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Abstract - In this study, the general ideas surrounding the 
k-medians problem are discussed. This involves a look into 
what k-medians attempts to solve and how it goes about 
doing so. We take a look at why k-medians is used as 
opposed to its k-means counterpart, specifically how its 
robustness enables it to be far more resistant to outliers. 
We then discuss the areas of study that are prevalent in the 
realm of the k-medians problem. Finally, we view an 
approach to the problem that has decreased its time 
complexity by instead performing the k-medians algorithm 
on small coresets representative of the data set. 
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1. Introduction 
       The clustering problem is one well researched in the 
computer field due to its incredible variety of applications, 
be it unsupervised learning, geographic positioning, 
classifying, data mining, or other. K-medians and k-means 
are two widely popular approaches to performing this 
clustering task. Both involve finding k cluster centers for 
which the sum of the distance between a center and all 
points in that cluster is minimized. Where the two methods 
differ is in what they consider the “center” of the cluster to 
be. As one could infer by their names, k-means uses the 
mean (minimizing the 2-norm distances) while k-medians 
uses to median (minimizing the 1-norm distance). This 
paper will focus on the k-medians variation. 
 

2. K-Medians 
       As mentioned above, the k-medians approach to 
clustering data attempts to minimize the 1-norm distances 
between each point and its closest cluster center. This 
minimization of distances is obtained by setting the center 
of each cluster to be the median of all points in that cluster. 
This section discusses why this is such a powerful method 
of clustering data, shows why it is a good alternative to the 
k-mean approach, and provides a brief overview of the k-
medians algorithm to procure a better knowledge base 
concerning this topic. 
 

2.1 Benefits over K-Means 
       The k-means problem was conceived far before the k-
medians problem. In fact, k-medians is simply a variant of 
k-means as we know it. Why would k-medians be used, 
then, instead of a more studied and further refined method 
of locating k cluster centers? K-medians owes its use to 
robustness of the median as a statistic [1]. The mean is a 
measurement that is highly vulnerable to outliers. Even just 
one drastic outlier can pull the value of the mean away 
from the majority of the data set, which can be a high 
concern when operating on very large data sets. The 
median, on the other hand, is a statistic incredibly resistant 
to outliers, for in order to deter the median away from the 
bulk of the information, it requires at least 50% of the data 
to be contaminated [1]. 
 
Through its use of the median as the determining factor in 
placement of cluster centers, k-medians is able to assimilate 
the robustness that the median provides. Implementing 
variations of the k-medians method can further reduce the 
minimal shifts resulting from the presence of one of more 
outliers. Such variations include k-medians with outliers, in 
which points that exhibit attributes common with outliers 
are handle in a manner in which their distances will have a 
smaller effect on the positioning of the center, and robust k-
medians with m outliers, which attempts to discard up to m 
points that the algorithm determines to be outliers. 
 

2.2 K-Medians Algorithm 
       Given a set of points, the k-medians algorithm attempts 
to create k disjoint cluster that minimize the following 
equation. This means that the center of each cluster center 
minimizes this objective function [2].  

 

This minimization is defined by the geometric median. 
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In order to begin this process, k initialization points must 
be selected as the cluster centers. The logic code below is 
then performed: 
 
K-Medians Algorithm 
Q = infinity 
do 
        for point in dataset 
                min = infinity 
                index = 0 
                for i in k 
                        dist = distance(point, center[i]) 
                        if dist < min 
                                min = dist 
                                index = i 
                disjoint-sets.add(index, point) 
        for i in k 
                center[i] = median(disjoint-set.get(i)) 
        sum = 0 
        for i in k 
                for point in disjoint-set.get(i) 
                        sum = sum + distance(point, center[i]) 
        oldQ = Q 
        Q = sum  
while (oldQ - Q) > eps 
 
The above code follows these steps 

1. Assign each point in the data set to its closest 
center. The points assigned to the same center are 
then said to be in the same cluster, therefore they 
are added to the same disjoint-set. Because each 
point has been assigned to its closest center, the 
value of Q will not increase. 

2. With the new disjoint-sets as the clusters, calculate 
their median to determine the updated value of 
that cluster’s center. Because the center is a 
minimization of 1-norm distances, Q cannot 
increase as a result of this step. 

3. Sum all distances between each point and its 
respective cluster center. This is the new value for 
Q. 

4. If the improvements made by this iteration are less 
than a previously determined epsilon, quit. 
Otherwise, repeat the process. 

