
Understanding the K-Medians Problem

Christopher Whelan, Greg Harrell, and Jin Wang
Department of Mathematics and Computer Science

Valdosta State University, Valdosta, Georgia 31698, USA

Abstract - In this study, the general ideas surrounding the
k-medians problem are discussed. This involves a look into
what k-medians attempts to solve and how it goes about
doing so. We take a look at why k-medians is used as
opposed to its k-means counterpart, specifically how its
robustness enables it to be far more resistant to outliers.
We then discuss the areas of study that are prevalent in the
realm of the k-medians problem. Finally, we view an
approach to the problem that has decreased its time
complexity by instead performing the k-medians algorithm
on small coresets representative of the data set.

Keywords: K-medians; K-means; clustering

1. Introduction
 The clustering problem is one well researched in the
computer field due to its incredible variety of applications,
be it unsupervised learning, geographic positioning,
classifying, data mining, or other. K-medians and k-means
are two widely popular approaches to performing this
clustering task. Both involve finding k cluster centers for
which the sum of the distance between a center and all
points in that cluster is minimized. Where the two methods
differ is in what they consider the “center” of the cluster to
be. As one could infer by their names, k-means uses the
mean (minimizing the 2-norm distances) while k-medians
uses to median (minimizing the 1-norm distance). This
paper will focus on the k-medians variation.

2. K-Medians
 As mentioned above, the k-medians approach to
clustering data attempts to minimize the 1-norm distances
between each point and its closest cluster center. This
minimization of distances is obtained by setting the center
of each cluster to be the median of all points in that cluster.
This section discusses why this is such a powerful method
of clustering data, shows why it is a good alternative to the
k-mean approach, and provides a brief overview of the k-
medians algorithm to procure a better knowledge base
concerning this topic.

2.1 Benefits over K-Means
 The k-means problem was conceived far before the k-
medians problem. In fact, k-medians is simply a variant of
k-means as we know it. Why would k-medians be used,
then, instead of a more studied and further refined method
of locating k cluster centers? K-medians owes its use to
robustness of the median as a statistic [1]. The mean is a
measurement that is highly vulnerable to outliers. Even just
one drastic outlier can pull the value of the mean away
from the majority of the data set, which can be a high
concern when operating on very large data sets. The
median, on the other hand, is a statistic incredibly resistant
to outliers, for in order to deter the median away from the
bulk of the information, it requires at least 50% of the data
to be contaminated [1].

Through its use of the median as the determining factor in
placement of cluster centers, k-medians is able to assimilate
the robustness that the median provides. Implementing
variations of the k-medians method can further reduce the
minimal shifts resulting from the presence of one of more
outliers. Such variations include k-medians with outliers, in
which points that exhibit attributes common with outliers
are handle in a manner in which their distances will have a
smaller effect on the positioning of the center, and robust k-
medians with m outliers, which attempts to discard up to m
points that the algorithm determines to be outliers.

2.2 K-Medians Algorithm
 Given a set of points, the k-medians algorithm attempts
to create k disjoint cluster that minimize the following
equation. This means that the center of each cluster center
minimizes this objective function [2].

This minimization is defined by the geometric median.

Int'l Conf. Scientific Computing | CSC'15 | 219

In order to begin this process, k initialization points must
be selected as the cluster centers. The logic code below is
then performed:

K-Medians Algorithm
Q = infinity
do
 for point in dataset
 min = infinity
 index = 0
 for i in k
 dist = distance(point, center[i])
 if dist < min
 min = dist
 index = i
 disjoint-sets.add(index, point)
 for i in k
 center[i] = median(disjoint-set.get(i))
 sum = 0
 for i in k
 for point in disjoint-set.get(i)
 sum = sum + distance(point, center[i])
 oldQ = Q
 Q = sum
while (oldQ - Q) > eps

The above code follows these steps

1. Assign each point in the data set to its closest
center. The points assigned to the same center are
then said to be in the same cluster, therefore they
are added to the same disjoint-set. Because each
point has been assigned to its closest center, the
value of Q will not increase.

2. With the new disjoint-sets as the clusters, calculate
their median to determine the updated value of
that cluster’s center. Because the center is a
minimization of 1-norm distances, Q cannot
increase as a result of this step.

3. Sum all distances between each point and its
respective cluster center. This is the new value for
Q.

4. If the improvements made by this iteration are less
than a previously determined epsilon, quit.
Otherwise, repeat the process.

Because both steps 1 and 2 can only decrease the overall
value of Q, k-medians is a local optimization algorithm
minimizing the sum of the 1-norm distances throughout the
dataset [3].

3. Areas of Study
This section will cover a handful of topics that go into the
k-medians algorithm that were abstracted away for
simplicity. These topics include: median calculation,

distance specifications, determining a value for k, and the
initialization process for k cluster centers.

