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Abstract. Apache’s Hadoop, the de facto standard big data 
business analytics platform, has been increasingly used for 
big data projects in the sciences in general and in 
bioinformatics in particular. While the numerous strengths of 
Hadoop have been widely recognized, its deficiencies have 
been in the focus of constructive criticism. In particular, the 
inadequate run time efficiency of the original Hadoop 
MapReduce in-disk engine has driven an on-going transition 
to the more efficient Spark in-memory engine. It has been 
acknowledged that Spark has a pronounced efficiency edge 
over MapReduce; at the same time, strict performance 
comparisons and analysis are scarce. To help fill the relative 
void, we experimented with codon count algorithms on 
nucleotide sequence data. To do so, we measured the 
performance of a Spark codon count algorithm on the 
Amazon cloud platform and compared it to our earlier 
MapReduce algorithms: a basic codon count algorithm and 
an optimized “local in-memory aggregation” (or simply 
“local aggregation”) algorithm.  As expected, our 
experiments confirmed that in-memory codon count with 
Spark is much faster (about 15 times) than basic in-disk 
codon count with MapReduce. Surprisingly, however, in-
memory codon-count with Spark remains about two times 
slower than optimized “local aggregation” codon count with 
MapReduce. This shows that properly optimized big data 
analysis with MapReduce can be faster than analysis with 
Spark, while working reliably with larger data sets that do not 
fit in memory. Our results can be beneficial to researchers 
and practitioners who need to choose a suitable big data 
execution model for their current needs. 
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1 Introduction
Big data is an informal term used to refer to data sets that 

cannot be stored and processed with widespread, off the shelf 
hardware and software systems. Big data has at least one of 
the following attributes: large volume, high velocity (very fast 
data) and significant variety (largely heterogeneous data) [17, 
7, 14]. While there are no specific boundary delineating big 
data, the size of big data sets usually range from terabytes to 
exabytes. The size of data exchanged through 
telecommunication network in 1986, 1993, 2000 and 2007 
were 281 petabytes, 471 petabytes, 2.2 exabytes and 65 
exabytes respectively [37]. However, in 2012, 2.5 exabytes of 

data were created daily (this is more than all data generated in 
2000) and doubling every 40 months [7].  

The interest in big data lies in the opportunity to reveal 
hidden, non-obvious knowledge that can be derived through 
data mining, statistical analysis, machine learning and other 
suitable methods in business, science and engineering, 
healthcare, and virtually any realm of human activity. 

Although various big data tools and platforms have been 
developed over the years, we chose to focus on the Apache 
Hadoop Ecosystem because it is currently the most widely 
known and used platform for storage and analysis of big data. 

The origins of Hadoop can be traced back to the early 
2000s with the development of a MapReduce engine and 
distributed file system for the Nutch web crawler. Nutch grew 
into Hadoop which in 2008 was elevated to a top-level 
Apache project [34, 1].  

Historically, Hadoop was built for batch processing of large 
textual data across multiple commodity servers. It grew out of 
the need to process, in fault-tolerant manner, voluminous text 
data across commodity hardware in such a way that 
computation is moved to the data and I/O latency from 
moving large chunks of data is consequently averted. Since its 
development, Hadoop has been considered a low cost, 
scalable, flexible, and fault-tolerant alternative for batch 
processing large data sets. By its original design, Hadoop was 
intended to address mainly the “large volume” aspect of big 
data.  

We refer to MapReduce as in-disk engine because it 
involves the file system in all communications, including 
those on the same node. While this provides fault tolerance 
and scalability, it is detrimental to performance. The 
performance deficiency of MapReduce has stimulated the 
development of Spark, a faster alternative to MapReduce [38, 
28]. We refer to the Spark as in-memory engine because it 
uses, in contrast to MapReduce, as much as possible the entire 
available memory for data storage and communication. 

