
From in-disk to in-memory big data with Hadoop:
Performance experiments with nucleotide sequence data

A. Radenski1, L. Ehwerhemuepha1, and K. Anderson1

1Schmid College of Science and Technology, Chapman University, Orange, California, U.S.A.

Abstract. Apache’s Hadoop, the de facto standard big data
business analytics platform, has been increasingly used for
big data projects in the sciences in general and in
bioinformatics in particular. While the numerous strengths of
Hadoop have been widely recognized, its deficiencies have
been in the focus of constructive criticism. In particular, the
inadequate run time efficiency of the original Hadoop
MapReduce in-disk engine has driven an on-going transition
to the more efficient Spark in-memory engine. It has been
acknowledged that Spark has a pronounced efficiency edge
over MapReduce; at the same time, strict performance
comparisons and analysis are scarce. To help fill the relative
void, we experimented with codon count algorithms on
nucleotide sequence data. To do so, we measured the
performance of a Spark codon count algorithm on the
Amazon cloud platform and compared it to our earlier
MapReduce algorithms: a basic codon count algorithm and
an optimized “local in-memory aggregation” (or simply
“local aggregation”) algorithm. As expected, our
experiments confirmed that in-memory codon count with
Spark is much faster (about 15 times) than basic in-disk
codon count with MapReduce. Surprisingly, however, in-
memory codon-count with Spark remains about two times
slower than optimized “local aggregation” codon count with
MapReduce. This shows that properly optimized big data
analysis with MapReduce can be faster than analysis with
Spark, while working reliably with larger data sets that do not
fit in memory. Our results can be beneficial to researchers
and practitioners who need to choose a suitable big data
execution model for their current needs.

Keywords: Hadoop, MapReduce, Spark, codons,
performance

1 Introduction
Big data is an informal term used to refer to data sets that

cannot be stored and processed with widespread, off the shelf
hardware and software systems. Big data has at least one of
the following attributes: large volume, high velocity (very fast
data) and significant variety (largely heterogeneous data) [17,
7, 14]. While there are no specific boundary delineating big
data, the size of big data sets usually range from terabytes to
exabytes. The size of data exchanged through
telecommunication network in 1986, 1993, 2000 and 2007
were 281 petabytes, 471 petabytes, 2.2 exabytes and 65
exabytes respectively [37]. However, in 2012, 2.5 exabytes of

data were created daily (this is more than all data generated in
2000) and doubling every 40 months [7].

The interest in big data lies in the opportunity to reveal
hidden, non-obvious knowledge that can be derived through
data mining, statistical analysis, machine learning and other
suitable methods in business, science and engineering,
healthcare, and virtually any realm of human activity.

Although various big data tools and platforms have been
developed over the years, we chose to focus on the Apache
Hadoop Ecosystem because it is currently the most widely
known and used platform for storage and analysis of big data.

The origins of Hadoop can be traced back to the early
2000s with the development of a MapReduce engine and
distributed file system for the Nutch web crawler. Nutch grew
into Hadoop which in 2008 was elevated to a top-level
Apache project [34, 1].

Historically, Hadoop was built for batch processing of large
textual data across multiple commodity servers. It grew out of
the need to process, in fault-tolerant manner, voluminous text
data across commodity hardware in such a way that
computation is moved to the data and I/O latency from
moving large chunks of data is consequently averted. Since its
development, Hadoop has been considered a low cost,
scalable, flexible, and fault-tolerant alternative for batch
processing large data sets. By its original design, Hadoop was
intended to address mainly the “large volume” aspect of big
data.

We refer to MapReduce as in-disk engine because it
involves the file system in all communications, including
those on the same node. While this provides fault tolerance
and scalability, it is detrimental to performance. The
performance deficiency of MapReduce has stimulated the
development of Spark, a faster alternative to MapReduce [38,
28]. We refer to the Spark as in-memory engine because it
uses, in contrast to MapReduce, as much as possible the entire
available memory for data storage and communication.

