
Easel: Purely Functional Game Programming

Bryant Nelson, Joshua Archer, Nelson Rushton

(bryant.nelson | josh.archer | nelson.rushton) @ ttu.edu

Dept. of Computer Science, Texas Tech University

Box 43104 Lubbock, TX 79409-3104

Abstract – In response to a growing interest in functional

programming and its use in game development we’ve

developed the Easel Framework which describes an engine for

creating real time games by defining pure functions. This

paper describes the framework and an implementation of this

framework in SequenceL.

Keywords: SequenceL, Easel, Game Programming,

Functional Programming, Parallel Programming

1 Introduction

 In his keynote address at Quakecon 2013, John

Carmack, founder of Id Software and creator of the computer

games Doom and Quake, shared his views on functional

programming within the realm of video game development

[1]. Carmack expressed that the use of pure functions

simplifies the code base for very large projects by, among

other things, ensuring that various parts of the software do not

interfere with each other. The benefit of the modularity

inherent in functional programming is something that has been

known for some time [2]. This paper describes a game

programming framework which allows games to be written in

the pure functional language SequenceL [3], and an

implementation of that framework in C#. The framework is

called Easel and can be used to test Carmack's hypothesis in

its purest form, by writing games without producing any new

procedural code, or code with side effects.

 There have been previous attempts at making a purely

functional game programming framework. A fairly popular

example is the ELM language developed by Evan Czaplicki

[4]. In the case of ELM, an entirely new programming

language was developed in an attempt to facilitate the creation

of responsive GUIs using a functional language. There are

also examples of using Haskell to program games [5].

 These previous attempts at functional game engines try

to handle everything, from the I/O and rendering to the game

logic, in a functional language. Our opinion is that this leads

to unintuitive engines, and complex game programs. Easel is

an attempt to distill the logic of real time games down to its

simplest form using a functional language, and then handle the

rendering of these games in a procedural language.

2 Easel Description

 The goal of Easel is to enable the creation of real-time

games by defining pure functions. The Easel Framework is a

system description for a game engine which has two key parts,

a functional language used to write games for the engine,

called the game implementation language, and a program

which runs games written in that language, called the

rendering backend.

2.1 Overview

 The Easel framework requires a built-in data model,

consisting of the following types, to be defined in the game

implementation language:

 Point -- a structure of the form (x: int, y:int)

 Color -- a structure of the form
(red: int, blue: int, green: int)

with 0 ≤ red, blue, green ≤ 255

 ImageType -- one of the following strings:

“segment”, “circle”, “text”, “disc”, “triangle”, or

“graphic”

 Image – a structure of the form:
(kind:ImageType, iColor:Color,

vert1:Point, vert2:Point,

vert3:Point, center:Point,

radius:int, height:int, width:int,

message:string, src:string)

In practice only a subset of the fields will be used to

define a specific kind of image, and there are six

kinds of images:

o Segment --
(kind:“segment”,vert1:Point,

vert2:Point, iColor:Color)

o Circle --
(kind:“circle”,center:Point,

radius:int, iColor: Color)

o Disc --
 (kind: “disc”, center:Point,
radius:int, iColor:Color)

o FilledTriangle --
(kind:“triangle”,vert1:Point,

vert2:Point, vert3:Point,

iColor: Color)

o ImgFile --
(kind:”graphic”,source

:string, center:Point,

height: int, width:

int)

 Sprite – a sequence of images

 Click -- a structure of the form (clicked:
bool, clPoint: Point)

If clicked is false then this interpreted that

there was no mouse click in the given

frame.

If clicked is true, then point is the mouse

click for the frame.

 Input -- a structure of the form (iClick:
Click, keys: String)

This is interpreted as the input vector for a

given frame, consisting of a possible

mouse click and a sequence ascii of codes

of pressed keys.

 Sound -- a string which is “ding”, “bang”,

“boing”, “clap”, or “click”, or the name of

a .wav or .mp3 file.

 To create a game, the game implementation

language is used to define the following type and

functions:

 State -- a data type whose instances are possible

states of the game

 initialState() -- the starting state of the game

 images(S: State) -- is a sequence whose

members are the images to be displayed in the

program window when the game is in state S.

 sounds(I: Input, S: State) -- a sequence

of sounds played when input I is accepted in state S.

 newState(I: Input, S: State) -- the new

state resulting from accepting input I in state S.