The big data community has accepted that Spark has a 
pronounced efficiency edge over Hadoop. At the same time, 
strict performance comparisons and analysis are scarce. To 
provide additional systematic insight, we experimented with 
codon count algorithms on nucleotide sequence data. In 
particular, we measured the execution times of an in-memory 
(with Spark) algorithm on the Amazon cloud platform and 
compared them to the execution times of a basic and an 
optimized in-disk (with MapReduce) algorithms. 

In the rest of this paper, we review the Hadoop ecosystem, 
including its in-disk and in-memory aspects, then describe our 

34 Int'l Conf. on Advances in Big Data Analytics |  ABDA'15  |



experiments and compare the performance of Spark to the 
performance of MapReduce. 

2 The Hadoop ecosystem 
Since 2008, Hadoop and associated Apache projects have 

grown steadily to what is now referred to as the Hadoop 
Ecosystem. The Hadoop ecosystem comprises core projects 
and a number of related projects that can run on top or 
alongside of the core. 
2.1 Core projects 

The Hadoop core consists of the Hadoop Distributed File 
System (HDFS), the Hadoop MapReduce in-disk engine 
(MR), the Hadoop Common, and the YARN resource 
manager. 

The HDFS is capable of storing very large data sets reliably 
and in a fault-tolerant way on potentially unreliable clusters of 
commodity servers. The HDFS design presumes that 
hardware failure is a norm; it also presumes that HDFS-based 
applications perform batch processing of large data sets, are 
write-once-read-many applications, are portable across 
heterogeneous commodity hardware, and are such that 
moving computation is cheaper than moving data [2]. The 
HDFS is not well suited for low-latency data access, data sets 
made of many small files, scenarios with multiple writers and 
arbitrary file modifications [19]. 

With MR, users specify serial map and reduce methods (one 
of each kind) that transform key-value records into new key-
value records. The Hadoop MR implementation feeds input 
data to the mapper tasks and distributes intermediate key-
value pairs to reducer tasks for final processing and output. In 
that, all intermediate records with the same key are distributed 
to the same reducer [24]. All communication in Hadoop MR 
goes via the file system. 

The Hadoop Common contains libraries and utilities used 
by other Hadoop projects, while YARN is a resource 
negotiator that controls resource allocation within a cluster 
including application scheduling, also used by other projects. 
YARN was introduced to Apache Hadoop to decouple 
programming models from resource management and to 
delegate scheduling functions such as task fault tolerance to 
per-application components [33].  
2.2 Related projects 

The Hadoop ecosystem includes a variety of related 
projects that can interact with the Hadoop core, including the 
HDFS and the in-disk Hadoop MR engine.  

Hive provides the ability to query and analyze large amount 
of historic (static) data in data warehouses by means of a 
SQL-like language, HiveQL. Hive translates higher-level user 
queries to lower-level Hadoop MR jobs, therefore freeing 
users from the relatively complex Hadoop MR Java API. 
Hive, however, is not a complete DBMS because record-level 
update, insert and delete operations cannot be performed 
directly by the underlying HDFS and MR. Hive is not well 
suited for rapidly changing data sets and is comparatively 

slower than traditional databases, partly because of the delay 
introduced by calling on and initiating MR jobs. 

Pig is a high level programming language. The 
implementation translates Pig programs into Hadoop MR 
jobs.

HBase is a distributed, versioned, non-relational database 
modeled after, but not identical with Google's Bigtable [6, 
10].  It can capture incremental data, such as user interactions 
in social networks and data produced by large cluster health 
monitors for example. 

Presto is a distributed SQL engine for interactive big data 
analysis spanning from giga- to petabytes [23]. Presto accepts 
connections to different data sources (such as Hive, HBase, 
Cassandra, Scribe, relational databases, and proprietary data 
stores such as Amazon S3). Presto is optimized for ad-hoc 
analysis at interactive speed, supporting "standard ANSI SQL, 
including complex queries, aggregations, joins, and window 
functions" [4]. 

Mahout is a big data library of classification and 
recommendation algorithms. Originally implemented in 
Hadoop MR, Mahout is highly scalable and is able to support 
distributed processing of large data sets across commodity 
clusters.