The big data community has accepted that Spark has a
pronounced efficiency edge over Hadoop. At the same time,
strict performance comparisons and analysis are scarce. To
provide additional systematic insight, we experimented with
codon count algorithms on nucleotide sequence data. In
particular, we measured the execution times of an in-memory
(with Spark) algorithm on the Amazon cloud platform and
compared them to the execution times of a basic and an
optimized in-disk (with MapReduce) algorithms.

In the rest of this paper, we review the Hadoop ecosystem,
including its in-disk and in-memory aspects, then describe our

34 Int'l Conf. on Advances in Big Data Analytics | ABDA'15 |

experiments and compare the performance of Spark to the
performance of MapReduce.

2 The Hadoop ecosystem
Since 2008, Hadoop and associated Apache projects have

grown steadily to what is now referred to as the Hadoop
Ecosystem. The Hadoop ecosystem comprises core projects
and a number of related projects that can run on top or
alongside of the core.
2.1 Core projects

The Hadoop core consists of the Hadoop Distributed File
System (HDFS), the Hadoop MapReduce in-disk engine
(MR), the Hadoop Common, and the YARN resource
manager.

The HDFS is capable of storing very large data sets reliably
and in a fault-tolerant way on potentially unreliable clusters of
commodity servers. The HDFS design presumes that
hardware failure is a norm; it also presumes that HDFS-based
applications perform batch processing of large data sets, are
write-once-read-many applications, are portable across
heterogeneous commodity hardware, and are such that
moving computation is cheaper than moving data [2]. The
HDFS is not well suited for low-latency data access, data sets
made of many small files, scenarios with multiple writers and
arbitrary file modifications [19].

With MR, users specify serial map and reduce methods (one
of each kind) that transform key-value records into new key-
value records. The Hadoop MR implementation feeds input
data to the mapper tasks and distributes intermediate key-
value pairs to reducer tasks for final processing and output. In
that, all intermediate records with the same key are distributed
to the same reducer [24]. All communication in Hadoop MR
goes via the file system.

The Hadoop Common contains libraries and utilities used
by other Hadoop projects, while YARN is a resource
negotiator that controls resource allocation within a cluster
including application scheduling, also used by other projects.
YARN was introduced to Apache Hadoop to decouple
programming models from resource management and to
delegate scheduling functions such as task fault tolerance to
per-application components [33].
2.2 Related projects

The Hadoop ecosystem includes a variety of related
projects that can interact with the Hadoop core, including the
HDFS and the in-disk Hadoop MR engine.

Hive provides the ability to query and analyze large amount
of historic (static) data in data warehouses by means of a
SQL-like language, HiveQL. Hive translates higher-level user
queries to lower-level Hadoop MR jobs, therefore freeing
users from the relatively complex Hadoop MR Java API.
Hive, however, is not a complete DBMS because record-level
update, insert and delete operations cannot be performed
directly by the underlying HDFS and MR. Hive is not well
suited for rapidly changing data sets and is comparatively

slower than traditional databases, partly because of the delay
introduced by calling on and initiating MR jobs.

Pig is a high level programming language. The
implementation translates Pig programs into Hadoop MR
jobs.

HBase is a distributed, versioned, non-relational database
modeled after, but not identical with Google's Bigtable [6,
10]. It can capture incremental data, such as user interactions
in social networks and data produced by large cluster health
monitors for example.

Presto is a distributed SQL engine for interactive big data
analysis spanning from giga- to petabytes [23]. Presto accepts
connections to different data sources (such as Hive, HBase,
Cassandra, Scribe, relational databases, and proprietary data
stores such as Amazon S3). Presto is optimized for ad-hoc
analysis at interactive speed, supporting "standard ANSI SQL,
including complex queries, aggregations, joins, and window
functions" [4].

