
Source Code Control Workflows
for Open Source Software

Kevin Gary
Department of Engineering
Arizona State University

Mesa, AZ 85212)
kgary@asu.edu

Ziv Yaniv, Ozgur Guler, and Kevin Cleary
The Sheik Zayed Intitute for Pediatric Surgical Innovation

Children’s National Medical Center
Washington, D.C. 20001

zyaniv,oguler,kcleary@childrensnational.org

Andinet Enquobahrie
Kitware, Inc.

Carrboro, NC, 27510
andinet.enqu@kitware.com

Abstract—Many open source projects rely
on the dedicated and highly skilled
members of distributed development
teams. These teams often employ agile
methods, as the focus is on concurrent
development and fast production over
requirements management and quality
assurance. The image-guided surgical
toolkit is an open source project that
relies on the collaboration of a skilled
distributed development team, yet
addresses a safety-critical domain. Due to
this rare intersection of agile and open
source development processes and a
safety-critical domain, the IGSTK team
has had to enhance the process with key
elements and a set of best practices to
augment commonly applied agile
methods. This paper presents our
experiences and lays out some research
questions for the future.

Index Terms—agile, open source, safety-
critical software.

I. INTRODUCTION
As agile methods have matured, so has the

realization that these methods are not
dogmatic in their approach. Agile methods
encourage the right amount of ceremony;
therefore if a safety-critical system requires a
greater emphasis on non-coding process
activities like documented design and
requirements management, then an agile
approach will include these as necessary
activities and not ceremony. Furthermore,
we argue that agile and open source
approaches focus more on code-level quality
that most classic software engineering
process models, which often talk about
quality in every phase of the lifecycle except
implementation.

We present our experiences on the image-
guided surgical toolkit (IGSTK) project as a
backdrop for this discussion. IGSTK is an
open source software project that has
employed agile best practices for the past
nine years. In that time we started with the

assumption that a lighter process is better,
focusing on evolving code, and only adding
in process elements where the need has
arisen. The IGSTK team just released
version 5.2 to the community, and in the past
year has adopted modifications to its
software processes.

II. RELATED PERSPECTIVES
Boehm [2] articulated the widespread

belief that agile methods, due in part to their
lack of emphasis on documentation,
requirements stabilization, planning, and
other large-scale synchronization points in
the software process. But recently, literature
has started to appear suggesting this may not
always be the case, particularly in healthcare
applications. Dwight and Barnes [5] describe
a “lean-to-adaptive (L2APP)” variant on
agile methods in a clinical research setting to
streamline value delivery by utilizing a
parallel flow side-by-side with laboratory
validation. The three-phase L2APP model
(speculation, collaboration, learning) strikes
us as an agile way to manage requirements in
an innovation-driven domain, though it does
not say much about downstream processes
related to design review and in-construction
change management. The authors
acknowledge the process is leveraged in the
clinical lab to develop innovations for later
large-scale production by shops prepared to
take a technology to market. To us this
represents a reasonable tradeoff in upstream
efficiency but may punt too much
responsibility downstream – how early does
evidence of traceability and design rigor
have to be accumulated?

Ge, Paige, and McDermid [8] present a
detailed discussion of Agile versus plan-
driven methods using Boehm’s central
premise as the framework for discussion.
The authors then go on to suggest a semi-
agile process that incorporates aspects of
traditional plan-driven processes such as up-
front design and hazard analysis with
iterative development and iterative

development of a safety argument. The
presentation admits there is a lot of devil-in-
the-details, with no current general principles
for deciding how much agility is too much or
too little. The key seems to be in calibrating
the process to do just enough at each point in
the process, a complex process goal.

Despite the complexity, we
philosophically agree with [8] in our own
recent paper [7]. Agile methods do embrace
activities like planning, design, and
validation as long as they are without
ceremony, meaning they are not performed
for performance sake; they are performed at
the right times and to the extent needed (and
no more) to achieve product requirements
(for example, certification). Exploration of
general principles, reference process
frameworks, or evaluation criteria to guide
practitioners in adopting “just enough agile”
is a worthy pursuit. Finally we note that none
of this discussion contradicts Boehm’s
original assertions; Boehm noted that
knowing the right places to apply the right
process is critical, and we view these
explorations as an investigation into where
agile can fit as a means of harnessing its
benefits in the healthcare domain.