Further examples include Cassandra (developed by 
Facebook in 2008 as an offshoot of BigTable), Voldemort
(distributed key-value store created by LinkedIn in 2009), 
Tajo (SQL query engine for Hadoop created in South Korea 
in 2010), Kafka (data ingest framework originally developed 
by LinkedIn and open sourced in early 2011), Storm (stream 
computing framework released by Twitter in 2011), and 
Impala (SQL query engine created by Cloudera in 2012). 

In recent years, Spark has gained popularity as an in-
memory implementation of the map-reduce parallel model 
and is now emerging as a faster substitute for the original 
Hadoop MR in-disk engine. Because of Spark’s growing 
importance, we discuss it separately in a later section. 
2.3 Deploying and running Hadoop 

Hadoop can be deployed on traditional on-site clusters as 
well on public, private, and hybrid clouds. It can run on 
virtual machines where it is known to perform marginally 
slower than the physical machines [13].  

Several companies provide Hadoop in public cloud services 
at a cost to users. Three notable examples are Amazon 
(Amazon Web Services), Microsoft (Microsoft Azure), and 
Google (Google App Engine). We have chosen to work with 
the Amazon Web Services (AWS) which is the largest cloud 
computing platform in the world and which provides AWS 
usage grants to universities for research and teaching. 

Amazon Elastic MapReduce (Amazon EMR) is a web 
service that makes it easy to quickly and cost-effectively 
process vast amounts of data. Amazon EMR uses Hadoop to 
process data across clusters of desired (by users) sizes. 
Launching an Amazon EMR is a high-level task with node 
provisioning, cluster setup, Hadoop configuration and cluster 
tuning all abstracted from the user; this abstraction allows 
first time users ease of use. EMR is reliable and provides fault 
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tolerance through automatic monitoring of the cluster to 
handle failed or failing nodes. It is "elastic" because any 
number of compute nodes can be provisioned and because it 
is easy to scale up or down and the user has complete control 
(such as root access) over the cluster. For security, EMR 
automatically configures firewall settings that control network 
access in a logically isolated user-defined network. A 
beneficial recent addition to AWS is Hue, a web-based 
graphical user interface for interactive access to AWS clusters 
(including EMR and HDFS) and the S3 cloud storage.  

Cloudera provides an easy to install and configure pre-
packaged distribution of Apache Hadoop, enhanced with 
custom Cloudera components. Other popular distributions 
include Apache Hadoop and MapR. 
2.4 Hadoop deficiencies 

There are, of course, drawbacks inherent in the original 
Hadoop architecture. Originally, Hadoop was specifically 
designed to run in a fault-tolerant manner long non-iterative 
batch jobs over large sets of static text data. Jobs over large 
numbers of small datasets can be inefficient. Interactive jobs 
and jobs that require data updates can be quite inefficient, too, 
if at all possible. The Hadoop MR engine employs the file 
system in all communications which can be detrimental to 
efficiency. These and other Hadoop difficulties are being 
addressed with new additions to the Hadoop ecosystem, most 
notably the Spark in-memory engine. 

3 In-memory big data with Spark 
Spark is a big data framework developed to take advantage 

of in-memory computation. Apart from increased speed, 
Spark provides support for cyclical data flow data model 
applications, thus eliminating another weakness of 
MapReduce [38].  

Spark is a fast, general purpose engine for large-scale data 
processing that employs Resilient Distributed Datasets (RDD) 
and a distributed memory abstraction for in-memory 
computation on large clusters [28, 39]. Spark can be deployed 
as either a standalone application or on top of Hadoop. While 
Spark aims to fully utilize available memory, it also has the 
capacity to perform in-disk processing with larger data sets 
that do not fit entirely in available memory. Spark provides 
fault-tolerance through techniques that permit the restoration 
of RDDs upon node failure. Differences between MR and 
Spark are outlined in [9]. 