Mahout is a big data library of classification and
recommendation algorithms. Originally implemented in
Hadoop MR, Mahout is highly scalable and is able to support
distributed processing of large data sets across commodity
clusters.

Further examples include Cassandra (developed by
Facebook in 2008 as an offshoot of BigTable), Voldemort
(distributed key-value store created by LinkedIn in 2009),
Tajo (SQL query engine for Hadoop created in South Korea
in 2010), Kafka (data ingest framework originally developed
by LinkedIn and open sourced in early 2011), Storm (stream
computing framework released by Twitter in 2011), and
Impala (SQL query engine created by Cloudera in 2012).

In recent years, Spark has gained popularity as an in-
memory implementation of the map-reduce parallel model
and is now emerging as a faster substitute for the original
Hadoop MR in-disk engine. Because of Spark’s growing
importance, we discuss it separately in a later section.
2.3 Deploying and running Hadoop

Hadoop can be deployed on traditional on-site clusters as
well on public, private, and hybrid clouds. It can run on
virtual machines where it is known to perform marginally
slower than the physical machines [13].

Several companies provide Hadoop in public cloud services
at a cost to users. Three notable examples are Amazon
(Amazon Web Services), Microsoft (Microsoft Azure), and
Google (Google App Engine). We have chosen to work with
the Amazon Web Services (AWS) which is the largest cloud
computing platform in the world and which provides AWS
usage grants to universities for research and teaching.

Amazon Elastic MapReduce (Amazon EMR) is a web
service that makes it easy to quickly and cost-effectively
process vast amounts of data. Amazon EMR uses Hadoop to
process data across clusters of desired (by users) sizes.
Launching an Amazon EMR is a high-level task with node
provisioning, cluster setup, Hadoop configuration and cluster
tuning all abstracted from the user; this abstraction allows
first time users ease of use. EMR is reliable and provides fault

Int'l Conf. on Advances in Big Data Analytics | ABDA'15 | 35

tolerance through automatic monitoring of the cluster to
handle failed or failing nodes. It is "elastic" because any
number of compute nodes can be provisioned and because it
is easy to scale up or down and the user has complete control
(such as root access) over the cluster. For security, EMR
automatically configures firewall settings that control network
access in a logically isolated user-defined network. A
beneficial recent addition to AWS is Hue, a web-based
graphical user interface for interactive access to AWS clusters
(including EMR and HDFS) and the S3 cloud storage.

Cloudera provides an easy to install and configure pre-
packaged distribution of Apache Hadoop, enhanced with
custom Cloudera components. Other popular distributions
include Apache Hadoop and MapR.
2.4 Hadoop deficiencies

There are, of course, drawbacks inherent in the original
Hadoop architecture. Originally, Hadoop was specifically
designed to run in a fault-tolerant manner long non-iterative
batch jobs over large sets of static text data. Jobs over large
numbers of small datasets can be inefficient. Interactive jobs
and jobs that require data updates can be quite inefficient, too,
if at all possible. The Hadoop MR engine employs the file
system in all communications which can be detrimental to
efficiency. These and other Hadoop difficulties are being
addressed with new additions to the Hadoop ecosystem, most
notably the Spark in-memory engine.

3 In-memory big data with Spark
Spark is a big data framework developed to take advantage

of in-memory computation. Apart from increased speed,
Spark provides support for cyclical data flow data model
applications, thus eliminating another weakness of
MapReduce [38].

Spark is a fast, general purpose engine for large-scale data
processing that employs Resilient Distributed Datasets (RDD)
and a distributed memory abstraction for in-memory
computation on large clusters [28, 39]. Spark can be deployed
as either a standalone application or on top of Hadoop. While
Spark aims to fully utilize available memory, it also has the
capacity to perform in-disk processing with larger data sets
that do not fit entirely in available memory. Spark provides
fault-tolerance through techniques that permit the restoration
of RDDs upon node failure. Differences between MR and
Spark are outlined in [9].

