
An Experiment Comparing Easel with Pygame

Josh Archer, Bryant Nelson, and Nelson Rushton (nelson.rushton@gmail.com)

Computer Science, Texas Tech University, Lubbock, Texas, USA

Abstract – A framework for developing games using a

functional language was designed and implemented at Texas

Tech. After it was created, a study took place. It consisted of

taking a group of developers with the same task, splitting them

in half and giving one group our system, and the other group a

well known system. This paper describes the experiment,

results, and future work.

1 Introduction

 Easel [Nelson 2014] is a framework for creating real

time games by defining pure functions. It was designed

principally for the purpose of game programming for math

education. An easel game is created by defining the following

types and functions in the functional programming language

SequenceL [Cooke 2008]:

 State -- a structure type whose instances are possible

states of the game

 initialState() -- the starting state of the game

 images(S) -- If S is a state, images(S) is a sequence

whose members are the images to be displayed in the

game window when the game is in state S.

 sounds(I,S) -- a sequence of sounds played when

input I is accepted in state S.

 newState(I,S) -- the new state resulting from

accepting input I in state S.

 Given a file containing definitions for the types and

functions above (and any helpers necessary), the game

algorithm runs as follows until interrupted (typically, by the

user closing the game window). Note that the PlayGame

algorithm is implemented as a fixed C# program to be linked

with SequenceL code written by the student/developer.

 Algorithm PlayGame:

State variables:

 S: State, C: Click, K: list<char>, I: Input,

lastFrameTime: time-in-seconds

Procedure:

S := initialState()

while True:

set lastFrameTime to the current time

flip screen display to images(S)

If the left mouse button has clicked downward since the last

frame, while the mouse was positioned in the game window,

store the mouse position in C; otherwise set C equal to

(clicked:false).

Set K equal to the list of depressed keys

I := (C,K)

play all of the sounds in sounds(I,S)

S := newState(I,S)

Pause until currentTime >= lastFrameTime + 0.0

This paper describes an exploratory study designed to test the

ability of new game programmers (who are not new

programmers) to develop simple games using Easel. The

experiment is described in Section 2. The observed results are

reported in Section 3, and Section 4 describes new hypotheses

and future work.

2 Experimental Design

A group of 35 undergraduate students was divided into two

groups alphabetically by last name, and two game design

projects were assigned to each group. The first project that

was assigned was called Box Spin, a simple game where the

player can rotate and scale a box drawn on the screen. The

second game was Collision Course, in which there is a disc in

the center of the screen, and darts created by the player move

at a constant rate towards the disc until they hit it. The

specifications for the games follow, they take place on a

1000x800 pixel screen, with a constant framerate of 30 FPS

The specification for Box Spin is as follows: There is a

square box in the center of the screen. The box can rotate left

or right, and the box can grow or shrink. The box always

remains centered, and the four edges of the box must be

visible at any time. The state of the game consists of the

length of the box’s sides, and the box’s orientation angle. The

box begins with its size as 10x10 pixels, and its sides parallel

to the x and y axes. The player can press any of the following

keys to interact with the game: ‘W’, ‘A’, ‘S’, ‘D’, ‘X. In each

frame, the player can perform the following actions:

1. If ‘A’ is pressed and ‘D’ is not pressed, box rotates

left by 3 degrees.

2. If ‘D’ is pressed and ‘A’ is not pressed, box rotates

right by 3 degrees.

3. If ‘W’ is pressed and ‘S’ is not pressed and the size

of the box is less than or equal to 500x500 pixels,

then the sides of the box grow by 4 pixels.

4. If ‘S’ is pressed and ‘W’ is not pressed and the size

of the box is greater than or equal to 10x10 pixels,

then the sides of the box shrink by 4 pixels.

5. If ‘X’ is pressed then the game returns to the initial

state.

The Collision Course game is defined as follows. There is a

disc in the center of the screen. Darts (smaller discs) can

appear wherever the player clicks on the screen. Darts will

always move directly toward the disc in the center at a

constant velocity until they reach the center, after which they

disappear. The state of the game consists of a collection of

darts and their positions, and whether the game is paused or

not. The initial state of the game is an empty collection of

darts, and unpaused. The player can press ‘X’, or ‘P’ to

interact with the game. The player can click at any location on

the game window. In each frame,

1. If the player clicks on the game window at point (x,

y) outside of the disc, then a dart is created and

centered at (x, y).