A Spark application involves the following principal 
components: 

Driver program written in Python, Java, or Scala.  
SparkContext object which is created within the driver 

program and coordinates the Spark processes 
running on the cluster. SparkContext connects to a 
supported cluster manager (such as YARN, Mesos, 
and Spark's own standalone cluster manager) and 
distributes tasks across worker nodes. 

Executor processes (referred to as executers) that carry 
out application-specific computations on the worker 
nodes under SparkContext. 

The parallel computing primitives available in Spark 
include reduce, collect and foreach operations. Shared 
variables called broadcasters and accumulators are available 
to help with map, filter and reduce operations. 

Spark is flexible framework as it can be run on Hadoop, 
Mesos, in the cloud or standalone, and can process a variety 
of data sources such as the HDFS, Cassandra, HBase and 
Amazon. Several organizations such as UC Berkeley 
AMPLab, Amazon, IBM Almaden and NASA JPL use Spark 
for building applications for large scale analytics and 
interactive exploration of large data [28]. 

Spark comes with higher level extensions for big data 
analytics, such as the SQL-like query extension, the MLlib 
machine learning extension, and the GraphX graph processing 
extension [28]. Most notably, the Spark Streaming extension 
was developed to process discretized data streams enabling 
real-time data analysis [38].  

Given that Spark can handle static or slowly changing data 
as well as fast stream data, while at the same time maintaining 
a speed-up advantage over MR [39, 29, and 38], it is not 
surprising that Spark is considered as a viable in-memory 
alternative to the in-disk MR implementation. Projects, 
originally implemented with the in-disk MR engine have been 
ported (Hive) or are now being ported (Mahout) onto the 
Spark in-memory engine.  

4 Hadoop bioinformatics applications 
Since MapReduce was implemented as a module of the 

open-source Apache Hadoop platform, it has found 
application not only in business analytics, but also in various 
scientific and engineering domains, such as sets and graphs; 
artificial intelligence, machine learning and data mining; 
bioinformatics; image and video; evolutionary computing; a-
life modeling, statistics; and numerical mathematics, 
including PDE solvers [26]. In this section we review some 
bioinformatics applications of the Hadoop ecosystem, 
including MR and Spark.  

SparkSeq is a general-purpose genomic tool built with 
Apache Spark for next-generation sequencing (NGS) [35]. It 
provides convenient methods for common tasks in 
bioinformatics and genomic studies such as sample, exon and 
position encoding using Ensembl gene annotation forma [36]. 
The RSparkSeq  package is available to connect SparkSeq 
with R. SparkSeq accepts BAM and BED [3, 18, and 31] files 
for a variety of analysis tasks such as nucleotide and genomic 
coverage, number of short reads, and others.  

Adam is a tool for large scale genomics analysis that 
consists of data formats, APIs and algorithms implemented on 
top of Spark [20]. For a particular configuration, a “50 fold 
decrease in time required to compute base substitution  was 
achieved in comparison to using BCF tools on a local file 
system” [32].  
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Error correction of erroneous bases is an important first 
(preprocessing) step, to precede genome assembly and variant 
discovery in high-throughput NGS. Apache Spark has been 
used to provide a parallel algorithm for screening NGS 
sequence data for errors, ensuring faster processing that 
Hadoop MapReduce [8]. 

SeqHBase was built on Hadoop and HBase for applications 
in whole-genome sequencing (WGS) and whole-exome 
sequencing (WES) [11]. Earlier on, the SeqWare Query 
Engine was developed in 2010 to provide an easy way to 
make the U87MG genome available to both skill 
programmers and non-programmers alike. The SeqWare 
Query Engine uses Apache HBase as the backend database 
because of its robust querying abilities and auto-sharding of 
data across commodity cluster via Hadoop [5].  

BioPig is a sequence analysis toolkit built on the Hadoop 
MR engine and the Pig programming language. It contains 
modules such as pigKmer for computing the frequencies of 
each kmer as a histogram; pigDuster for searching known 
sequences for near exact match; and other modules such as 
pigDereplicator [22].  

SeqPig is a similar scalable tool for sequencing large data 
sets in Hadoop. It uses Apache Pig for automated 
parallelization across computing nodes [27]. 