These topics have in no way been studied to completion,
and many of the problems surrounding these topics have
yet to be solved [3]. These subsections that follow will
merely introduce these areas and current methods on how
to approach them.

3.1 Finding the Median
 K-medians uses the median as the statistic to determine
the center of each cluster. It has been proven, however, that
there exists no closed form that can determine the
geometric median in every dimension. Because of this,
methods of finding the median have turned to a more
heuristic approach. We will now take a look at two of these
methods, one that uses a simple simulated annealing
algorithm, the other the more commonly implemented
Weiszfeld’s algorithm in order to understand the ideas
surrounding median calculation [4].

3.1.1 Simulated Annealing
The simulated annealing approach is this general method

Simulated Annealing
step = arbitrary value
median = mean(points)
min = sum_distances(points, median)
improved = false
while step > eps
 for direction in directions
 temp_median = median, + (direction*step)
 d = sum_distances(points, temp_median)
 if d < min
 min = d
 median = temp_median
 improved = true
 break
 if !improved
 step = step / 2

In the above algorithm, “directions” is a list of all of the
unit vectors of the dimension in the points are found in. The
addition and multiplication shown are, by extension, vector
addition and scalar multiplication respectively.

This method follows these steps

1. Initialize an arbitrarily large value for steps.
Alternatively, this value could correspond to some
statistical measurement of the points, be it
variance, standard, deviation, median absolute
deviation, or something else of the sort.

220 Int'l Conf. Scientific Computing | CSC'15 |

2. Initialize median to be the mean of the data set.
This is just a starting approximation.

3. Check to see if moving the median in any
direction by the value of step provides a better
approximation for the median. If it does, update
the median and continue.

4. If none of the movements improve our median,
half the step size.

5. Stop once step has decreased below a
predetermined value of epsilon

This method of approximation, while slow due to the
constant calculation of the sum of distances (2d where d is
the dimension in which the problem resides), will find a
good median approximation with accuracy based on
epsilon. The convex nature of the median guarantees that
this method will not be trapped at a local minimum.

3.1.2 Weiszfeld’s Algorithm
Weiszfeld’s algorithm is as follows
Weiszfeld’s Algorithm

median = mean(points)
for j, k
 m1 = {0}
 m2 = 0
 for point in points
 dist = distance(point, median)
 for i in m1.length
 m1[i] = m1[i] + point[i]
 m2 = m2 + (1/dist)
 median = m1/m2

1. Initialize median to mean. This is just an initial
approximation.

2. Set up a variable to represent the sum of the points
divided by the distance from that specific point to
the approximated median (m1).

3. Initialize a variable to keep track of the sum of the
inverted distances from each point to the
approximated median (m2).

4. For each point, add the value of the point divided
by the distance between it and the current median
to m1. Add the inverse of the distance between it
and the current median to m2.

5. The new approximation for the median is equal to
the scalar division of m1 divided by m2

This method takes advantage of the alternate definition of
the median [4]. We can see the similarities between this
and this representation of Weiszeld’s algorithm.

3.2 Different Forms of Distance
 While Euclidean distance is the measure most
commonly used when the k-medians algorithm is applied to

a k-clusters problem, it is not always the appropriate choice
to correctly model what the k-clustering is attempting to
achieve. Many times, models of real world scenarios
require certain restraints in distance measurement. One
such deterrent may be the existence of obstacles prohibiting
straight-line travel from one point to the next. In a situation
such as this, Euclidean measurements are simply far too
inaccurate, and other forms of distance, such as Manhattan
distance, must be considered instead.

Manhattan distance is a measurement based on a grid
system in which the points in question are placed. The
concept is that in order to move from start to end point, one
of four directions must be chosen for the point to advance:
up, down, left, or right. Each decision will move the start
point one unit in the chosen direction. The Manhattan
distance is determined by the number of decisions required
for the start point to reach the end point [5]. This method of
distance can be extended to account for obstacles that may
stand in between the two points. Luckily, this method is
well suited for k-medians. The goal of k-medians is to
minimizing the absolute deviations, which is in fact
equivalent to the Manhattan distance.

These two measurements do not cover all scenarios,
however. When using clustering to organize more
categorical data, minimizing divergences, such as Bregman
and Kullback-Leibler divergences [5], can be the desired
outcome. Because of these different ways to determine the
quantity of weight to be assigned to the edge between two
points, the implementation of the k-medians algorithm must
be shaped to appropriately handle the type of distance
measurement best suited to model the problem at hand.

