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Abstract— MapReduce is an emerging and widely used pro-
gramming model for large-scale data parallel applications that
require to process large amount of raw data. There are several
implementations of MapReduce framework, among which Apache
Hadoop is the most commonly used and open source implemen-
taion. These frameworks are rarely deployed on supercomputers as
massive as Blue Waters. We want to evaluate how such massive
HPC resource can help solving large-scale data analytics, data-
mining problems using MapReduce / Hadoop framework.

In this paper we present our studies and detailed performance
analysis of MapReduce / Hadoop framework on Blue Waters Super-
computer. We have used standard popular MapReduce benchmark
suite that represents wide range of MapReduce applications with
various computation and data densities. Also, we are planning to
use Intel HiBench Haddop Benchamrk Suite in future. We identify
few factors that significantly affect the performance of MapReduce
/ Hadoop and shed light on few alternatives that can improve the
overall performance of MapReduce techniques on the system.

The results we have obtained strengthen our belief in pos-
sibility of using massive specialized superrcomputers to tackle
big data problems. We demonstrate the initial performance of
the MapReduce / Hadoop framework with encoraging results and
we are confident that the massive traditional High Perfromance
Computaing resource can be useful in tackling the big-data research
challneges and in solving large-scale data analytics, data-mining
problems.
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1. Introduction
MapReduce [1] is a well-known programming framework

pioneered by Google for data intensive and large-scale data

analysis applications. The architecture is simple abstraction

that allows programmers to use a functional programming

style to create a map function that processes a key-value

pair associated with the input data to generate a set of

intermediate key-value pairs, and a reduce function that

merges all intermediate values associated with the same

intermediate key. The MapReduce programming model is

divided into 3 simple phases namely: Map; Shuffle and
Sort; Reduce as shown in figure 1.

Map Phase: In the map phase, the input data is

partitioned into input splits and assigned to Map tasks

associated with processing nodes in the cluster. The Map

task typically executes on the same node containing its

assigned partition of data in the cluster. These Map tasks

Fig. 1: MapReduce - 3 Phases

perform user-specified computations on each input key-

value pair from the partition of input data assigned to the

task, and generate a set of intermediate results for each key.

The shuffle and sort phase: The shuffle and sort phase

sorts the intermediate data generated by each Map task

from other nodes and divides this data into regions to be

processed by the reduce tasks. This phase also distributes

this data as needed to nodes where the Reduce tasks will

execute.

Reduce Phase: In reduce phase, the data divided by shuf-

fle and sort phase is processed. The Reduce tasks perform

additional user-specified operations on the intermediate data

possibly merging values associated with a key to a smaller

set of values to produce the output data.

All Map tasks must complete prior to the shuffle and sort

and reduce phases. The number of Reduce tasks does not

need to be the same as the number of Map tasks. For more

complex data processing procedures, multiple MapReduce

calls may be linked together in sequence.

The MapReduce programming model is also becoming

popular in scientific computing, where scientists need to

frequently analyze a large volume of experimental and
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simulation data. Such data analysis is often implemented as

independent tasks that can be expressed as mapping opera-

tions in MapReduce. For example, in genome sequencing,

the matching of large number of sequences against a huge

collection of known sequences can be considered as mapping

of similarity function to pair of sequences. Similarly, for

the post-processing of simulation data, the tasks can be

expressed as MapReduce, where a single program is run

multiple times with different input parameters. MapReduce

is a simple and scalable approach that enables scientists to

achieve simulation results from large-scale data.

Google implemented MapReduce to execute very large

matrix-vector multiplications needed for the PageRank cal-

culations. Matrix operations such as matrix-vector and

matrix-matrix calculations fit very well into the MapReduce

style of computing. Another examples in numerical comput-

ing that can be solved are Singular Value Decomposition or

Sparse Matrix Vector Multiplication that are used in lots

of HPC applications. Given the large-scale problem size

and types that are addressed using MapReduce, and the

popularity of MapReduce as an implementation paradigm,

it is unquestionable to explore its use on traditional HPC

platforms.