Cloud BioLinux is a publicly accessible VM that can be 
deployed on the Amazon EC cloud and on Eucalyptus. Cloud 
BioLinux provides, by default, a range of pre-configured 
“command line and graphical software applications, including 
a full-featured desktop interface and over 135 bioinformatics 
packages for sequence alignment, clustering, assembly and 
phylogeny” [16]. Cloud BioLinux has been used to analyze 
protein disorder for whole organisms and for obtaining all 
possible single sequence variants in protein coding regions of 
the human genome [15]. 

FX is an RNA sequence analysis tool that can be installed 
on local Hadoop clusters and Amazon EC2 cloud. FX 
provides an enhanced mapping of short reads by using 
references made of known genes and their isoforms [12].

Hadoop MR has been used for distributed a-life simulation 
on the cloud [25]. 

Additional bioinformatics applications of the Hadoop 
ecosystem can be found in [30, 24]. 

5 Performance experiments on AWS, 
the Amazon Cloud Platform 

5.1 Algorithms on nucleotide sequence data 

Codons are triples over the four DNA nucleotides 
traditionally represented by the letters A, C, G and T. Given a 
dataset of DNA nucleotides, codon usage calculation is 
expected to produce the frequencies of codons in the set [24]. 
The calculated frequencies can then be studied with various 
statistical methods for a number of purposes, such as back-
translation of protein sequences to their probable DNA 
sequences, identification of protein-coding regions of DNA, 

and identification of regions that probably do not encode a 
protein [21]. 

In earlier research, we have developed MR streaming 
algorithms that gather statistics on codon usage count (both 
single codons and codon pairs). For each of these tasks, we 
developed a basic non-optimized MR algorithm and a MR 
algorithm optimized with local in-mapper aggregation or 
simply local aggregation (LA) [19, 24]. Local aggregation is a 
technique that helps reduce the intermediate data volume 
between mapper and reducer tasks in MR. For local 
aggregation, the mapper uses an in-memory data structure to 
aggregate multiple intermediate counts and emit them at once, 
rather than emitting multiple trivial counts. Thus, the mapper 
is explicitly designed to perform part of the reducer’s work.In 
this paper, we limit ourselves to single codon usage count. 
Pseudo-code for our basic MR algorithm is shown in Fig. 1, 
while Fig. 2 offers the pseudo-code for the optimized MR LA 
algorithm. 

Then we evaluated the performance advantage of local 
aggregation by running our basic MR and MR LA algorithms 
on Amazon’s EMR cloud over sequence data from a 
tuberculosis database and by measuring the algorithms’ 
execution times [24]. 

Figure 1: Pseudo-code for the basic codon count algorithm in MR 
streaming. The mapper emits an intermediate key-value pair for each 
codon occurrence; the reducer sums up all counts for each individual 
codon using the fact that keys (i.e. codons in this case) are supplied 
in sorted order. 

In this paper, we revisit the codon usage count problem and 
run a basic Spark implementation (Fig. 3) on Amazon EMR 
clusters that are identically configured as in our previous 
experiments. We have also repeated representative set of our 
previous experiments to confirm that current cluster 
performance remains the same. This approach permitted us to 
compare Spark and MR performance by accumulating 
performance data for Spark and reusing previously 
accumulated data for MR.  
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Figure 2: Pseudo-code for the mapper part of the LA codon count 
algorithm in MR streaming. The mapper uses an in-memory data 
structure to accumulate partial counts, before finally emitting all of 
them. The reducer is the same as in Figure 1. 

Figure 3: Pseudo-code for the Spark codon count algorithm.

5.2 Performance experiments with nucleotide sequence 
data on the Amazon cloud platform 

We implemented a Spark codon count program (Fig. 3) in 
Python 2.7.9. To assess performance, we ran our Spark 

implementation of codon count algorithm as a bootstrap 
program on the Elastic MR cloud with Hadoop 2.4.0. In all 
experiments, current with Spark and previous with MR, we 
used four m1.large AWS instances – a master instance and 
three core instances. This permitted us to compare 
performance results without rerunning earlier time-consuming 
MR experiments. Likewise, we used exactly the same gene 
sequence data in both experiments, replicating the data to 
scale from 1GB to 100GB of sequence data.  