3.3 Selecting K
 K-Medians clustering aims to separate a given data set
into k clusters. The value of k, while important in the
structure of the resulting k-cluster model, is given to the
algorithm as input from the user. This value of k may be
chosen based on assumptions of the data set, prior
experience with like data set, or prior knowledge on the
contents of the data set [6]. K, in this sense, is a fixed value
that may or may not produce desired clustering, even if that
clustering minimized the objective function. There do exist,
however, approaches that can help approximate a better
value for k. These approaches are discussed in this section.

One method takes advantage of the fact that in center based
clustering, the clusters adhere to a unimodal distribution. In
this case, that will be the Normal, or Gaussian, distribution
[6]. The idea is that k will be initializing to an arbitrarily
small value, for simplicity we will say 1. Are clusters are
then analyzed for their distribution. If a cluster is shown to
have a unimodal normal distribution, the cluster remains
unchanged. If not, the current center is replaced with two

Int'l Conf. Scientific Computing | CSC'15 | 221

centers. After all clusters are analyzed, the clusters are
recalculated using k-medians, and the process continues.
The stopping point is reached when no cluster centers have
to be broken into two [6].

Another approach find the value of k in a similar manner,
but rather than splitting the centers until the desired
distribution is found for each cluster, this method is
supplied a range of potential k values and determines the
best choice among the given options. It does so by creating
a model scoring system based on Bayesian Information
Criterion (BIC) [7]. This selection criterion provides a way
to compare the distributions of the clusters resulting from a
certain k selection to a different k selection. This method
increases the value for k in a similar manner to that of the
previous approach in that it splits a center into two distinct
points. The center is chosen by comparing which split will
most benefit the BIC score [7].

3.4 Initializing Centers
 The k-medians approach to clustering locates a local
optimal solution that minimizes the 1-norm distances from
each point to its respective cluster center. It is important to
note that this finds a local, rather than global, optimum.
Because of this, k-medians is very sensitive to the
initialization points of its k centers, each center having the
tendency to remain roughly in the same cluster in which it
is first placed [8]. Different ideas have therefore been
proposed in order to find better initial placement for the k
centers in hopes that they will converge to the global
optimum. A handful of these propositions are as follows:

 Random Initialization- K points are generated at
random. The k centers are initialized to these
points.

 Density Analysis- K points are selected from
viewing the distribution of the data set and
isolating high density areas.

 Single Dimension Subsets- Column vectors are
looked at independently in order to select the
dimension with the largest variance. The points in
this dimension are then divided into k subsets, and
the centers are initialized by the median values of
these subsets.

 Diagonal Initialization- The data set is divided in
to k rows and k columns, creating a 2d grid. The
cells on the diagonals of this grid are then
weighted by their density. The k centers are then
randomly selected from these cells, taking their
weight into account for the selection.

 Sampling- Samples are taken from the data set.
The k-medians algorithm is then applied to each

sample using random initialization. The k centers
are then randomly selected from the solutions
generated [9].

These are only a few of the proposed concepts to generate
better initialization points. While many of them show
promise theoretically, however, their performance is often
worse than or roughly equivalent to those result generated
by random initialization. There is currently no method of
initialization that will produce centers that will always
converge to the global optimum.

4. References

[1] D. Feldman and L. J. Schulman (2012) Data
reduction for weighted and outlier-resistant
clustering Proceedings of the twenty-third annual
ACM-SIAM symposium on Discrete Algorithms
(pp. 1342-1354)

[2] K.Chen (2006) On K-Median Clustering in High
Dimensions Proceedings of the seventeenth annual
ACM-SIAM symposium on discrete algorithm
(pp.1177-1185)

[3] B. Anderson, D. Gross, D. Musicant, A. Ritz, T.
Smith, L. Steinberg (2006) Adapting K-Medians
to Generate Normalized Cluster Centers
Proceedings of the Sixth SIAM International
Conference on Data Mining (pp.165-175)

[4] G. Hamerly and C. Elkan (2003) Learning the K
in K-Means NIPS

 [5] M. Ackermann, J. Blomer, C. Sohler (2010)
Clustering for Metric and Non-Metric Distance
Measures ACM Transactions on Algorithms 6:4

 [6] G. Hamerly and C. Elkan (2003) Learning the K
in K-Means NIPS

 [7] D. Pelleg and A. Moore (2000) X-means:
Extending K-means with Efficient Estimation of
the Number of Clusters In Proceedings of the 17th
International Conf. on Machine Learning (pp. 727-
734)

[8] S. Bubeck, M. Meila, U. Von Luxembourg (2012)
How the Initialization Affects the Stability of the
K-Means Algorithm ESAIM: Probability and
Statistics (pp.436-452)

[9] Mohammad F. Eltibi Wesam M. Ashour (2011)
Initializing K-Means Clustering Algorithm using
Statistical Information International Journal of
Computer Applications (pp.51-55)

222 Int'l Conf. Scientific Computing | CSC'15 |