In this paper, we conduct initial benchmarking and per-

formance results of MapReduce framework on the Blue

Waters [3] petascale system. We have briefly described the

challenges of using Mapreduce / Hadoop framework on

High Performance Computing (HPC) platforms. We have

used Apache Hadoop [2], the most popular and commonly

used MapReduce framework. However, there is no official

/ formal support for Hadoop or related stack on the Blue

Waters system.

The rest of the paper is organized as follows: Section 2

discusses the challenges while deploying and using MapRe-

duce / Hadoop on a High Perfoprmance Computing resource.

In Section 3, we describe the architecture of computing

systems used and brief description on the test cases and

benchmarks we have experimented with. We talk about ex-

perimental setup along with benchmarking environment and

Hadoop related configuration that we used and challenges

faced in deploying Apache Hadoop software stack on the

Blue Waters system in Section 4 follwed by results with

discusion in Section 5 . Related work is briefly reviewed in

Section 6 and finally we conclude and discuss future work

in Section 7.

2. Challenges on HPC System

There are certain challenges on how MapReduce-Hadoop

framework will fit into HPC environment. We have come

across few of them while working with the MapReduce

programing paradigm on the Blue Waters system.

2.1 Parallelism:
Most of the HPC applications use divide-conqure method

and each task communicate with other tasks frequently.

These applications are often classified according to how

often their subtasks need to synchronize or communicate

with each other. In applications that exhibit fine-grained

parallelism the subtasks communicate frequently while ap-

plications with coarse-grained parallelism the subtasks do

not communicate many times. Other types of HPC ap-

plications are embarrassingly parallel that rarely or never

have to communicate. Embarrassingly parallel applications

are considered the easiest to parallelize. MapReduce com-

pletely relies on Embarrassingly Parallel (EP) techniques.

May of the HPC applications do not fall in this category.

Programmers will need to rewrite the codes to expose the

EP method in their existing codes. Also the programming

models such as MPI, OpenMP, OpenACC etc developed

for Parallel Programming are not suitable for MapReduce

/ Hadoop framework.

2.2 Programming Language:
The main programming language for HPC applications is

either Fortran or C while Hadoop is written in Java so that

the code written can run on any hardware platform. This

is completely opposite when it comes to traditional HPC

applications, where they are compiled and optimized for

specific software and hardware platform on which they will

run. As per the HPC users, the codes written in Java are slow

and inefficient which is not acceptable in HPC coomunity.

Another reason is, Hadoop was essentially designed for

world wide web services, for which Java is almost perfect

language of programming, while HPC applications address

wide range of scientific applications that are developed

historically.

2.3 File System:
The main requirement of Hadoop is availability of local

data storage. However, for the HPC systems there is no local

storage. The file system is shared across all the available

nodes. Most of the time the file system is either General

Parallel File System (GPFS) [32], [33] or Lustre [34].

Simulating these shared files system as a local storage is not

straight forward. Additionally, these filesystems extensively

use POSIX, while Hadoop doesn’t support it.

2.4 Resource Management:
In traditional hadoop clusters the resource management

is entirely handled by the hadoop framework and the types

of workloads are similar. On the other hand, typical HPC

systems handle various types of workload and the resource

management is taken care by dedicated scheduling software

such as Moab [35], PBS or Slurm. Integrating these resource

scheduler with Hadoop is not a simple task.
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2.5 Operating System:
Hadoop framework requires a full flavored operating sys-

tem. Current HPC systems have stripped down version of

linux kernel to reduce unwanted polling from the Operating

System (OS) which in turn improves the performance of an

application on the system. To use the MapReduce / Hadoop

framework one will have to use the Cluster Compatibility

Mode on the given system so that a full flavor of OS is

available for MapReduce applications.