A Spark application involves the following principal
components:

Driver program written in Python, Java, or Scala.
SparkContext object which is created within the driver

program and coordinates the Spark processes
running on the cluster. SparkContext connects to a
supported cluster manager (such as YARN, Mesos,
and Spark's own standalone cluster manager) and
distributes tasks across worker nodes.

Executor processes (referred to as executers) that carry
out application-specific computations on the worker
nodes under SparkContext.

The parallel computing primitives available in Spark
include reduce, collect and foreach operations. Shared
variables called broadcasters and accumulators are available
to help with map, filter and reduce operations.

Spark is flexible framework as it can be run on Hadoop,
Mesos, in the cloud or standalone, and can process a variety
of data sources such as the HDFS, Cassandra, HBase and
Amazon. Several organizations such as UC Berkeley
AMPLab, Amazon, IBM Almaden and NASA JPL use Spark
for building applications for large scale analytics and
interactive exploration of large data [28].

Spark comes with higher level extensions for big data
analytics, such as the SQL-like query extension, the MLlib
machine learning extension, and the GraphX graph processing
extension [28]. Most notably, the Spark Streaming extension
was developed to process discretized data streams enabling
real-time data analysis [38].

Given that Spark can handle static or slowly changing data
as well as fast stream data, while at the same time maintaining
a speed-up advantage over MR [39, 29, and 38], it is not
surprising that Spark is considered as a viable in-memory
alternative to the in-disk MR implementation. Projects,
originally implemented with the in-disk MR engine have been
ported (Hive) or are now being ported (Mahout) onto the
Spark in-memory engine.

4 Hadoop bioinformatics applications
Since MapReduce was implemented as a module of the

open-source Apache Hadoop platform, it has found
application not only in business analytics, but also in various
scientific and engineering domains, such as sets and graphs;
artificial intelligence, machine learning and data mining;
bioinformatics; image and video; evolutionary computing; a-
life modeling, statistics; and numerical mathematics,
including PDE solvers [26]. In this section we review some
bioinformatics applications of the Hadoop ecosystem,
including MR and Spark.

SparkSeq is a general-purpose genomic tool built with
Apache Spark for next-generation sequencing (NGS) [35]. It
provides convenient methods for common tasks in
bioinformatics and genomic studies such as sample, exon and
position encoding using Ensembl gene annotation forma [36].
The RSparkSeq package is available to connect SparkSeq
with R. SparkSeq accepts BAM and BED [3, 18, and 31] files
for a variety of analysis tasks such as nucleotide and genomic
coverage, number of short reads, and others.

Adam is a tool for large scale genomics analysis that
consists of data formats, APIs and algorithms implemented on
top of Spark [20]. For a particular configuration, a “50 fold
decrease in time required to compute base substitution was
achieved in comparison to using BCF tools on a local file
system” [32].

36 Int'l Conf. on Advances in Big Data Analytics | ABDA'15 |

Error correction of erroneous bases is an important first
(preprocessing) step, to precede genome assembly and variant
discovery in high-throughput NGS. Apache Spark has been
used to provide a parallel algorithm for screening NGS
sequence data for errors, ensuring faster processing that
Hadoop MapReduce [8].

SeqHBase was built on Hadoop and HBase for applications
in whole-genome sequencing (WGS) and whole-exome
sequencing (WES) [11]. Earlier on, the SeqWare Query
Engine was developed in 2010 to provide an easy way to
make the U87MG genome available to both skill
programmers and non-programmers alike. The SeqWare
Query Engine uses Apache HBase as the backend database
because of its robust querying abilities and auto-sharding of
data across commodity cluster via Hadoop [5].

BioPig is a sequence analysis toolkit built on the Hadoop
MR engine and the Pig programming language. It contains
modules such as pigKmer for computing the frequencies of
each kmer as a histogram; pigDuster for searching known
sequences for near exact match; and other modules such as
pigDereplicator [22].