III. IGSTK
IGSTK is an open source framework for

creating surgical applications. IGSTK is
distributed under a BSD-like license that
allows for dual-use between academic
research labs and commercial
entities. Image-guided surgery involves the
use of preoperative medical images to
provide image overlay and instrument
guidance during procedures. The toolkit
contains the basic software components
to construct an image-guided system,
including a tracker and a four-quadrant view,
incorporating image overlay. IGSTK also
leverages other open source projects,
specifically ITK for segmentation and
registration, VTK for visualization, and
FLTK and Qt for the user interface.

IGSTK has geographically
distributed developers, complex application
requirements, and framework constraints for
extensible and reusable architecture
components. This is obviously a tremendous
challenge compounded by the safety
critical nature of the domain. The IGSTK
team has created its software processes to
balance an agile development philosophy
with an integrated requirements elicitation
and management approach, and
consequently has arrived at a methodology
that is fast and flexible, yet meets the
stringent needs of this application domain.

IGSTK development presents
interesting challenges from a methodology
perspective. These complexities derive from
the nature of the requirements, the makeup
of the team, the dependence on pre-existing
software packages, and the need for high
quality standards within this domain.

The first challenge to IGSTK
development derives from the nature of the
framework-level requirements, which are
difficult to completely understand before
applications are constructed upon it.
Waterfall-style methodologies [11] that
attempt to define requirements completely
before development begins are not
considered suitable. Rational Unified
Process (RUP) use-case driven modeling
[10] is selectively applied through a
customized process C-PLAD [1], as
we cannot assume non-functional
requirements derived from a set of
applications known today represent a
complete set of requirements for the future.

The second challenge to IGSTK
development is the makeup of the team,
comprised of academic and commercial
partners collaborating in a distributed setting.
Most if not all of the team members
have other demands on their time. These
factors create challenges for setting project
deliverables and expectations over medium-
and long-term horizons. Fortunately, most

developers are deeply familiar with the
domain and with a common set of tools
and libraries from which to begin
development. The requirements, team
composition, and use of pre-existing
software suggest that agile methods
[4] should be applied to IGSTK. All team
members have significant exposure to agile
methods; some have even developed agile-
ready tools that are employed on IGSTK
[12].

Another challenge to IGSTK
development – the high quality standards
demanded the application domain – suggests
that some agile practices need to
be reinforced. For example, FDA guidelines
for approval of medical devices require
traceability of requirements through
implementation and testing. To address these
complexities, IGSTK adopted an agile
approach augmented by a set of best
practices we have previously described in
detail [6] so we merely list here:

Best Practice #1: Recognize people as

the most important mechanism for
ensuring high quality software. This agrees
with the philosophy espoused by the agile
community [3].

Best Practice #2: Promote constant
communication.

Best Practice #3: Produce iterative
releases.

Best Practice #4: Manage source code
carefully. A paradox of open source
development in this space is that on the one
hand you want to encourage community
contributions and innovation, but on the
other you need to manage change to software
artifacts carefully. We expand on our recent
process modifications to address this issue
(in part).

Best Practice #5: Validate the
architecture. This best practice is a nod to the
specialty of the domain, and is discussed in
more detail in the next section.

Best Practice #6. Emphasize continuous
builds and testing.

Best Practice #7. Support the process
with robust tools.

Best Practice #8. Emphasize requirements
management in lockstep with code
management.

Best Practice #9. Focus on meeting
exactly the current set of requirements; it
makes traceability easier, not harder.

Best Practice #10. Allow the process to
evolve.

IV. BEST PRACTICES FOR COMMUNITY
SOURCE CONTROL

These best practices are not foreign to
agile practitioners, or even to non-agile
practitioners. In the safety critical domain,
following only these practices is unusual and
not sufficient. Key process elements need
augmentation to ensure safety. In a previous
paper [7] we explored architecture validation
(best practice #5) and requirements
management (best practice #8). In this
section we describe our past and new
activities to support best practice #4, manage
source code carefully.

Agile methods are certainly highly
iterative; the predominant agile process
models, Scrum and XP, use short time-boxed
iterations as a mechanism for managing
change. But beyond short iterations, agile
methods have other practices facilitating an
almost continuous checkpointing of the
process – the daily scrum, pair programming,
scrumboards, and continuous integration and
testing dashboards. However these practices
are typically best implemented when the
team is physically co-located and dedicated
to the project. Hurdles, ideas, and other
communications are addressed in real-time.
Even with powerful online tools,
geographically distributed teams can only
rarely achieve this real-time interaction.
Time boundaries, language barriers, network
infrastructure issues, and local distractions

and responsibilities at multiple sites are
common causes for this degradation. It is
exacerbated in open source communities,
where participants are often dispersed
individuals working for different
organizations and only part-time in that
community. Further, the community has to
have either formal or informal rules
regarding who can do what with which
source code modules. IGSTK operates under
such constraints, with global participation
from researchers in hospital labs and
universities, industry partners, and
practitioners who made partial contributions
over time. IGSTK has employed some
traditional mechanisms for managing this
collaboration, including developer meetings,
user group meetings, online wikis and
support forums, two mailing lists (adopters
and core developers), and restrictions on core
component development to only the core
team.