2.6 IP stack over interconnect:
Hadoop framework uses TCP / IP or Ethernet and not

high speed and lossless Remote direct Memory Access

(RDMA) technologies. Hadoop does not support low

latency high speed interconnect with scalable topologies

like 3D Torus or 5D torus or Dragonfly or Gemini etc.

It supports only multi-stage clos style network [38]. The

network topologies mentioned above are relevant only to

HPC or Supercomputing.

We will have to look into all the above challenges to

evaluate the MapReduce / Hadoop framework on Blue

Waters system. However, solutions are being developed

and attempted to address a few of the above mentioned

challenges.

3. System Overview
In the section we describe the architecture of the com-

puting system we have used for the benchmarking and

performance evaluation of MapReduce framework and brief

description of test cases and benchmarking candidates. We

have used our Test and Development System as well as Blue

Waters [3] system to perform our experiments.

3.1 Computing System Overview
The hardware we used is the sustained petascale system

of Blue Waters [3] hosted at the University of IllinoisâĂŹs

National Center for Supercomputing Applications (NCSA)

and funded by NSF. Blue Waters is one of the largest

computational resources in the world, serving NSF Science

community researchers throughout the United States.

3.1.1 JYC Configuration
JYC is our Test and Development System (TDS) where

we test and evaluate software and changes before we deploy

it on Blue Waters. JYC is a single rack XE6m/XK6m.

There are 96 total nodes with a aggregate peak compute

performance of ~30.3 TF.

• 76 nodes are XE6 nodes with (1216 bulldozer modules,

2432 integer cores, 313 GF/node, 23.8 TF total):

– two AMD Interlagos processors (16 Bulldozer

modules total)

– 64 GB of RAM

• 8 nodes are XK6 nodes with (64 bulldozer modules,

128 integer threads, 156 GF x86/node, 655 GF/Fermi,

6.5 TF total):

– one AMD Interlagos processor (8 Bulldozer mod-

ules)

– 32 GB of RAM

– one NVIDIA Fermi GPU (with 6GB of RAM)

• The remaining 12 nodes are service nodes used for boot,

sdb, LNET routers, login, and network gateway. All 96

nodes are on the gemini interconnect which is cabled as

a 2D mesh 1D torus. The login and network gateways

each have a dual-port 10Gb Ethernet NIC.

• JYC also has Lustre as underlying file system, Torque

as resource manager and Cluster Compatibility mode.

3.1.2 Blue Waters Configuration
Blue Waters is a Cray XE6-XK7 supercomputing system

managed by the National Center for Supercomputing Appli-

cations for the National Science Foundation. The system has

a peak performance of 13.34 PF, aggregate IO throughput

in excess of 1 TB/s, 26 PB online disk capacity and nearly

200 PB of nearline storage. Blue Waters contains two types

of compute nodes: XE6 and XK7. There are 22,640 XE6

nodes and 4,224 XK7 nodes. Each XE6 node has two 16

core AMD 6276 CPUs, 64 GB of main memory. Each XK7

node has one 16 core AMD 6276 CPU, 32 GB of main

memory and one Nvidia Kepler K20X graphics processing

unit (GPU) with 6 GB of GDDR5 on-board memory. The

compute and file system nodes are interconnected using the

Cray Gemini high speed interconnection network. Two nodes

share a single Gemini ASIC (Application-Specific Integrated

Circuit), which contains two network interface controllers

(NICs) and a YARC-2 router. The network is organized in

a 24 X 24 X 24 3D torus topology.

3.1.3 File System
The file system on Blue Waters will be built using

Cray Sonexion 1600 Lustre appliances. The Cray Sonexion

1600 appliances provide the basic storage building block

for the Blue Waters I/O architecture and are referred to

as a "Scalable Storage Unit" (SSU). Each SSU is RAID

protected and is capable of providing up to 5.35 GB/s of IO

performance and approximately 120TB of usable disk space.