 The rendering backend is responsible for executing the

game, retrieving input from players, and displaying the images

and sounds from the game. The overall algorithm for the

rendering backend is presented in Figure 1.

Figure 1: Algorithm PlayGame

 The PlayGame algorithm is very similar to the standard

game loop that is often encoded by hand when writing a game.

The Easel engine, however, removes the need to write a main

game loop. This abstraction allows the game programmer to

focus on the logic of the game and not have to worry about

the details of handling input from the user and rendering

graphics to the screen.

2.2 Implementation

 An Easel framework has been implemented, consisting

of a rendering backend and graphical frontend written in C#,

which runs games implemented using the Easel Framework in

SequenceL. This implementation is referred to as EaselSL.

 SequenceL is a small, statically typed, general purpose,

functional programming language [3]. The key reason for

which SequenceL was chosen as the game implementation

language is the fact that it is purely functional. SequenceL

compiles to C++ code, allowing it to be easily interfaced with

a graphical front end, which is a requirement for a game

engine. Additionally, programs written in SequenceL are

automatically compiled to highly parallel C++ [6]. All of

these reasons contributed to the choice of SequenceL as the

game implementation language.

 Figure 3 shows a simple example of the SequenceL

function definitions needed to encode a very simple game in

the EaselSL game engine. The "game" simply displays the

current time.

2.3 Rendering Backend

 C# was chosen to implement the rendering backend, due

to its extensive libraries and ease of graphical development.

S := initialState()
while True:
 display images(S)
 retrieve userInput
 play sounds(userInput, S)
 S := newState(userInput, S)

Figure 2: C# Rendering GUI Playing Breakout

An obvious drawback of this choice is that the framework is

restricted to the Windows operating system.

 The GDI+ libraries were used to render the graphics

from the games. These libraries provide access to the standard

Windows graphics API. They are not high-performance, but

they have performed adequately thus far.

 When a user runs the game engine, they are queried for

the location of a game file written in SequenceL. The

SequenceL compiler

is then called to

compile the game

source file into C++

code. The Visual

Studio C++

compiler is then

called to compile

that C++ code into a

C++ DLL. The

game engine is then

able to access the

Easel functions and

execute the game.

 The game engine runs the PlayGame algorithm until

the player interrupts it by exiting the application.

3 Conclusions

 Several simple games have now been written using the

EaselSL engine. These games range from Tic-Tac-Toe to

Breakout. The engine was in fact used in an undergraduate

Concepts of Programming Languages course at Texas Tech

University to provide students with hands-on experience using

a functional language for game programming.

 It has become apparent that there are some inherent

limitations in the design of Easel. One such limitation is that s

the state gets large, as in most games of considerable size, the

new state becomes too large to efficiently pass by value. In

addition, all game actions that affect a single intuitive state

variable must be located in one place together, which can be

unintuitive in complex games.

4 Future Work

 Work is currently under way to extend the current game

engine to directly support 3D rendering. The project has also

inspired research into what is currently being called Concrete

State Machine Language (CSML). Future work includes the

use of abstract state machines calling SequenceL functions to

address the limitations discussed in the previous section.

5 References

[1] John Carmack’s keynote at Quakecon 2013 part 4. 2013,

http://youtu.be/1PhArSujR_A.

[2] J. Hughes, “Why Functional Programming Matters,” in

The Computer Journal - Special issue on Lazy functional

programming archive Volume 32 Issue 2, April 1989, pp. 98-

107.

[3] B. Nemanich, D. Cooke, and J. N. Rushton, “SequenceL:

transparency and multi-core parallelisms,” in Proceedings of

the 5th ACM SIGPLAN workshop on Declarative aspects of

multicore programming, 2010, pp. 45–52.

[4] E. Czaplick, “Elm: Concurrent FRP for Functional GUI”,

Master’s Thesis, Harvard School of Engineering and Applied

Sciences,

www.seas.harvard.edu/sites/default/files/files/archived/Czapli

cki.pdf, March, 2012.

[5] M. H. Cheong, “Functional Programming and 3D

Games,” Master’s Thesis, The University of New South

Wales School of Computer Science and Engineering,

www.cse.unsw.edu.au/~pls/thesis/munc-thesis.pdf, 2005.

[6] B. Nelson and J. N. Rushton, “Fully Automatic Parallel

Programming,” presented at the Worldcomp 2013, at The

2013 International Conference on Foundations of Computer

Science, 2013.

Figure 3: Simple Easel Game in SequenceL