2. If the player presses ‘X’ then the game returns to its

initial state.

3. If the player presses ‘P’ and the game is paused then,

the game is unpaused.

4. If the player presses ‘P’ and the game is unpaused

then, the game is paused.

5. If the game is not paused, then every dart moves

directly toward the center of the screen by a distance

of 3 pixels.

6. Any dart that reaches the center (will pass through

(500,400) in the next frame) disappears.

In Phase I of the study, each student in the class was

assigned to write Box Spin, with students in Group I using

Easel and SequenceL, and students in Group II using Pygame

and Python. The entire class was given the same specification

for Box Spin, by which their submissions would be graded for

success or failure. In addition to the spec, the class was given

a lecture covering the math needed to implement the game.

They were encouraged to come ask any questions needed

during office hours.

In Phase II the students wrote Collision Course, and

switched the languages, with Group I now using Pygame and

Group II now using Easel. Once again the entire class was

given a specification, a lecture on the math needed, and

available office hours for help.

During both phases, students received links to the

documentation for Python Pygame, SequenceL, and Easel.

The documentation for SequenceL and Easel can be found at

http://goo.gl/1UcEty. One of the Pygame tutorials students

received was http://goo.gl/Ul8wZ4, which discusses the

architecture of game loops and how to set the frame rate in a

real time game. It is worth noting that most of the students had

not used SequenceL before, while most had used Python since

it is the CS1 language at Texas Tech.

3 A Priori Hypotheses

 Going into the experiment, we had a few patterns that

we would look for. Once such pattern would be that, contrary

to intuition, the abundance of documentation and examples

for Python/Pygame would actually cause difficulties for the

students developing in that language. The idea behind this

hypothesis is that given a plethora of information written by

numerous authors on numerous subject, the developer would

be overloaded with information that was not directly relevant

to their task: learning to use the language properly for

development.

 The other hypothesis was that the nature of a functional

language would greatly increase the ease of developing a

game. We decided to look very closely at the flow of the

programs that the subjects would create, seeing if ones built

in SequenceL/Easel seemed to allow the developer to

implement the specification as closely as possible with

minimal translation from spec to product.

4 Observed Results

 For project 1, the success rate for students who used

Easel was 6 successes out of 18 attempts, and the success rate

for students using PyGame was 3 successes out of 17

attempts. A “success” is defined here as writing a game that

functions according to its specification. For project 2, the

success rate for Easel was 7 out of 17, and the success rate

for Pygame was 2 out of 18.

 For both projects, incorrect submissions in PyGame

were due to framerate most of the time. There were more

runnable PyGame submissions than Easel ones. All but two

runnable submissions (i.e., submitted programs that did not

crash on opening) in Easel were correct.

5 New Hypotheses and Future Work

The most frequent errors in the Pygame programs involved

handling the frame rate. We thus hypothesize that this is a

stumbling block for new game programmers, and that the fact

that it is handled automatically in Easel was a significant

reason for the higher success rates for students using Easel. In

the Box Spin game, frame rate errors explain all of the

difference in success rates. They were, however, not a

significant factor in Collision Course.

The large number of tutorials, and large amount of sample

code available for Python and Pygame seemed to actually hurt

the students’ success rates when using these tools. It seemed

that students searched repeatedly for a library function or

example that would solve their problems for them, ultimately

without success. With Easel, on the other hand, students knew

http://goo.gl/1UcEty
http://goo.gl/Ul8wZ4

they would have to solve the kernel of the problem

themselves, and so they rolled up their sleeves, got to it, and

ultimately succeeded at a higher rate.

Ideally, we would like to conduct an experiment in which

the students do each project in one observable session. We, as

observers, have no real way to gauge exactly what the

individual students’ issues were with the games since they

took the work home. This would also allow us to keep

accurate track of the time students spent on each game.

6 References

[Cooke 2008] Daniel E. Cooke, J. Nelson Rushton, Brad

Nemanich, Robert G. Watson, Per Andersen: Normalize,

transpose, and distribute: An automatic approach for handling

nonscalars. ACM Trans. Program. Lang. Syst. 30(2) (2008)

[Nelson 2014] Bryant Nelson, Josh Archer, and Nelson

Rushton. Easel: Purely Functional Game Programming.

Submitted to SERP 2014.