The scratch file system where the runs were made uses 180

(one hundred eighty) SSUs to provide 21.6 PB of usable

disk storage and 963 GB/s IO performance. This file system

can provide storage for up to 2 million file system objects.

This file system is high performance, high capacity transient

storage for applications.

3.1.4 Resource Management
The Blue Waters system uses TORQUE Resource Man-

ager [36] integrated with the Moab Workload Manager
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to schedule and manage user jobs. Torque is based on

OpenPBS, most of the commands for managing your jobs

on Blue Waters will be the same as PBS commands. The

application launcher (aprun) utility on the Cray system

launches applications on compute nodes similar to mpirun

on many other systems to launch jobs. Application Level

Placement Scheduler (ALPS) take care of job placement and

execution of the applications submitted by aprun.
The Blue Waters system also has Cluster Compatibility

Mode (CCM), a component of Cray environment to support

full Linux compatibility mode. With help of CCM, XE/XK

compute node, normally carrying a stripped down operating

system, can be turned into a typical node in a standard

Linux cluster. This mode is used to run programs on the

MapReduce / Hadoop framework.

3.2 Benchmarks Information
In this section we describe the standard and industry

benchmarks we have used during our experiments. Some of

them are available with the Hadoop distribution while others

are developed by the academia or industry.

3.2.1 PI Calculation
PI is a MapReduce program that estimates the value of PI

using a quasi-Monte Carlo method. This program is available

with the Hadoop distribution. PI is a purely computational

application that employs a Monte Carlo method to estimate

the value of PI. It is very nearly "embarrassingly parallel":

the map tasks are all independent and the single reduce

task gathers very little data from the map tasks. There is

little network traffic or storage I/O. Detailed information on

PI program can be found here [22]. BBP is a MapReduce

program that uses Bailey-Borwein-Plouffe [39] to compute

exact digits of PI.

3.2.2 Word Count
Word Count is a MapReduce program that counts the

words in the input files. The program counts the occurrences

of each word in a large collection of documents. Map emits

<word,1> tuples. Reduce adds up the counts for a given

word from all map tasks and outputs the final count.

3.2.3 Grep
Grep is a MapReduce program that counts the matches

of a regex in the given input. It is helpful in searching a

pattern in a file and is a generic search tool used in many

data analyses. Each map task outputs lines containing either

of the patterns as <regex, 1> tuples. Reduce task adds up

the counts and emits <regex, n> tuples. This program is

available with the Hadoop distribution.

3.2.4 NNBench
NNBench is a benchmark that stresses the namenode. It

is useful for load testing the NameNode hardware and con-

figuration of underlying filesystem. The NNbench program

is part of Apache Hadoop distribution that can simulate

requests for creating, reading, renaming and deleting files

on the Hadoop filesystem.

3.2.5 DFSIO
The DFSIO program is part of Apache Hadoop distri-

bution to compute the aggregated bandwidh delivered by

HDFS. It is a read and write test for the filesystem. The

test handles large number of tasks performing read or write

operations in parallel. This test run as a MapReduce job,

where each map task i opens a file to read or write and

measures number of bytes transferred and the ececution time

for that task. Map tasks followed by a single reduce task for

post-processing that aggregates the results from all the map

tasks by computing average I/O rate and average throughput

for each map task. More information on how to run the

benchmark and interpreting the results obtained is explained

in [20].

3.2.6 Intel HiBench
Intel’s HiBench [4], a Hadoop benchmark suite consisting

of both synthetic micro-benchmarks and real world applica-

tions such as Sort, WordCount, TeraSort, Bayes, KMeans,

NutchIndexing, PageRank, DSFIOE. It can be used as a

representative proxy for benchmarking Hadoop applications.

3.2.7 MRBS
MRBS [21] is a comprehensive benchmark suite for eval-

uating the performance of MapReduce systems. MRBS con-

tains five benchmarks covering several application domains

and a wide range of applications that are data-intensive

versus compute-intensive or batch applications versus online

interactive applications.