 
Because both steps 1 and 2 can only decrease the overall 
value of Q, k-medians is a local optimization algorithm 
minimizing the sum of the 1-norm distances throughout the 
dataset [3]. 
 

3. Areas of Study 
This section will cover a handful of topics that go into the 
k-medians algorithm that were abstracted away for 
simplicity. These topics include: median calculation, 

distance specifications, determining a value for k, and the 
initialization process for k cluster centers.  
 
These topics have in no way been studied to completion, 
and many of the problems surrounding these topics have 
yet to be solved [3]. These subsections that follow will 
merely introduce these areas and current methods on how 
to approach them. 
 

3.1 Finding the Median 
       K-medians uses the median as the statistic to determine 
the center of each cluster. It has been proven, however, that 
there exists no closed form that can determine the 
geometric median in every dimension. Because of this, 
methods of finding the median have turned to a more 
heuristic approach. We will now take a look at two of these 
methods, one that uses a simple simulated annealing 
algorithm, the other the more commonly implemented 
Weiszfeld’s algorithm in order to understand the ideas 
surrounding median calculation [4]. 
 

3.1.1 Simulated Annealing 
The simulated annealing approach is this general method 
 

Simulated Annealing 
step = arbitrary value 
median = mean(points) 
min = sum_distances(points, median) 
improved = false 
while step > eps 
        for direction in directions 
                temp_median = median, + (direction*step) 
                d = sum_distances(points, temp_median) 
                if d < min 
                        min = d 
                        median = temp_median 
                        improved = true 
                        break 
        if !improved 
        step = step / 2 
 
In the above algorithm, “directions” is a list of all of the 
unit vectors of the dimension in the points are found in. The 
addition and multiplication shown are, by extension, vector 
addition and scalar multiplication respectively. 
 
This method follows these steps 

1. Initialize an arbitrarily large value for steps. 
Alternatively, this value could correspond to some 
statistical measurement of the points, be it 
variance, standard, deviation, median absolute 
deviation, or something else of the sort. 
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2. Initialize median to be the mean of the data set. 
This is just a starting approximation. 

3. Check to see if moving the median in any 
direction by the value of step provides a better 
approximation for the median. If it does, update 
the median and continue. 

4. If none of the movements improve our median, 
half the step size. 

5. Stop once step has decreased below a 
predetermined value of epsilon 

 
This method of approximation, while slow due to the 
constant calculation of the sum of distances (2d where d is 
the dimension in which the problem resides), will find a 
good median approximation with accuracy based on 
epsilon. The convex nature of the median guarantees that 
this method will not be trapped at a local minimum. 
 

3.1.2 Weiszfeld’s Algorithm 
Weiszfeld’s algorithm is as follows 
Weiszfeld’s Algorithm 
 
median = mean(points) 
for j, k 
        m1 = {0} 
        m2 = 0 
        for point in points 
                dist = distance(point, median) 
                for i in m1.length 
                        m1[i] = m1[i] + point[i] 
                        m2 = m2 + (1/dist) 
        median = m1/m2 
 

1. Initialize median to mean. This is just an initial 
approximation. 

2. Set up a variable to represent the sum of the points 
divided by the distance from that specific point to 
the approximated median (m1). 

3. Initialize a variable to keep track of the sum of the 
inverted distances from each point to the 
approximated median (m2). 

4. For each point, add the value of the point divided 
by the distance between it and the current median 
to m1. Add the inverse of the distance between it 
and the current median to m2. 

5. The new approximation for the median is equal to 
the scalar division of m1 divided by m2 

 
This method takes advantage of the alternate definition of 
the median [4]. We can see the similarities between this 
and this representation of Weiszeld’s algorithm. 
 

3.2 Different Forms of Distance 
       While Euclidean distance is the measure most 
commonly used when the k-medians algorithm is applied to 

a k-clusters problem, it is not always the appropriate choice 
to correctly model what the k-clustering is attempting to 
achieve. Many times, models of real world scenarios 
require certain restraints in distance measurement. One 
such deterrent may be the existence of obstacles prohibiting 
straight-line travel from one point to the next. In a situation 
such as this, Euclidean measurements are simply far too 
inaccurate, and other forms of distance, such as Manhattan 
distance, must be considered instead.  
 