We uploaded the collection of datasets onto an AWS’s S3 
cloud. After provisioning a cluster, we SSH-ed into the 
cluster’s master node and submitted our Spark application by 
using "spark-submit", setting "--master" to "yarn-client" and 
"--num-executors" to "6". We chose six executors after 
performing several experiments on 25GB of data to determine 
the optimal number of executors, performance wise. As in the 
experimental setup for our earlier MR jobs, we ran the Spark 
application twice and calculated the average execution time. 
All performance results are presented in Table 1 and 
visualized in Fig. 4 and Fig. 5. 

As previously known [24], our optimized LA algorithm 
runs 16 to 34 times faster than our basic MR algorithm (Table 
1). As expected, our Spark algorithm runs (about 15 times) 
faster than our basic MR algorithm. Somewhat surprisingly, 
our optimized LA MR algorithm performs two times faster 
than our Spark implementation, at least for the particular 
datasets used in these experiments (Table 1). We attribute the 
performance advantage of MR over Spark to the custom in-
memory local aggregation optimization. 

Table 1: Performance data (measured in minutes on AWS’s EMR) for the (i) basic MapReduce (MR), (ii) MapReduce with local aggregation 
(MR LA), and (iii) Spark algorithms for codon count, plus speed gains of MR LA against Spark and MR, and of Spark against MR. 

Elapsed time (in minutes) 

Data
size 
(GB

Basic MR 
algorithm MR LA algorithm Spark algorithm MR / 

MR LA 
MR / 
Spark

Spark / 
MR LA Min Max Avg Min Max Avg Min Max Avg 

1 31 32 31.5 2 2 2.0 2.3 2.3 2.3 16 14 1.1 

4 106 120 113.0 4.5 5 4.75 7.9 8.0 8.0 24 14 1.6 

9 263 270 266.5 8 9 8.5 17.5 17.5 17.5 31 15 2.0 

16 465 482 473.5 15 16 15.5 33.8 34.3 34.1 31 14 2.2 

25 720 780 750.0 21 23 22.0 46.3 47.5 46.9 34 16 2.1 

36 - - - 34 34.5 34.25 66.3 73.4 69.9 - - 2.0 

49 - - - 40 44 42.0 91.8 102.3 97.1 - - 2.3 

64 - - - 54 59 56.5 119.8 119.8 119.8 - - 2.1 

81 - - - 71 74 72.5 147.8 148.0 147.9 - - 2.0 

100 - - - 85 86 85.5 182.6 227.6 205.1 - - 2.4 
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Figure 4: Execution times of the basic MR, the LA  MR, and Spark 
algorithms for codon count. 

Figure 5: Performance advantage of the LA MR algorithm for 
codon count over the Spark algorithm. 

6 Conclusions
In this paper, we analyzed the state of the art of the Hadoop 

big data echo-system and focused on the current trend from 
in-disk to in-memory big data processing. We reviewed and 
experimented with Spark, the emerging in-memory alternative 
to the classic Hadoop MapReduce framework.  

To compare the performance of Spark and Hadoop MR, we 
executed, in Amazon’s EMR cloud, Spark and Hadoop MR 
algorithms over large nucleotide sequence data. Specifically, 
we showed that optimized (with local aggregation) MR 
algorithm for simple codon analysis can be twice as fast as 
corresponding Spark algorithm; to the best of our knowledge, 
we the first to demonstrate the potential performance edge of 
MR due to custom LA. As expected, the performance of non-
optimized MR lags behind Spark. We therefore suggest that 
available optimization techniques be considered for existing 
Hadoop MR applications before making a decision to re-
implement them in Spark for performance gains.   

We believe that this research can be beneficial to scholars 
and practitioners who need to choose a suitable big data 
execution model for their current needs. 
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