4. Experimental Setup
In this section we describe the benchmarking environment

along with the configuration setting we used for Hadoop

deployment on Blue Waters system and we detail some of

the challenges faced in deploying Apache Hadoop software

stack on the Blue Waters system.

4.1 Benchmarking Environment
We have used JYC, the Test and Developemnt System

(TDS) as well as Blue Waters system for our experiments.

Blue Waters has 22640 XE and 4224 XK nodes while JYC

consists of 76 XE and 8 XK nodes. The file system is Lustre

which is shared across all the nodes.

Resource management and scheduling is handled by

Torque. So each job may or may not get different nodes

in the systems and at different network location. We have

integrated Yarn with the existing resource management and

scheduling software. We use ccmrun supported by Cluster
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Compatibility Mode on Cray systems to properly launch the

MapReduce / Hadoop workload on the system.

4.2 MapReduce and Hadoop Settings
We have used an Open Source distribution of Apache

Hadoop stack 2.3.0. The node manager resource memory

is set to 52 GB which is approximately 80% of memory

available on a single compute node. The value for cpu-cores
is set to 32, virtual core to physical core ratio is set to 2

and virtual memory to physical memory ratio is set to 2.

The memory per container is set to 2 GB, therefore we can

have 25 number of containers per node. The heap sizes for

map task and reduce task are set to 1.6 GB and 3.2 GB

respectively. The detailed information on how to set these

parameters is available at [27] and we have followed these

instructions. We have used same settings on both JYC and

Blue Waters systems.

4.2.1 myHadoop
myHadoop [19] is a framework used for configuring

Hadoop on traditional HPC resources using the standard

job scheduling and resource manager software. User can

run Hadoop codes on the HPC resource without having

root privileges using myHadoop. It supports a regular non-

persistent mode where the local file system on each compute

node is used as the data directory for the Hadoop Distributed

File System (HDFS), and also a persistent mode where the

HDFS can be hosted on a shared file system such as Lustre

or GPFS. We have used myHadoop version 2.1.0.

4.2.2 Yarn
MapReduce / Hadoop workloads are excuted on stan-

dard Hadoop cluster with the help of resouce management

and scheduling entirely handled by Hadoop framework. In

contrast, the resouce management and scheduling is always

handled by special type of dedicated software or tool Like

Torque, Moab or PBS. While, a typical HPC resource has

several different users with various types of workloads,

Hadoop workload is similar in nature. Each job that runs

on HPC system can get different node configurations, can

be placed in various toplogy configurations or can get

different node types depends upon the type of hardware

configuration, available queues and scheduling policies. The

changes in the standard Hadoop cluster are very rare in terms

of node configuration or node placements in the topology.

We have integrated Yarn [37] with the Torque scheduler that

is currently available on the system.

4.3 Challenges On Blue Waters
• Scheduler:

User jobs on supercomputing systems are typically

managed by a job management system and a resource

manager. The Blue Waters system uses TORQUE Re-

source Manager integrated with the Moab Workload

Table 1: Timings of boot up using ssh on 25, 50 and 100

Nodes
Noof Nodes Time

25 179.497
50 355.244
100 700.06

Manager to schedule and manage user jobs. Apache

Hadoop stack comes with its own job scheduler, YARN

(Yet Another Resource Negotiator). YARN expects to

monitor and manage the nodes of a Hadoop cluster. The

version of YARN we used in this paper does not inte-

grate with existing workload and resource managers.

This is an inherent conflict in how YARN and Blue

Waters managers operate. MyHadoop works around this

conflict as follows:

– A regular job is submitted to the existing job

scheduler

– The list of nodes provided by the job scheduler are

then used to create a set of configuration files

– Using these files, a new (temporary) instance of

Hadoop cluster is booted up

– Hadoop jobs are not submitted to this instance of

the Hadoop cluster

In using this technique, other challenges were also

encountered. Timeout values for various components

had to be tuned to prevent the boot up process from

failing. Another major issue was after a Hadoop job

completes and tears down the Hadoop cluster, the BW

scheduler failed to detect end of the job. This resulted

in the BW scheduler waiting for wall clock timeout

instead of terminating after job completes. The tear

down process was modified so that BW scheduler

could detect and release nodes for other jobs.

