in the same manner as mentioned in memory 
requirement. The more RNs I want the heavier calculations 
have become. π wins the reconfiguration criteria over 
U16807. π I can specify start point and slice size giving me 
different random numbers each time where U 16807 I can 
only specify w0 which will only place me as some point of the 
cycle giving me the same RNs if I run it long enough. U16807 
is more portable than π generator. π generator requires huge 
database size, 12.1 trillion ≥ 20TB, in order to have a decent 
pick of random number whereas U16807 is limited by 
computers word size and is not backed by database. π 
generator wins in ease of implementation. If I have a large 
database all I need to do is read it where in U16807 I have to 
implement a function for it run properly. 
 
 
 
 
 
 
 
 

3 Summary 
 π RNG is an unconventional random number generator 
however it offers unprecedented speed and accuracy of 
commercially created RNGs; assuming database is not an 
issue. π generator certainly has great potential however, there 
are few issues that can keep it from being as “convenient” as 
U16807. As already mentioned, π RNG requires a very large 
database to read the random numbers from in order for it to 
work well and indefinitely. Due to π having no proven strong 
patterns in its number sequence to date π does give us luxury 
of having a good cycle free generator. Overall, provided that 
the π digit database is large enough or resources for 
calculating π as you generate RNs is not a factor π can be 
considered an excellent random number generator. 
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