Source code control is a critical practice
in managing change in an agile and open
source environment. At any point in time a
community developer may be working on a
defect fix, a new core feature, a new non-
core feature, a refactoring, or an application-
specific behavior or integration. That
developer may be working in isolation, with
little visibility in the rest of the community
until the time arrives that s/he desires
submission of the changed code. Should the
code be accepted? Does it adhere to defined
quality policies? Has it been code reviewed?
It is an experimental or application-feature or
a feature identified as desired by the
community? These and more questions arise
in this situation, and all pose risks when
developing in a safety critical domain.

Over the past decade IGSTK has used a
traditional, centralized approach to source
code control common in many software
projects. This approach supports a “branch-
and-merge” centralized workflow. IGSTK
further adopted a multiple codeline practice

known as sandboxing to allow for
experimental features to be developed under
lower quality conditions. But problems arose
over time. The sandbox codeline grew larger,
much larger, than the main product codeline,
to the extent that less rigorous traceability on
the sandbox led to inevitable technical debt.
In other words, the sandbox repository
became filled with incomplete features
whose owners may have gone inactive and
whose documentation and issue management
in other tools was outdated. Even if a
community member identified a desire to
complete a sandboxed feature, they were
often forced into significant rework or to
scrap the sandbox module and start over in
order to meet the quality policies on the
mainline.

In the past year IGSTK has moved to the
popular distributed version control system,
Git. Git enjoys significant popularity now,
though many projects use it in the same
manner as traditional centralized delta
repositories. Git’s distributed repository
model encourages many practices that go
against low-level practices taught in the
traditional model – for example, instead of
“check-in early and check-in often” (to
minimize merge conflicts in optimistic
centralized tools), the distributed model
encourages local branches with infrequent
merges, preferring to merge only when a
feature is complete and up to quality policy.
The need for a sandbox is gone. Further, it
encourages self-sustaining communities;
community practitioners may maintain their
own forked versions of repositories without
burdening the core team with constant
review of their features. Gone are the days of
“contrib. modules” one may “use at their
own risk” from the centralized repository;
now one may publish their own forked
repository and leave it to the market of
adopters to decide what to use. A concern in
this model is with the overall safety
properties of the forked repositories – who

has the overall ability to validate the safety
properties of these forks with the core? A
good research question! For the time being,
this model saves the IGSTK core team
valuable time in reviewing non-critical
development.

Because of the peer distributed repository
model used by Git and like-minded tools, a
large variety of workflows may be employed
on a project [3]. The IGSTK team reviewed
the Git workflow literature and practices
from related communities like ITK to adopt
a variation of a branchy workflow. In this
workflow two branch types are defined, a
topic branch and an integration branch. The
topic branch commits represent work on a
single new feature or fix. The local
developer(s) who work(s) on it name it
locally but the branch is not public on the
blessed IGSTK repository, so no other
developers can branch from it. The
integration branch is where merges of two or
more topics happen. These branches have
quality policy constraints enforced, and are
publicly named on the blessed repository
(one may pull from it).

Figure 1 depicts the relationship between
topic and integration branches.

Figure 1. Topic and Integration branch

commit patterns

Neither topic nor integration branches

represent the main codeline, this is
maintained separately in Git as the default
branch (master). In other words, merges are
not done directly into master, but into new
integration branches, which are then merged
into master after the integration is deemed
stable and up to quality policies. Figure 2
shows what a sequence of commits may look

like in IGSTK between the master, a topic
branch, and an integration branch named
next. Further details on the IGSTK Git
workflow may be found on the IGSTK Wiki
at
http://www.igstk.org/Wiki/Git/Workflow/To
pic.

Figure 2. A possible sequence of commits

on all branch types

This was a detailed presentation of a

particular best practice in the agile IGSTK
open source community. The level of rigor in
daily collaborative practices of community
developers is significant, and suggests if the
trail of data of these practices can be
harnessed and analyzed, it could provide a
basis for safety case evidence for software in
healthcare.