• Scaling to larger node counts:
The Hadoop boot up script uses secure shell (ssh) to

start Hadoop processes on each node. This is done in

serial manner. For small node counts, this completed in

a reasonable time. As we scaled to larger node counts

(50+), the time to configure Hadoop cluster grew at an

unacceptable rate. It is observed that he time taken for

boot up is doubled when number of nodes are doubled.

The time taken for 25, 50 and 100 nodes are shown in

table 1.

Serial tools exist that implement parallel remote shell.

For our purposes, we have used pdsh [40] mainly be-

cause it is already configured to run on BW. Using pdsh

instead of ssh, we noticed a significant improvement in

boot up time.
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Table 2: Timings of BBP operations on 19 Nodes
Noof Maps Computing Size Time

100 0.5 x 106 782.53

100 1.0 x 107 3224.59

200 1.0 x 107 1806.07

5. Results
In this section we illustrate initial results for a spectrum

of benchmarks that might give a broad picture of possibility

of using HPC resouce such as Blue Waters for large-scale

data analytics. We will perform extensive studies of other

benchmarks and applications and look into scalabilty of

these benchmarks in terms different Cluster Size as well

as Data Sizes in detail in the future. We will also evaluate

various possible optimization parameters on the system. We

will not be running MapReduce / Hadoop workload on the

entire system, instead we are planning on using upto 5%

of the XE6 nodes which are more than 1000 nodes. If the

results are encoraging we will perform scalability studies

upto 2000 nodes for the purpose of this paper.

5.1 Performance Evaluation
In this section, we show the results of different standard

Hadoop Benchmarks on the Blue Waters system. We also

made sure that the experimental setup almost inline with the

setup used in the work done at [30] so that we can have

fare comparison of the obtained results. We also present the

results that illustrate the impact of different data sizes and

node sizes and scalability studies with respect to Data size

and Cluster size.

5.1.1 PI Calculation

BBP is a map/reduce program that uses Bailey-Borwein-

Plouffe to compute exact digits of PI. This program is

available with the Hadoop distribution. BBP is a purely

computational application that employs a Bailey-Borwein-

Plouffe method to estimate the value of PI. It is very nearly

"embarrassingly parallel": the map tasks are all independent

and the single reduce task gathers very little data from the

map tasks. There is little network traffic or storage I/O. The

results of BBP on 5 nodes is shown in figure 2. It shows

that the time taken is decreasing when number of map tasks

are increased. BBP is computing 0.5 x 106 digits. The time

taken on our system is 25% less than the time taken in [30]

paper. The results obtained for 19 nodes are shown in table

2. It shows that there is 56% improvement in time taken

when number of Maps are doubled for the computation of

1.0 x 107 digits.

We also have performance numbers on more numbers of

nodes that are encoraging. However we have not presented

it here as we have not completed all the runs at this time.

Fig. 2: Performance of BBP on 5 Nodes

5.1.2 Word Count

We have used two datasets for Word Count. One is

Wikipedia [29] and other is Freebase [28]. The oroginal

size of Wikipedia dataset was small, so we have duppli-

cated the dataset few number of times to make the larger

dataset of size 105GB. Freebase is an opensource datase

released by Google. The size of this dataset is 361 GB. This

dataset is a knowledge graph database for structuring human

knowledge, which is used to support the collaborative web

based data oriented applications. We have used 5 nodes for

the performance of Word Count opeartion so that we can

compare the results obtained in [30] with our results. The

total time taken for wikipedia database is 2719 seconds and

4312 for Freebase database which is little more compare to

[30] results. We will investigate further the reason behind

this operation.