SeqPig is a similar scalable tool for sequencing large data
sets in Hadoop. It uses Apache Pig for automated
parallelization across computing nodes [27].

Cloud BioLinux is a publicly accessible VM that can be
deployed on the Amazon EC cloud and on Eucalyptus. Cloud
BioLinux provides, by default, a range of pre-configured
“command line and graphical software applications, including
a full-featured desktop interface and over 135 bioinformatics
packages for sequence alignment, clustering, assembly and
phylogeny” [16]. Cloud BioLinux has been used to analyze
protein disorder for whole organisms and for obtaining all
possible single sequence variants in protein coding regions of
the human genome [15].

FX is an RNA sequence analysis tool that can be installed
on local Hadoop clusters and Amazon EC2 cloud. FX
provides an enhanced mapping of short reads by using
references made of known genes and their isoforms [12].

Hadoop MR has been used for distributed a-life simulation
on the cloud [25].

Additional bioinformatics applications of the Hadoop
ecosystem can be found in [30, 24].

5 Performance experiments on AWS,
the Amazon Cloud Platform

5.1 Algorithms on nucleotide sequence data

Codons are triples over the four DNA nucleotides
traditionally represented by the letters A, C, G and T. Given a
dataset of DNA nucleotides, codon usage calculation is
expected to produce the frequencies of codons in the set [24].
The calculated frequencies can then be studied with various
statistical methods for a number of purposes, such as back-
translation of protein sequences to their probable DNA
sequences, identification of protein-coding regions of DNA,

and identification of regions that probably do not encode a
protein [21].

In earlier research, we have developed MR streaming
algorithms that gather statistics on codon usage count (both
single codons and codon pairs). For each of these tasks, we
developed a basic non-optimized MR algorithm and a MR
algorithm optimized with local in-mapper aggregation or
simply local aggregation (LA) [19, 24]. Local aggregation is a
technique that helps reduce the intermediate data volume
between mapper and reducer tasks in MR. For local
aggregation, the mapper uses an in-memory data structure to
aggregate multiple intermediate counts and emit them at once,
rather than emitting multiple trivial counts. Thus, the mapper
is explicitly designed to perform part of the reducer’s work.In
this paper, we limit ourselves to single codon usage count.
Pseudo-code for our basic MR algorithm is shown in Fig. 1,
while Fig. 2 offers the pseudo-code for the optimized MR LA
algorithm.

Then we evaluated the performance advantage of local
aggregation by running our basic MR and MR LA algorithms
on Amazon’s EMR cloud over sequence data from a
tuberculosis database and by measuring the algorithms’
execution times [24].

Figure 1: Pseudo-code for the basic codon count algorithm in MR
streaming. The mapper emits an intermediate key-value pair for each
codon occurrence; the reducer sums up all counts for each individual
codon using the fact that keys (i.e. codons in this case) are supplied
in sorted order.

In this paper, we revisit the codon usage count problem and
run a basic Spark implementation (Fig. 3) on Amazon EMR
clusters that are identically configured as in our previous
experiments. We have also repeated representative set of our
previous experiments to confirm that current cluster
performance remains the same. This approach permitted us to
compare Spark and MR performance by accumulating
performance data for Spark and reusing previously
accumulated data for MR.

Int'l Conf. on Advances in Big Data Analytics | ABDA'15 | 37

Figure 2: Pseudo-code for the mapper part of the LA codon count
algorithm in MR streaming. The mapper uses an in-memory data
structure to accumulate partial counts, before finally emitting all of
them. The reducer is the same as in Figure 1.

Figure 3: Pseudo-code for the Spark codon count algorithm.