V. DISCUSSION
IGSTK’s agile approach is neither as

rigorous nor as complete as it could be for a
safety-critical domain. IGSTK is principally
used in academic research centers and some
small commercial endeavors outside the
USA, which can afford to be more forgiving.
Yet, the tale of IGSTK’s agile evolution, we
think, offers lessons and hope for applying
agile methods to safety-critical domains. The
work is laborious; to create and faithfully
execute agile practices in a distributed open
source community, every detail of the daily
practices must be examined for the right
amount of ceremony. We presented our
revised approach to source code control as an
example.

As we indicated at the end of section II,
we believe there is an opportunity to create
guidelines, models, and/or quality process

criteria for the introduction of agile methods
in the healthcare domain. Foremost, we
believe it is a necessity – the explosion of
personal medical devices and information
management platforms such as the fitbit
(fitbit.com) or smartphone-based sensor apps
has serious implications for future patterns of
individual-to-clinician healthcare. It will
eventually become a necessity in systems
development in healthcare (for example,
tele-robotic surgery). Changes in medical
device regulatory evaluation to a more
evidentiary case-based approach [9] opens
the door for agility. If agile methods can be
instrumented to collect and aggregate daily
practices into such evidence, then the
possibility exists for expanded opportunities
in healthcare development. Certainly the
economic drivers are there. In our view
research is needed on how to instrument
agility to collect the evidence required for
safety cases. Agile’s benefits include the
lightweight but constant management of
detailed activity, and making this visible and
transparent to all stakeholders. The
increasing adoption of tools within the agile
process focuses on communication between
stakeholders (chickens) and developers
(pigs). The identification and instrumentation
of daily safety-related activities needs to be
included in such toolsets to make this
evidence collection continuous, feasible, and
complete. Safety-based micro-evidence may
then be aggregated to uncover macro-trends
and introduce process improvements. This is
a current focus of our research in this area.

ACKNOWLEDGMENT
This work was funded by NIBIB/NIH

grant R01 EB007195. This paper does not
necessarily reflect the position or policy of
the U.S. Government.

REFERENCES
[1] Blake, M.B., Cleary, K., Ibanez, L.,

Ranjan, S.R., and Gary, K., "Use Case-
Driven Component Specification: A

Medical Applications Perspective to
Product Line Development," ACM
Symposium on Applied Computing,
Santa Fe, NM (2005).

[2] Boehm, B. Get ready for agile methods,
with care. IEEE Computer 2002;
35(1):64–69.

[3] Chacon, S. Pro Git. APress, 2009.
[4] Cockburn, A.: “Characterizing People as

Non-linear, First-order Components in
Software Development.” 4th
International Multi-Conference on
Systems, Cybernetics and Informatics,
Orlando, Florida, (2000).

[5] Dwight, Z. and Barnes, A. Laboratory
Driven, Lean-to-Adaptive Prototyping in
Parallel for Web Software Project
Identification and Application
Development in Health Science and
Research. Software Engineering and
Applications, 2012; 5:62-68.

[6] Gary, K., Ibanez, L., Aylward, S. Gobbi,
D., Blake, M.B., and Cleary, K. IGSTK:
An Open Source Software Toolkit for
Image-Guided Surgery. IEEE Computer,
vol. 39, no. 4, pp.46-53, April 2006.

[7] Gary, K., Kokoori, S., Muffih, B.,
Enquobahrie, A., Cheng, P., Yaniv, Z.,
& Cleary, K. “Agile Methods for Safety-

Critical Open Source Software”,
Software: Practice and Experience,
41:945-962, April 2011.

[8] Ge, X., Paige, F., and McDermid, J.A.
An Itaretive Approach for the
Development of Safety-Critical Software
and Safety Arguments. AGILE
Conference (2010).

[9] Geisler, J. “Software for Medical
Devices”, in Mission-Critical and
Safety-Critical Systems Handbook
Design and Development for Embedded
Applications (Fowler, K. ed.) 2010
Elsevier Inc.

[10] Kruchten, P. The Rational Unified
Process—An Introduction, 2nd Edition,
Addison-Wesley (2000).

[11] Royce, W.W.: “Managing the
development of large software systems:
concepts and techniques.”
IEEE WestCon, Los Angeles, 1970.

[12] Schroeder, W.J., Ibanez, L. Martin,
K.M.: “Software Process: The Key to
Developing Robust, Reusable
and Maintainable Open-Source
Software.” Proceedings of the IEEE
International Symposium on Biomedical
Imaging. Arlington, VA 2004.