5.1.3 Grep

We have used Wikipedia [29] and is Freebase [28] datasets

for the Text Search operation with datasizes 105 GB and 361

GB respectively. We have used 5 nodes for the performance

of Text Search opeartion so that we can compare the results

obtained in [30] with our results. The total time taken

for Text Search Operation for Wikipedia dataset is 1019

seconds while for Freebase is 2884 seconds. There is more

than 50% of reduction in the execution time on the JYC

system as compare to results in [30]. We are confident

that we will observe similar performance on Blue Waters

too. On 20 nodes the time taken is 874 seconds and 300

seconds for Fressbase and Wikipedia dataset respectively.

The performance is order of 3.5 magnitute improved with

respect to the results obtained on 5 nodes.

5.1.4 TestDFSIO

DFSIO test handles large number of tasks performing read

or write operations in parallel. In this test we have used 25,

50, 100, 200, 400 and 500 XE nodes. The total numbers of

file written and read were 625, 1250, 2500, 5000, 10000 and
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Table 3: Timings of Write and Read operations of DFSIO

on 25, 50, 100, 200, 400 and 500 Nodes
Number Write Read
Of Nodes Oper Oper

25 296.612 334.23
50 372.98 368.72

100 371.3 435.15
200 373.7 487.15
400 374.23 501.1
500 375.92 511.76

Fig. 3: Performance of DFSIO on on 25, 50, 100, 200, 400

and 500 Nodes

12500 respectively. The time taken for both Write and Read

opeartions in mentioned in table 3. For 25 nodes we have

observed 21.07 GB/Sec, for 50 nodes 33.51 GB/Sec, for 100

nodes 67.33 GB/Sec, for 200 nodes 133.79 GB/Sec, for 400

nodes 267.21 GB/Sec and for 500 nodes 332.51 GB/Sec.

The figure shows that the throughput increases linearly as

number of nodes are increased. The average IO rate is 187

MB/Sec for all the five configurations for write operations

and varies between 159 MB/Sec to 175 MB/Sec for read

opeartions. The throughput obtained is shown in figure 3.

The default dfs.blocksize is 128 MB, therefore we have set

the Lustre strip size to 128 MB and Lustre stripe count to

160, which is maximum number of OSTs to be used for the

scratch file system.

6. Related Work
Benchmarking is a de-facto process to measure perfor-

mance of any given system using a specific operation or set

of programs to compare the achieved results with standard

measures or other similar systems. Benchmarks are used

not only to test but also to measure and to predict the

sustained performance of computer system. Benchmarks are

also used to reveal their architectural weakness and strong

points. Benchmark data can provide valuable insight into

the likely behavior of a given system; it may also be used to

predict the performance of a new design. Benchmark data on

the other hand reflect more specifically how appropriate the

given design is for particular set of programs. Benchmarks

can be classified according to application classes, such as

scientific computing, commercial applications, distributed

systems, network services, multimedia applications, and

signal processing, etc. It is an important factor for evaluating

distributed systems, and extensive work has been conducted

in this area. There are various scientific and industry standard

performance benchmarking programs available. Some of

them are domain specific, some are associated with computer

hardware or software systems.

One of the most popular benchmark suite is TPC bench-

marks. The Transaction Processing Performance Council

(TPC), a non-profit organizatio that defines transaction pro-

cessing and database benchmarks, and distributes vendor-

neutral performance data to the industry. They have several

domain specific benchmarks such as TPC-C [5] and TPC-

E [6] , an on-line transaction processing benchmark to

evaluate online transaction processing (OLTP) performance

on various hardware and software configurations, TPC-DS

[8] and TPC-H [7], evaluates decision support systems, while

TPC-App [9] is an application server and web services

benchmark.

These benchmarks are useful in analysing performance

of distributed systems, however they are not suitable to

evaluate MapReduce framework. The scheduling policies

[10], data replication and partitioning policies [11], [12]

involve functionalities of microbenchmarks such as grep,

word count and sort which are available with standard

Hadoop distribution as described in [1].