5.2 Performance experiments with nucleotide sequence
data on the Amazon cloud platform

We implemented a Spark codon count program (Fig. 3) in
Python 2.7.9. To assess performance, we ran our Spark

implementation of codon count algorithm as a bootstrap
program on the Elastic MR cloud with Hadoop 2.4.0. In all
experiments, current with Spark and previous with MR, we
used four m1.large AWS instances – a master instance and
three core instances. This permitted us to compare
performance results without rerunning earlier time-consuming
MR experiments. Likewise, we used exactly the same gene
sequence data in both experiments, replicating the data to
scale from 1GB to 100GB of sequence data.

We uploaded the collection of datasets onto an AWS’s S3
cloud. After provisioning a cluster, we SSH-ed into the
cluster’s master node and submitted our Spark application by
using "spark-submit", setting "--master" to "yarn-client" and
"--num-executors" to "6". We chose six executors after
performing several experiments on 25GB of data to determine
the optimal number of executors, performance wise. As in the
experimental setup for our earlier MR jobs, we ran the Spark
application twice and calculated the average execution time.
All performance results are presented in Table 1 and
visualized in Fig. 4 and Fig. 5.

As previously known [24], our optimized LA algorithm
runs 16 to 34 times faster than our basic MR algorithm (Table
1). As expected, our Spark algorithm runs (about 15 times)
faster than our basic MR algorithm. Somewhat surprisingly,
our optimized LA MR algorithm performs two times faster
than our Spark implementation, at least for the particular
datasets used in these experiments (Table 1). We attribute the
performance advantage of MR over Spark to the custom in-
memory local aggregation optimization.

Table 1: Performance data (measured in minutes on AWS’s EMR) for the (i) basic MapReduce (MR), (ii) MapReduce with local aggregation
(MR LA), and (iii) Spark algorithms for codon count, plus speed gains of MR LA against Spark and MR, and of Spark against MR.

Elapsed time (in minutes)

Data
size
(GB

Basic MR
algorithm MR LA algorithm Spark algorithm MR /

MR LA
MR /
Spark

Spark /
MR LA Min Max Avg Min Max Avg Min Max Avg

1 31 32 31.5 2 2 2.0 2.3 2.3 2.3 16 14 1.1

4 106 120 113.0 4.5 5 4.75 7.9 8.0 8.0 24 14 1.6

9 263 270 266.5 8 9 8.5 17.5 17.5 17.5 31 15 2.0

16 465 482 473.5 15 16 15.5 33.8 34.3 34.1 31 14 2.2

25 720 780 750.0 21 23 22.0 46.3 47.5 46.9 34 16 2.1

36 - - - 34 34.5 34.25 66.3 73.4 69.9 - - 2.0

49 - - - 40 44 42.0 91.8 102.3 97.1 - - 2.3

64 - - - 54 59 56.5 119.8 119.8 119.8 - - 2.1

81 - - - 71 74 72.5 147.8 148.0 147.9 - - 2.0

100 - - - 85 86 85.5 182.6 227.6 205.1 - - 2.4

38 Int'l Conf. on Advances in Big Data Analytics | ABDA'15 |

Figure 4: Execution times of the basic MR, the LA MR, and Spark
algorithms for codon count.

Figure 5: Performance advantage of the LA MR algorithm for
codon count over the Spark algorithm.

6 Conclusions
In this paper, we analyzed the state of the art of the Hadoop

big data echo-system and focused on the current trend from
in-disk to in-memory big data processing. We reviewed and
experimented with Spark, the emerging in-memory alternative
to the classic Hadoop MapReduce framework.

To compare the performance of Spark and Hadoop MR, we
executed, in Amazon’s EMR cloud, Spark and Hadoop MR
algorithms over large nucleotide sequence data. Specifically,
we showed that optimized (with local aggregation) MR
algorithm for simple codon analysis can be twice as fast as
corresponding Spark algorithm; to the best of our knowledge,
we the first to demonstrate the potential performance edge of
MR due to custom LA. As expected, the performance of non-
optimized MR lags behind Spark. We therefore suggest that
available optimization techniques be considered for existing
Hadoop MR applications before making a decision to re-
implement them in Spark for performance gains.