Manhattan distance is a measurement based on a grid 
system in which the points in question are placed. The 
concept is that in order to move from start to end point, one 
of four directions must be chosen for the point to advance: 
up, down, left, or right. Each decision will move the start 
point one unit in the chosen direction. The Manhattan 
distance is determined by the number of decisions required 
for the start point to reach the end point [5]. This method of 
distance can be extended to account for obstacles that may 
stand in between the two points. Luckily, this method is 
well suited for k-medians. The goal of k-medians is to 
minimizing the absolute deviations, which is in fact 
equivalent to the Manhattan distance. 
 
These two measurements do not cover all scenarios, 
however. When using clustering to organize more 
categorical data, minimizing divergences, such as Bregman 
and Kullback-Leibler divergences [5], can be the desired 
outcome. Because of these different ways to determine the 
quantity of weight to be assigned to the edge between two 
points, the implementation of the k-medians algorithm must 
be shaped to appropriately handle the type of distance 
measurement best suited to model the problem at hand. 
 
3.3 Selecting K 
       K-Medians clustering aims to separate a given data set 
into k clusters. The value of k, while important in the 
structure of the resulting k-cluster model, is given to the 
algorithm as input from the user. This value of k may be 
chosen based on assumptions of the data set, prior 
experience with like data set, or prior knowledge on the 
contents of the data set [6]. K, in this sense, is a fixed value 
that may or may not produce desired clustering, even if that 
clustering minimized the objective function. There do exist, 
however, approaches that can help approximate a better 
value for k. These approaches are discussed in this section. 
 
One method takes advantage of the fact that in center based 
clustering, the clusters adhere to a unimodal distribution. In 
this case, that will be the Normal, or Gaussian, distribution 
[6]. The idea is that k will be initializing to an arbitrarily 
small value, for simplicity we will say 1. Are clusters are 
then analyzed for their distribution. If a cluster is shown to 
have a unimodal normal distribution, the cluster remains 
unchanged. If not, the current center is replaced with two 
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centers. After all clusters are analyzed, the clusters are 
recalculated using k-medians, and the process continues. 
The stopping point is reached when no cluster centers have 
to be broken into two [6]. 
 
Another approach find the value of k in a similar manner, 
but rather than splitting the centers until the desired 
distribution is found for each cluster, this method is 
supplied a range of potential k values and determines the 
best choice among the given options. It does so by creating 
a model scoring system based on Bayesian Information 
Criterion (BIC) [7]. This selection criterion provides a way 
to compare the distributions of the clusters resulting from a 
certain k selection to a different k selection. This method 
increases the value for k in a similar manner to that of the 
previous approach in that it splits a center into two distinct 
points. The center is chosen by comparing which split will 
most benefit the BIC score [7]. 
 
3.4 Initializing Centers 
       The k-medians approach to clustering locates a local 
optimal solution that minimizes the 1-norm distances from 
each point to its respective cluster center. It is important to 
note that this finds a local, rather than global, optimum. 
Because of this, k-medians is very sensitive to the 
initialization points of its k centers, each center having the 
tendency to remain roughly in the same cluster in which it 
is first placed [8]. Different ideas have therefore been 
proposed in order to find better initial placement for the k 
centers in hopes that they will converge to the global 
optimum. A handful of these propositions are as follows: 
 

 Random Initialization- K points are generated at 
random. The k centers are initialized to these 
points. 

 Density Analysis- K points are selected from 
viewing the distribution of the data set and 
isolating high density areas. 

 Single Dimension Subsets- Column vectors are 
looked at independently in order to select the 
dimension with the largest variance. The points in 
this dimension are then divided into k subsets, and 
the centers are initialized by the median values of 
these subsets. 

 Diagonal Initialization- The data set is divided in 
to k rows and k columns, creating a 2d grid. The 
cells on the diagonals of this grid are then 
weighted by their density. The k centers are then 
randomly selected from these cells, taking their 
weight into account for the selection. 

 Sampling- Samples are taken from the data set. 
The k-medians algorithm is then applied to each 

sample using random initialization. The k centers 
are then randomly selected from the solutions 
generated [9]. 
 

These are only a few of the proposed concepts to generate 
better initialization points. While many of them show 
promise theoretically, however, their performance is often 
worse than or roughly equivalent to those result generated 
by random initialization. There is currently no method of 
initialization that will produce centers that will always 
converge to the global optimum. 
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