There are few papers [13] and [14] depicting performance

of MapReduce on parallel database systems. In [15], the

authors compare MapReduce with parallel database system

while in [16] authors study how the job configuration pa-

rameters affect the performance of Hadoop. In [17] , authors

focus on architectural design issues and possible solutions

to improve the overall performance of Hadoop.

In [18], authors discuss about the framework which is

strongly based on myHadoop [19] approach to run Hadoop

workload on HPC machines and initial results on 33 nodes

of Cray XE6 / XK7 system. However none of them have

performed detailed studies on the system as massive as

Blue Waters, a Cray XE6/XK7 system consisting of more

than 22,640 XE6 compute nodes (each containing two AMD

Interlagos processors) augmented by more than 4224 XK7

compute nodes (each containing one AMD Interlagos pro-

cessor and one NVIDIA GK110 "Kepler" accelerator) in a

single Gemini interconnection fabric. While the results were

obtained in [18] are using in memory for the Cray system,

we will be using shared files system, Lustre.

In [23] authors discuss on optimizing nonblocking MPI

[26] collective operations to optimize MapReduce and in

[24] authors talk about a collective communication library,

Harp that can be used to support various applications from

HPC to cloud systems. In [25] authors have developed a high

performance MapReduce system for the MPI environment

that can be used to develop scientific applications in the
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molecular dynamics fileld. In this paper, we are not focusing

on performance of HPC application that use MPI extensively.

However, we will look onto it in the future.

BlueWaters is one of the most powerful supercomputers

in the world that provides a HPC platform for scientists and

engineers across the country to solve wide range of challeng-

ing problems. We want to evaluate how such massive HPC

resource can help solving large-scale data analytics, data-

mining problems using MapReduce / Hadoop framework.

7. Conclusion and Future Work
There is no official support for Hadoop or related stack

on the Blue Waters system. The first and most important

challenge in achieving the project goal is to build a working

Hadoop stack on the system. We have built a working stack

on the Blue Waters system but it is not available to users.

The focus of the paper is to obtain benchmarking results

and not to provide a stable Hadoop stack on the system.

Using the latest version may not be feasible due to the

software ecosystem limitations. Therefore, the version works

best within the system limitations will be used.

Hadoop works with a share-nothing architecture, where

as systems such as BW are share everything designs. Using

a shared file system like Lustre may pose challenges. Some

workarounds are being investigated but their feasibility on

Blue Waters system is unknown at this time. We have

integrated YARN with the resource scheduler, MOAB that

is available on the system.

Currently, we have only initial results with the existing

opensource Apache Hadoop stack [2]. If this does not

produce comparable results, we will consider Ohio State

University’s IB-enabled Hadoop stack [31]. Blue Waters

can expose VERBS interfaces over Gemini network using

IBoGNI. However, the stability, and compliance of IBoGNI

is not well known. If it is stable, this stack will be preferred.

In this paper we have presented initial results of few

benchmarks such as PI, Grep, TestDFSIO, NNBench etc.

We will be considering few other standard benchmarks such

as terasort, contrail bio workload etc. to perform detailed

evaluation and analysis of MapReduce framework on Blue

Waters. We may consider Intel’s HiBench and PUMA bench-

mark suite and benchmarks if time permits. We will also

evaluate MRBS benchmark suite provided the tarball is made

available by the developers.

We will perform extensive studies of other benchamrks

and applications and look into scalabilty of these bench-

marks in terms different Cluster Size as well as Data Sizes

in detail in the future. We will also evaluate various possible

optimization parameters on the system.

The initial results on the MapReduce / Haddop framework

are encoraging and we are confident that the massive tradi-

tional High Perfromance Computing resource can be useful

in tackling the big-data research challenges and in solving

large-scale data analytics, data-mining problems.
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