We believe that this research can be beneficial to scholars
and practitioners who need to choose a suitable big data
execution model for their current needs.

7 References
1. Apache Hadoop, http://Hadoop.apache.org/ (Retrieved

May 14, 2015).
2. Borthakur, D. (2007). The Hadoop distributed file

system: Architecture and design. The Apache
Software Foundation, (2007).

3. Broad Institute, https://www.broadinstitute.org/
(Retrieved May 14, 2015).

4. Chan L., Presto: Interacting with petabytes of data at
Facebook,
https://www.facebook.com/notes/facebook-
engineering/presto-interacting-with-petabytes-of-
data-at-facebook/10151786197628920 (Retrieved
May 14, 2015).

5. D. O’Connor, B. Merriman, S. Nelson. SeqWare
Query Engine: storing and searching sequence data
in the cloud. Bmc Bioinformatics, 11(Suppl 12), S2,
(2010).

6. George, L. (2011). HBase: the definitive guide.
O'Reilly Media, Inc. (2011).

7. Gerhardt, B., Griffin, K., Klemann, R. (2012).
Unlocking Value in the Fragmented World of Big
Data Analytics. How Information Infomediaries Will
Create a New Data Ecosystem, Cisco Internet
Business Solutions Group (IBSG), 2013-2017
(2012).

8. Gong, Y. Parallel Algorithms for Screening NGS Data
Using Spark (2014).

9. Gopalani, S., Arora R. Comparing Apache Spark and
Map Reduce with Performance Analysis using K-
Means. International Journal of Computer
Applications (0975 – 8887), Volume 113 – No. 1
(2015).

10. HBase, A. A Distributed Database for Large
Datasets. The Apache Software Foundation,
http://hbase.apache.org (Retrieved May 14, 2015).

11. He, M., Person, T. Hebbring, S., Heinzen, E., Ye, Z.,
Schrodi, S., Wang, K.. SeqHBase: a big data toolset
for family based sequencing data analysis. Journal of
medical genetics, jmedgenet-2014 (2014).

12. Hong, D., Rhie, A., Park, S., Lee, J., Ju, Y., Kim, S.,
Seo, J. S. FX: an RNA-Seq analysis tool on the
cloud. Bioinformatics, 28(5), 721-723 (2012).

13. Ibrahim, S., Jin, H., Lu, L., Qi, L., Wu, S., & Shi, X.
Evaluating mapreduce on virtual machines: The
hadoop case." In Cloud Computing, 519-528,
Springer Berlin Heidelberg (2009).

14. Intel IT Center. Planning Guide: Getting Started with
Hadoop. Steps IT Managers Can Take to Move
Forward with Big Data Analytics (2012).

15. Kaján, L., Yachdav, G., Vicedo, E., Steinegger, M.,
Mirdita, M., Angermüller, C., Rost, B. (2013). Cloud
prediction of protein structure and function with
PredictProtein for Debian. BioMed research
international (2013).

Int'l Conf. on Advances in Big Data Analytics | ABDA'15 | 39

16. Krampis, K., Booth, T., Chapman, B., Tiwari, B.,
Bicak, M., Field, D., Nelson, K. E. Cloud BioLinux:
pre-configured and on-demand bioinformatics
computing for the genomics community. BMC
bioinformatics, 13(1), 42 (2012).

17. Laney, D. 3D data management: Controlling data
volume, velocity and variety. META Group
Research Note, 6 (2001).

18. Li H., Handsaker B., Wysoker A., Fennell T., Ruan
J., Homer N., Marth G., Abecasis G., Durbin R. The
Sequence alignment/map (SAM) format and
SAMtools. Bioinformatics, 25, 2078-9 (2009).

19. Lin, J., Dyer, C. Data-intensive text processing with
MapReduce. Synthesis Lectures on Human
Language Technologies, 3(1), 1-177 (2010).

20. Massie, M., Nothaft, F., Hartl, C., Kozanitis, C.,
Schumacher, A., Joseph, A., Patterson, D. Adam:
Genomics formats and processing patterns for cloud
scale computing. EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2013-
207 (2013).

21. McInerney, J. GCUA: general codon usage analysis,
Bioinformatics 14(4), 372-373 (1998).

22. Nordberg, H., Bhatia, K., Wang, K., Wang, Z.
BioPig: a Hadoop-based analytic toolkit for large-
scale sequence data. Bioinformatics, 29(23), 3014-
3019 (2013).

23. Presto, https://prestodb.io/ (Retrieved May 14, 2015).
24. Radenski, A., Ehwerhemuepha, L. Speeding-up

codon analysis on the cloud with local MapReduce
aggregation, Information Sciences, Elsevier, 263,
175-185 (2014).

25. Radenski, A. Using MapReduce streaming for
distributed life simulation on the cloud, Advances in
Artificial Life, ECAL 2013, MIT Press, 284-291
(2013).

26. Radenski, A. Big data, high-performance computing,
and MapReduce. Proceedings of the 15th
International Conference on Computer Systems and
Technologies (CompSysTech '14), ACM, New York,
NY, USA, 13-24 (2014).

27. Schumacher, A., Pireddu, L., Niemenmaa, M.,
Kallio, A., Korpelainen, E., Zanetti, G., Heljanko, K.
SeqPig: simple and scalable scripting for large
sequencing data sets in Hadoop. Bioinformatics,
30(1), 119-120 (2014).

28. Spark, Spark: Lightning-fast cluster computing,
https://spark.apache.org/ (Retrieved May 14, 2015).

29. Tabaa, Y., Medouri, A., & Tetouan, M. Towards a
next generation of scientific computing in the cloud.
International Journal of Computer Science (2012).

30. Taylor, R. An overview of the
Hadoop/MapReduce/HBase framework and its
current applications in bioinformatics. BMC
bioinformatics 11.Suppl 12 (2010): S1.

31. UCSC Genome Bioinformatics,
http://genome.ucsc.edu/ (Retrieved May 14, 2015).

32. van Hagen, S., Schoots-van der Ploeg, J., Weistra,
W., van Bochove, K. Evaluation of Spark and
ADAM for large scale genomics data.

33. Vavilapalli, V. K., Murthy, A. C., Douglas, C.,
Agarwal, S., Konar, M., Evans, R., Baldeschwieler,
E. Apache Hadoop yarn: Yet another resource
negotiator. In Proceedings of the 4th annual
Symposium on Cloud Computing, p. 5, ACM
(2013).

34. White, T. Hadoop: The definitive guide. O'Reilly
Media, Inc. (2012).

35. Wiewiórka, M., Messina, A., Pacholewska, A.,
Maffioletti, S., Gawrysiak, P., Okoniewski, M.
SparkSeq: fast, scalable, cloud-ready tool for the
interactive genomic data analysis with nucleotide
precision. Bioinformatics, btu343 (2014).

36. Wiewiorka M. SparkSeq,
https://bitbucket.org/mwiewiorka/sparkseq/wiki/Ho
me (Retrieved May 14, 2015).

37. Wikipedia, Big data,
http://en.wikipedia.org/wiki/Big_data (Retrieved
May 14, 2015).

38. Zaharia, M., Chowdhury, M., Franklin, M. J.,
Shenker, S., Stoica, I. Spark: cluster computing with
working sets. Proceedings of the 2nd USENIX
conference on Hot topics in cloud computing, p. 10
(2010).

39. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma,
J., McCauley, M., Stoica, I. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory
cluster computing. Proceedings of the 9th USENIX
conference on Networked Systems Design and
Implementation, p. 2 (2012).

40 Int'l Conf. on Advances in Big Data Analytics | ABDA'15 |

